Indexing, Query Interface and Query Processing for Venus:
A Video Database System*

Tony C.T. Kuo and Arbee L.P. Chen

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Email: alpchen@cs.nthu.edu.tw

Abstract

A content-based video database system
requires new technologies fo fit the new
requirements and characteristics of videos. They
include video modeling, query specification, video
indexing, and query processing. In this paper, we
present Venus, a prototype content-based video
database system. Venus consists of a video manger,
a query manager, and an indexing tool. The
technologies developed for each component are
discussed, which include class hierarchies for
managing videos and content symbols, a content-
based query language for video retrieval, the
algorithms for semi-automatic index construction
from MPEG coded videos, and the strategies for
query processing.

1 Introduction

A video contains rich information in its contents.
There are two types of characteristics for a video:
(1) the image features (such as color, shape, and
texture), and (2) the features of the content symbols
(such as the spatial and temporal relationships
between them). The goal of a video database is to
support an efficient and friendly way for users to
retrieve video data. Traditional query capabilities
allow only textual and/or numerical specification. It
cannot satisfy the requirements of video retrievals,
and new technologies are necessary for the
requirements.

The content-based retrieval is a natural way
to meet the characteristics of video data. There are
several key issues of a content-based video
database: (1) the modeling of video data, (2) the
specification of video queries, (3) the construction

of video indexes, and (4) the video query processing.

Many approaches [5,8,11,12,13,16,19] were

* This work was partially supported by the Republic of
China National Science Council under Contract No.
NSC 86-2213-E-007-017.

proposed for these issues but few of them supported
a complete solution. In this paper, we present
Venus, a prototype content-based video database
system. Technologies for addressing the above
issues are discussed, which are integrated in the
implementation of Venus.

The concepts of content-based retrieval
were adopted from image databases [4,14,18]. For
video modeling and querying, previous works
[12,16] focused on the representations of temporal
and spatial relationships of content symbols. Two
types of content-based retrieval were investigated.
One is querying based on the image features of
video contents [19] and the other querying based on
content object specifications [5,9,13].

Information implied in the video contents
has to be extracted in advance as the video index
for query processing. A video sequence can be
organized as shot, scene, episode and video [6]. It
can be processed on uncompressed domain or
compressed domain. Many works segmented video
sequences into video shots [2,15,17,20,21,22] on
uncompressed domain. Based on compressed
domain, [1] proposed an approach for video
segmentation by analyzing the Discrete Cosine
Transform (DCT) coefficients of video frames.

For video querying, we designed a content-
based video query language CVQL [9] for Venus.
CVQL is powerful in predicate specifications. The
temporal and spatial relationships can be flexibly
specified to describe events or status of the video
contents. Moreover, an indexing tool is supported
for the construction of video indexes which are
required for the CVQL processing. An index
construction method based on the compressed
domain was designed to avoid the large amount of
analysis time on raw video data. Elimination-based
query processing was used in Venus to avoid frame
by frame predicate evaluations.

This paper is organized as follows. In
Section 2 the system architecture of Venus, and its

components are introduced. In Section 3, we

describe the main 1deas for video index construction.

The CVQL is introduced in Section 4. The
climination-based query processing is depicted in
Section 5. The last section concludes our works and
discusses the future works.

2 System Architecture
In this section, we introduce the system architecture
of Venus. Venus is designed in the X environment.
In this system, video queries with predicate
specifications of the temporal and spatial
relationships of content objects are provided.

The system architecture of Venus is shown
in Figure 1. It consists of three components: (1)
Video manager, (2) Query manager, and (3)
Indexing tool, as presented below.

Indexing Tool Video Manager Query Manager
Content object Video object Graphical user
class hierarchy class hierarchy interface
Index constructor Video Query processing

viewer engine

Video data

Figure 1: The system architecture of
Venus.

2.1 Video manager

The video manager manages video objects and
provides structural video browsing. The video
objects are organized in a class hierarchy which
supports the classification of videos and a flexible
search space for query processing. Figure 2
illustrates a video class hierarchy. Basketball and
Tennis are subclasses of video class Sports. The
user who is interesting in Sports videos need not
access or query the videos in class Politics since the
possible results are all in the class Sports. In this
paper, the name of a video will be presented in bold
face Roman beginning with a lowercase letter, and
a video class will be presented in bold face Roman

beginning with a capital letter.

[Video Politics |

Economics

Figure 2: A video class hierarchy.

A video consists of a set of alpha-numeric
attributes and raw video sequences. The raw video
sequence is in the format of MPEG [7] coded
stream, which can be displayed by the video viewer.
The attributes are name, length, and description of
the video. The description attribute stores the
keywords associated with the video. The keywords
are used for video classification. For each class, a
keyword is associated with it. When the keyword of
a video is matched with the keyword of a class, the
video is classified into this class. The class
hierarchy and their associated keywords are
constructed manually. When a video contains
multiple keywords, the video belongs to the
associated classes.

Video objects can be inserted, deleted,
classified and browsed by the video manager.

2.2 Query manager

In Venus, CVQL is used for describing queries by
video contents. Since the CVQL may be complex
for naive users, a graphical user interface (GUI) is
supported for simplifying query specifications.

A content object is a symbol extracted from
videos (a content symbol), which represents a real
world entity. For example, an anchorperson is a
content object in a news video. The content object is
used to specify predicates in the video database. To
classify various kinds of content objects, a class
hierarchy is constructed. For example, a user may
be interested in the video containing some animals,
the class Animal can then be used for this
specification. The predicate of a content-based
video query can be specified by the temporal and
spatial relationships of the content objects.

There are three steps for posing a video
query on the GUL First, use the video browser to
set the search range of the query. Since the video
objects are classified in the class hierarchy, users
can choose a suitable set of classes as the search
range. Second, use the sketch board to specify the
query predicates. The temporal and spatial
relationships of content objects can be specified.
Third, choose the form of query results. The query
results can be the whole video, a set of continuous
frames, or the content objects.

When the query specification is completed,
it will be transformed into the format of CVQL for
processing. The qualified video sequence will be
shown as query results. Figure 3 shows the GUL

10 1]

o
3

-
_ene
rinish

Y ji~ b

Figure 3: The graphical user interface.

The concept of CVQL and predicate specifications
will be presented in section 4.

2.3 Indexing Tool

For CVQL query processing, the indexes of video
contents are required. The content objects as well as
their spatial and temporal relationships have to be
extracted from the video contents. Since the video
data are often stored in the compressed format, the
algorithms of index construction are based on the
analysis of MPEG coded video streams. The
indexing tool consists of three parts. An incoming
video object can be analyzed by these three
components step by step for index construction.

o Shot change detector: A video is first divided
into a sequence of shots. The detector analyzes
MPEG coded streams to detect the possible
shot change locations. The detected shot
change locations can be confirmed manually.
The shot change locations are stored for
structural video browsing. Moreover, a shot is
a basic processing unit for the detection of
content objects.

o Content object detector: The second phase is
the content object detection. For each shot,
content objects are detected by the content
object detector. The content objects which may
be involved in the user queries are chosen. The
content objects are assigned a name and
classified into the content object class
hierarchy.

e Motion track constructor: Finally, the motion
tracks of the content objects are constructed.
For each content object, the positions in the
frames it appears are computed. Content
object positions on the continuous frames are
chained to form the motion tracks.

The algorithms of these detectors are presented in

the next section.

The detected content objects are managed
by the content object class hierarchy. A content
object is presented in Arial font beginning with a
lowercase letter and a content object class is
presented in Arial font beginning with a capital
letter. In Figure 4, we illustrate the class hierarchy
of content objects.

@ @ Class Tree: pine, cherry
Class Bush: rose
Class Animal: dog, cat ,0x
@ @ @ Class Vehicle: car, truck, ship

Class Building: lighthouse, chalet

(@) (b)

Figure 4: A class hierarchy of content
objects.

3 Video Indexing

For processing a content-based video query, the
matching between the query and video indexes is
required. Since on-line processing on raw video
data is time consuming, the content objects as well
as their spatial and temporal information have to be
extracted in advance. In this section, we illustrate
the approaches for segmenting video sequences into
shots, detecting content objects and extracting their
motion tracks from MPEG coded video sequences.

3.1 MPEG Data Format

In MPEG coding, a frame is divided into
macroblocks. Each macroblock is a 16 by 16 image
as a basic coding unit. A macroblock can be coded
by DCT or references to its adjacent frames when it
matches the similar image patterns of these frames.
A macroblock coded by DCT is named intra-coded
macroblock. A macroblock referencing to similar
image patterns is named forward-prediction coded,
backward-prediction coded or bidirectional-
prediction coded macroblocks when it references to
the image patterns of the preceding frame,
subsequent frame, or both preceding and
subsequent frames, respectively. A reference to the
preceding frame is named forward reference, and
to the subsequent frame backward reference.

There are three types of frames, named /
frame, P frame and B frame. All macroblocks in an
I frame must be intra-coded macroblocks.
Macroblocks of the P frame may have forward
references to its preceding I or P frame. The
displacement between the current macroblock and
the similar image pattern is named motion vector
and is encoded in the MPEG video stream. A B

frame may have references to its adjacent I or P
frames. Bidirectional references are allowed. The
macroblock in a B frame can be an intra-coded,
bidirectional-prediction coded, forward-prediction
coded, or backward-prediction coded macroblock.

The references among MPEG frames can be
used to evaluate if an image area is similar to the
image area of other frames or if a frame is similar
to another frame. This feature can be used for video
index construction, as presented below.

3.2 Video Segmentation

In a video sequence, the contents of continuous
frames in the same shot are similar. Shot change
detection is based on the similarity measurement
between video frames. The references among coded
frames are analyzed to measure the similarity of
two frames.

We have proposed a mask matching
algorithm for shot change detection [10]. The
references of each coded frame is examined to judge
if it is a shot change or not. For each frame, the
analysis contains three steps.

1.According to the frame type, apply a mask
for it: The mask denotes the conditions that
the current frame and its adjacent frames
have to satisfy if the current frame is a shot
change.
2. Examine each condition: A condition can be
examined and a value between 0-1 is given.
3.Compute the shot change probability: The
values of the conditions are input to a shot
change probability function. It results in a
shot change probability of the current frame.
After each frame is analyzed, the frame with the
probabilities higher than a threshold will be
considered as the shot change frames.

3.3 Detection of Content Objects
The detection of content objects is by analyzing the
motion vectors of the referencing macroblocks of
the video frames. A moving object in the current
frame should be at different positions in the
reference frames. If the moving object does not
change a lot in its shape, color and size, it should be
able to match itself in the reference frames while
encoding. The macroblocks of the moving object
should have the same or similar motion vectors.
This concept is shown in Figure 5. Notice
that the motion vectors around the moving object
are heterogeneous. They are helpful for separating
the moving object from the background.

HHI:J’TI
L,\ . ,,‘_)T
o

(a) (b)

Figure 5: (a) The motion vectors of P frame 28
in 2001.mpg; (b) Reconstructed image of the
corresponding frame.

Based on the above observation, we propose
an object detection method. The method takes an
MPEG-coded frame as input. and the following
steps are applied.

1.Motion vector extraction: For each frame,
extract the motion vectors directly from the
MPEG coded video.

2 Classification: By counting the number of
macroblocks which have the same motion
vector, we can obtain the distribution of
motion vectors. An example is shown in
Figure 6(a). If the motion vectors with similar
numbers of macroblocks are adjacent, they are
merged to form the similar motion vectors.
Among the similar motion vectors, the one
with the largest number of macroblocks is
taken as the representative motion vector. An
example of the distribution of the
representative motion vectors is shown in
Figure 6(b).

(@) (b)

Figure 6: The distributions of (a) motion
vectors; (b) representative motion vectors.

3.0bject finding: In the distribution of
representative motion vectors, a peak indicates
that there might be objects with the similar
motion vectors. The similar motion vectors
belonging to a peak are compared to the
motion vectors in the frame. If a set of
macroblocks are adjacent and their motion
vectors are in the similar motion vectors, they
are collected as an object candidate. Note that
a frame often contains more than one peak and
a peak may indicate more than one object.

3.4 Motion Track Extraction

After detecting the content objects, a motion track
is constructed for ecach interested object. We
present the motion track construction method in this
section.

An object’s motion track is a series of
connections between the same object in the
consecutive frames. In order to make a connection,
we determine which are the same objects in the
current frame and the previous frame on the basis
of the objects” spatial information. The spatial
information of objects refers to their positions, sizes
and motion vectors. Two objects coming from
consecutive frames are considered the same if they
have similar positions and sizes when they are
mapped into the same reference frame. Please refer
to [23] for the details of building the connections on
the three types of frames.

4 Query Language

Users retrieve video data by specifying features of
video frames. In this section, we present the video
query language CVQL. The features of video
contents including the existence of content objects
and their spatial and temporal relationships are
used in this language.

A CVQL query can be expressed by the
form: { range; predicate; target }. The range
clause defines the search space of a query. The
target clause specifies the results which users want
to retrieve. The qualification of a query is specified
in the predicate clause.

A predicate is specified by the description of
the temporal and/or spatial relationships of content
objects. In CVQL, we use the function-based
specification. It is easy for users to describe an
event or state which appears in the video contents.
A set of functions and modifiers are defined, as
illustrated in the following sections.

4.1 Video functions
A video function returns the information of content
objects in frames, such as location, motion of a
content object and relative location of two content
objects. We introduce the video functions as
follows:
o AP(): It returns the location of a content object
in a frame.
Ex1: AP(dog)[X<3 A Y<3]
Ex1 describes whether a dog in a frame stays
at the left-bottom corner of the frame grid,
specified by “X<3 A Y<3.”
e RM(): The motion of a content object will be
returned. A sequence of frames showing a bird

flying to the right can be specified as Ex2:
Ex2: RM(bird)[X>=1]

e RP(): RP() requires two content objects as
parameters. By RP(), relative location between
two content objects can be retrieved. Ex3
shows the application of RP().

Ex3: RP(tree, car)|[X<0 A Y<0]
In this example, the predicate “the car located
at the left-bottom of the tree” is specified.

o Exist(): Exist() function examines whether a
content object exists in a frame and returns a
Boolean value (True/False). Q1 shows a
simple video query which retrieves frames
from video nthu-campus, in which a content
object in content object class Person exists.

Ql: {video nthu-campus;
Exist(Person); frames}

o Distance(): Distance() is used to compute the
geometric distance for a two-dimensional
value produced by a video function. Q2
illustrates an example to find the frames which
include two content objects fish and crab in a
short distance.

Q2: {video sea;
crab))<3; frames}

4.2 Modifiers

In addition to the video functions, a sct of modifiers
can be used to enhance the power of predicate
specifications.

e Increasing, Decreasing and Equal: We have
introduced five video functions for retrieving
the information of content objects from video
frames. However, the basic comparative
operators is not enough. For example, it
cannot specify that two content objects keep
the same relative location in two or more
continuous frames. The Increasing,
Decreasing and Equal modifiers (named XY
modifiers) are proposed for supporting the
temporal expressions for a frame sequence. Q3
illustrates an example which shows two
content objects keep the same relative location
in two or more continuous frames. In Q4,
video objects containing a content object ball
which is falling faster and faster will be
retrieved.

Q3: {video *; RP(04, 02)[X Equal, Y
Equal]; video}

Q4: {video *; RM(ball)[Y Decreasing];
video}
For the three modifiers, temporal
specifications such as the variance of speed of
moving content objects and the variance of

Distance(RP(fish,

relative position of two content objects are
supported.

o Continue: In a query, we may have to specify
the time interval for a state or event. The
Continue is used to indicate the minimum time
interval for a state. The Continue follows a
video function. For instance, Q5 accesses
videos which have at least 30 sequential
frames containing a content object in Person.

Q5: {video *; Exist(Person) Continue
30 frames; video}
For convenience, the number of seconds can be
used instead of the number of frames as the
unit for time interval specification.

e Then: This modifier concatenates two states
into a compound state in time sequence. Q6
retrieves frames containing a ball moving left
and then moving right. The former state
describes a ball moving left and the latter state
describes the ball moving right.

Q6: {video sport; RM(ball)[X<0]
Continue 10 frames Then RM(ball)[X>0]
Continue 10 frames; frames}

e Repeat: The Repeat modifier specifies a

repeated complex state. For example,
Q6.1: {video sport; (RM(ball)[X<0]
Continue 10 frames Then RM(ball)[X>0]
Continue 10 frames) Repeat 2 times; frames}
We have introduced the operations for specifving
spatial relationships and temporal relationships
between content objects in the query predicate. In
the following, we illustrate some more complex
query examples.

Q7: {video Disaster; Distance(RP(train,
car)) Decreasing to 0 Then !Exist(train, car);
frames}

Q8: {video sport; RM(barrier)[X=0 A Y=0]
and RM(horse)[X>=0 A Y>=0] and RP(barrier,
horse)[X<=0] Then RM(horse)[X>=0 A Y<=0]
and RP(barrier, horse)[X>=0]; frames}

In Q7, users want to retrieve video frames
of a train crashing with a car from disaster videos.
In the predicate of Q7, first we describe the state of
a train approaching a car. After the crash, both the
car and train disappear from the next frame.

Q8 retrieves the frame sequence containing
a horse jumping over a barrier from a sport video.
There are two states in the predicate of the query.
The first one describes a horse running close to the
barrier and jumping up, and the second describes
the moving track and the spatial relationships
between the horse and barrier after the horse jumps
over the barrier.

It may be difficult for a user to specify a

complex state by primitive video functions and
modifiers. For example, to describe a crash, instead
of the complex predicate specification of Q7, it will
be more convenient if a crash function is
predefined.

A macro can be defined by primitive video
functions and modifiers or the other macros with a
set of parameters. For example, Ex4 defines the
Near function.

Ex4: Near(04, 02) = Distance(RP(01,07)) <
3;

ExS5 illustrates the simplification of Q7 by defining
a crash macro function, as shown below.

Ex5: Approach(o4, 02) = Distance(RP(04,
07)) Decreasing;

Crash(o4, 02) = (Approach(o4, 02) to 0
Then !Exist(04, 02)) and Class(04, 02) = Vehicle;
Therefore, Q7 can be simplified to:

{ wvideo Disaster; Crash(car,

frames }
The Class function is used to limit the parameters
since any content object may be applied as a
parameter. For the use of macro, a set of macros
are predefined. Users can define new macros by
themselves. The definition of a macro can be
changed by user profiles. For example, Ex4 defines
two near content objects by their relative distance
“3”. A user may change it to be “2” for a stricter
criterion.

The thirteen temporal relationships
proposed in [3] can be defined as macros using our
video functions and modifiers. We show the
definition of Meet function in the following.

Meet(0q, 02) = Exist(04) and !Exist(02)
Then !'Exist(04) and Exist(0z);

train);

S Query Processing

For CVQL, users can pose their queries by
combining temporal and spatial relationships of
content objects. A large amount of video indexes
may have to be evaluated. Therefore, an efficient
index structure and processing strategy are required
for query processing.

A video query may contain a set of videos
as range clause and each video consists of a large
amount of frames. It is time-consuming to evaluate
predicates frame by frame. the query processing is
based on a three phase elimination. The processing
steps are introduced as follows.

1.Video elimination: A video cannot be a query
result if this video does not contain the content
objects specified in a predicate. For example, a
query retrieves videos which contain a dog
staying in the left-bottom corner of the frame

grid. If a video does not contain a dog, it
cannot be a query result.

2 Frame elimination: Before the evaluation of
predicates, a video can be filtered by the life
time of the content objects. Frames not
containing the content objects specified in a
predicate can be skipped.

3.Video function evaluation: In the final phase,
the motion tracks of content objects are
accessed to evaluate the remaining frames.
Video functions are actually evaluated in this
phase. Qualified frames or videos are returned
as the query results.

For the above three steps of elimination, we design
the index structure for them.

o In the video object class hierarchy, each node

represents a video class or a video. A node
maintains a CO (content object) table which
denotes the possible content objects that may
exist in the videos in this class. The CO of a
video class is the union of all the CO of its
children. For example, Figure 7 shows the
possible content objects for each class:
CO(V1)={dog, car}, CO(V2)={car, tree}, and
CO(C2)=CO(V1) uCO(V2)={dog, car, tree}.
For video elimination, the predicate is first
converted into the CO pattern. For instance, if
the predicate is Exist(car, tree), the CO pattern
1s CO(Q)={car, tree}.
The CO information is used to eliminate the
search of video objects which are impossible
as query results. The CO(Q) is first computed
and compared to the CO of the video class C
in the query range. The comparison will be
propagated to the subclasses of C when CO(Q)
cCO (C), otherwise the class C will be pruned.
For the above example, CO(Q)={car, tree},
V2 is the only candidate result video after the
climination process.

{dog, car, tree, house, woman}

{woman, house}

i [a]

{dog, car, tree}

(3| [va]

{dog, car} {car, tree} {woman} {house}

Figure 7: Index for video elimination.

e For the frame elimination, each video object

maintains a content object life time table,
named as CLVT. For example, a video
contains a dog and a cat; the life time of these
two content objects are { dog: 10-20, 40-45;
cat: 15-25, 44-70, 90-102 }; and the predicate
is “RP(dog, cat)[X>2] Continue 5 frames.”
Frames do not contain both a dog and a cat
will be skipped. The frames (15-20) and (44-
45) are possible frames. Furthermore, the
predicate specifies to “Continue 5 frames.”
Frames (44-45) are then skipped since they do
not satisfy the Continue clause.

6 Conclusions and Future Work

This paper presents an overall design and
implementation of a content-based video database
system, Venus. Key technologies for video retrieval,
index construction as well as strategies of query
processing are discussed. The CVQL with a
graphical user interface provides flexible and
powerful content-based video queries. The indexing
tool supports for semi-automatic extraction of
video shots, content objects and their motion tracks.
For query processing, the concept of multiphase
climination is proposed to avoid the large mount of
index accesses for predicate evaluation.

Approximate query capabilities are required
when users cannot precisely specify the query
predicate. The study of approximate query
answering are currently in progress.

The Venus system will be integrated with an
alpha-numeric database. The content objects are
linked with the objects in the alpha-numeric
database representing the same real-world entity.
The information of the video database and alpha-
numeric database can then be integrated to provide
a more powerful query specification and a higher
degree of resource sharing.

References

[1] Farshid Arman, Arding Hsu, and Ming-Yee Chiu.
“Image Processing on Compressed Data for Large
Video Databases,” in Proc. of First ACM Int'l
Conf. on Multimedia, 1993.

[2] Donald A. Adjeroh and M.C. Lee, “A Principled
Approach To Fast Partitioning of Uncompressed
Video,” in Proc. of IEEE Workshop on
Multimedia Database Management systems,
pages 115-122, August 1996.

[31 J. F. Allen, “Maintaining knowledge about
temporal intervals,” Commun. ACM, vol. 26,
pages 832-843, Nov. 1983.

[4] SK. Chang, Q.Y. Shi, and C.W. Yan, “Iconic
Indexing by 2-D strings,” IEFE Tran. Pattern

5]

6]

171

18]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Analysis and Machine Intelligence, pages 413-
428, 1987.

Y F. Day, S. Pagtas, M. lino, A. Khokhar, and A.
Ghafoor, “Object-Oriented Conceptural Modeling
of Video Data,” In Proc. of IEEE Data
Engineering, pages 401-408, 1995.

G. Davenport, T.A. Smith, and N. Pincever.
“Cinmatic Primitives for Multimedia,” [EEE
Computer Graphics & Applications, pages 67-74,

July 1991.
D. Le Gall. “MPEG: A video compression
standard for multimedia applications,”

Communications of ACM, 34(4):46-58, April
1991.

R. Hjelsvold and R. Midtsraum, “Modeling and
Querying Video Data,” In Int‘l Conf. on Very
Large Data Bases, pages 686-694, 1994.

Tony C.T. Kuo and Arbee L.P. Chen, “A
Content-based Query Language for Video
Databases,” in Proc. of IEEE Multimedia
Computing and Systems, June 1996.

Tony C.T. Kuo, Y. B. Lin and Arbee L.P. Chen,
“Efficient Shot Change Detection on Compressed
Video Data,” in Proc. of IEEE Workshop on
Multimedia Database Management systems,
pages 101-108, August 1996.

T.D.C. Little and A. Ghafoor, “Interval-Based
Conceptual Models for Time-Dependent
Multimedia Data,” [EEE Transaction on

Knowledge and Data Engineering, pages 551-563,
August 1993.

Suh-Yin Lee and Huan-Ming Kuo, “Video
Indexing: An Approach Based on Moving Object
and Track,” In Proc. of SPIE - The Int‘l Society
Jor Optical Engineering, Vol. 1908, pages 25-36,
1993.

John, Z. Li, et al., “Modeling of video Spatial
Relationships in an Object Database
Management,” in Proc. of IEEE Workshop on
Multimedia Database Management systems,
pages 124-132, August 1996.

W. Niblack, R. Barber, W. Equitz, M. Flickner, E.
Glasman, and D. Petkovic, “The QBIC Project:
Querying Images By Content Using Color,
Tecture, and Shape,” In Proc. of SPIE - The Int'l
Society for Optical Engineering, Vol. 1908,
pages 173-187.

A. Nagasaka and Y. Tanaka. “Automatic Video
Indexing and Full-video Search for Object
Appearances,” in 2nd Working Conference on
Visual ~Database Systems, pages. 119-133,
Budapest, Hungary, October 1991, IFIP WG 2.6.
Eitetsu Oomoto and Katsumi Tanaka, “OVID:
Design and Implementation of a Video-Object

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Database System,” [FEE Transactions on
Knowledge and Data Engineering, pages 629-643,
August 1993.

Kiyotaka Otsuji and Yoshinobu Tonomura.
“Projection Detecting Filter for Video Cut
Detection”, Proc. of ACM Multimedia, pages.
251-257, 1993.

E.GM. Petrakis and S.C. Orphanoudakis,
“Methdology for the Representation, Indexing
and Retrieval of Image by Content,” /mage and
Vision Computing, 1993.

Stephen W. Smoliar and Hongliang Zhang,
“Content-Based Video Indexing and Retrieval,”
IEEE Multimedia Magazine, pages 62-72, 1994.
Y. Tonomura and S. Abe. “Content Oriented
Visual Interface Using Video Icons for Visual
Database Systems,” Journal of Visual Languages
and Computing, 1:183-198, 1990.

H. Ueda, T. Miyatake, and S. Yoshizawa,
“Impact: An Interactive Natural-motion-picture
Dedicated Multimedia Authoring System,” In
Proc. of Human Factors in Computing Systems
(CHI91), pp. 343-354, New Orleans, Louisiana,
1991.

H. Zhang, A. Kankanhalli, and S.W. Smoliar.
“Automatic Partitioning of Video,” I[EEFE
Multimedia System Vol. 1, No. 1, pages. 10-28,
1993.

Y.B. Lin, “An Efficient Method to Build Video
Indexes from Compressed Data,” Master Thesis,
Computer Science Department of National Tsing
Hua Univ., Taiwan, R.O.C., June 1996.

