A Content-Based Query Language for Video Databases*

Tony C.T. Kuo and Arbee L.P. Chen
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.
alpchen@cs.nthu.edu.tw

Abstract

This paper presents a content-based video query
language CVQL for video databases. Spatial and
temporal relationships of content objects are used for the
specification of query predicates. Queries of realism are
illustrated to show the power of CVQL. Macro definitions
are supported to simplify query specification. Index
structures and query processing for CVQL are considered,
and a prototype video database system is implemented,
which consists of a GUI and a CVQL processor. Users
can sketch a query and its corresponding predicate by the
GUI, and the query can then be converted to CVQL for
processing.

1. Introduction

With the progress of computer hardware and storage
technologies, databases for managing multimedia data,
such as audio, video, image, animation and graphics,
were investigated in the past years. Although videoisrich
in the temporal and spatia relationships between its
content objects, there has been few research which
provides suitable accessing interfaces based on these
characteristics. The goal of the video database is to
support an efficient and easy way for users to retrieve
video data. Traditional query capabilities can only
support textual and numerical-based evaluation. For
example, we can retrieve video data by specifying video
identifier, title or their descriptions. However, users
cannot specify predicates to retrieve parts of video data
and the characteristics of video data are not fully used for
query specifications. Consider the following example, a
user may want to retrieve parts of a video object named
sport, which shows a 100M runner passing thefinish line.
A new query model should be designed to meet the
requirements of video queries.

Many researchers have investigated the enhancement
of video query capabilities [9,7,6,4,11,3]. In the past,
content-based retrieval was applied in image databases
[2,10,8]. Similar concepts are extended to enhance query

* This work was partially supported by the Republic of China
National Science Council under Contract No. NSC 85-2213-E-007-
024.

capabilitiesin video databases. In [11], video data can be
queried by image features, such as color, texture and
shape. The query capabilities are limited. [9] proposed a
video query language VideoSQL. It applied a new
inheritance mechanism based on interval inclusion
relationship between video objects for specifying queries.
In[6], aset of temporal operatorswere designed for video
queries. However, the tempora relationships can be
evaluated between frame sequences only. Temporal
relationships of content objects were not considered. [7]
considered sixteen primitive types of mations for
specifying the tracks of content objects in queries.
However, the spatial relationships between content
objects were not considered. In [3], the spatial/temporal
semantics of video data were studied. Conceptual Spatial
Object (CSO), Conceptual Temporal Object (CTO),
Physical Object (PO) and a set of predicate logics were
defined to express queries. Since spatial and temporal
semantics are only captured by CSOs and CTOs,
semantics that haven't been defined in CSOs and CTOs
cannot be applied in queries.

In this paper, we propose a new mechanism of
content-based retrieval to access video data. A content-
based video query language CVQL is presented. In CVQL,
both temporal and spatial relationships of content objects
are considered. A set of operations for specifying
temporal and spatia relationships in queries is defined.
By these operations, characteristics of video data can be
used for query qualification. Users can express the
semantics of demanded video data by combining the
proposed temporal and spatial operations in CVQL. The
indexes and the processing of CVQL are considered.
Macros are proposed to simplify query specification. We
also implement a GUI and a query processor of CVQL in
our prototype video database system.

This paper is organized as follows: in section 2, our
video query mode is introduced, which includes the
representation of video data, the specification of content-
based video query and the index structures. Section 3
presents the syntax of CVQL and introduces the
operations for video predicate specifications. We briefly
describe query processing of CVQL in section 4. The
implementation of our prototype video database system is
presented in section 5. The last section leads our

conclusions and future works.

2.Video Query Model

2.1. Video objects

A video is viewed as an object (named video object),
which consists of raw data and descriptions. The raw data
part is composed of a set of continuous image frames,
which can be displayed by video devices. The description
part provides descriptive information of a video, such as
the video title, the number of frames and the introduction
of the video.

Various kinds of video may exist in the database.
Videos are organized as a class hierarchy for easy
retrievals. For example, in Figure 1, Basketball and
Tennis are subclasses of video class Sports. In this paper,
the name of a video will be presented in bold face Roman,
and a video class will be presented in bold face Roman
beginning with a capital letter.

Basketball
-
[Video| =] Politics | o

Figure 1: A video class hierarchy.

2.2. Content-based video queries
A content-based video query is a query which specifies
predicates by describing the contents of video for
retrieving video data. The contents can be color
histogram values, textures, image shapes or symbol
objects of video or video frames. A symbol object is a
symbol extracted from video, which represents a rea
world entity. For example, an anchorperson is a symbol
object in anews video. Our video query language is based
on the predicate specification of the temporal and spatial
relationships of symbol objects. It is more natural for
users to retrieve video data by specifying video contents
since users often remember some snapshots of the
required videos. Moreover, the query capabilities can be
enhanced since users can flexibly specify various kinds of
predicates. In CVQL, various functions are supported for
describing the spatial and temporal relationships of
symbol objects. For naive users, system predefined
macros are provided to simplify the predicate
specification.
A date is a specification of temporal/spatial
relationships or existence of symboal objects, which can be
used as a query predicate. We introduce various types of
state descriptions as follows:
|.Existence of symbol objects: The smplest predicate
specification is to search videos which contain the user-
specified symbol objects.

I1.Spatial relationships of symbol objects: Descriptions of
spatial relationships are based on the location that
symbol objects appear in video frames. A frame can be

viewed as a two-dimensional space. The location of a
symbol object can then be denoted as (x,y). There are
two types of spatial relationship descriptions. one is
relevant to a single symbol object in which the location
of a symbol object is specified. The other is relevant to
two or more symbol objects in which the reative
locations of two or more symbol objects are specified.

[1l.Temporal relationships of symbol objects: A video
stream is a sequence of continuous image frames. The
relationships of symbol objects among video frames are
considered as temporal relationships.

IV.Compound relationships of symbol objects: A more
complex state can be specified by combining the
descriptions of spatial and tempora relationships of
symbol objects. According to the two types of spatia
relationships described in type Il, we explain their
combinations with temporal relationships. In type one,
the motion of a symbol object can be specified by
considering the location of the symbol object in a
continuous frame sequence. In type two, the variance of
the relative location of two symbol objects can be
specified by comparing the difference of the relative
location of two objects between two continuous frames.
For example, a compound rel ationship describes avideo
shot where two dogs moving closer and closer by
specifying the variance of the relative location of these
two dogs in continue frames.

V.Compound state: Since a state is a description of
predicate with temporal/spatial relationships, when the
relationships are changed, it is called a state change.
Combining two or more states in a sequential order is
named a compound state. For example, a ball jJumping
up and then falling down needs to be described by a
compound state: the first state denotes the ball moving
up and the second denotes the ball falling down.

VI.Semantic descriptions: We have introduced various
types of queries with the use of temporal/spatial
relationships. However, it may be inconvenient for users
to issue queries by describing complex predicates,
especialy for naive users. A semantic description is a
way of relieving the difficulty by alowing users to
specify the complex predicates by ssmple functions. For
example, instead of the complex specifications of
temporal/spatial relationships, a simple operation
near(ol, 02) can be used to specify two symbol objects
with a short distance.

In CVQL, a set of functions and modifiers are defined
for specifying predicates. Macros are also provided to
support semantic descriptions.

2.3. Content-based video indexing

For content-based video queries, symbol objects have
to be detected from video contents. The motion tracks of
symbol objects have to be derived too. [12] extracts
content-based indexes by the analysis of video raw data.
They first detects shot changes by comparing color
histogram values of video frames. The moving objects are

then detected by the difference of two continuous frames

and the datic symbol objects are detected by edge

detection based image processing routines. In [5], we
propose a method to extract content-based indexes from

MPEG coded video data. Shot change detection is

performed by analyzing the reference ratios of

macroblocks of video frames.
There are four types of indexes for CVQL.:

« Symbol object hierarchy: Symbol objects are managed
in aclass hierarchy. When a symbol object classis used
in aquery, it represents all symbol objects belonging to
thisclass. A symbol object is presented in Arial font and
a symbol object class is presented in Arial font
beginning with a capital letter. In Figure 2, we
illustrate a class hierarchy of symbol objects.

Class Tree: pine, cherry
Class Bush: rose
Class Animal: dog, cat ,0x
Animal @ @ @ Class Vehicle: car, truck, ship
; i Class Building: lighthouse, chalet

Figure 2: A class hierarchy of symbol objects.

* Video-symbol_object table (VST): This table records
the videos that a symbol object appears. An example of
VST is shown as : {car: race, headline-news; tree:
picnic; sun: supermanll}. From this example we
know a symbol object car can be found in videos race
and headline-news.

* Symbol_object life-timetable (SLT): Each video has its
own SLT. The SLT records the frame duration a
symbol object appearsin avideo. For example, a video
race contains three symbol objects: adog, abird and a
cat. The SLT of video race can be: { dog: 3-6, 20-30;
bird: 15-25; cat: 1-6, 12-22, 27-30 }. It shows that the
dog appearsin frame 3 to 6 and 20 to 30 in video r ace.

¢ Symbol_object spatial_information table (SST): Each
video has an SST. The SST records the locations of the
symbol objects in each frame. From this table, motion
tracks of symbol objects and relative positions between
symbol objects can be derived.

3. A Video Query Language CVQL

Users retrieve video data by specifying features of
video frames. In this section, we present a video query
language CV QL. The features of video contentsincluding
the existence of symbol objects and their spatial and
temporal relationships are used in the language.

3.1. Syntax of CVQL
A CVQL query can be expressed by the following

structure:{ range; predicate; target }.

* range: The range clause defines the search space of a
query. It can be a set of videos or video classes. If users
have no idea about the possible sources where the target
may come from, the symbol “*” can be used to

represent all videos.

* target: The target clause specifies the results which
users want to retrieve. The target can be a whole video,
some frames or some symbol objects.

* predicate: The qualification of a query is specified in
the predicate clause. Objects in the range clause are
evaluated by the specified predicate to get the result.

3.2. Predicate specification

A predicate specification has the following basic form:
video-function(parameters)[xy-expression]. It can be
parsed into two parts: video function and xy-expression.
The video function part specifies the type of relationships,
and the xy-expression part specifies the restriction for a
predicate. In an xy-expression, the X variable and Y
variable represent the x component and y component of
the returned value of the V|deo function, respectively.
Comparanve operators such as “<”, “>", “=" and “!="
can be used in the xy-expression. E|ther X orY variable
can be omitted in an xy-expression when the value of X or
Y is careless in the predicate. In the following, video
functions for predicate specifications will be introduced.

3.2.1. Video functions: A video function returns the
information of symbol objects in frames, such as location,
motion of a symbol object and relative location of two
symbol objects. We introduce the video functions as
follows:

e FP(): It returns the location of a symbol object in a
frame. FP(dog)[X<3 O Y<3] describes whether a dog
in a frame stays at the left-bottom corner of the frame
grid, specified by the xy-expression “X<3 0 Y<3."

e Om(): The motion of a symbol object will be returned.

A sequence of frames showing a bird flying to the right

can be specified as. Om(bird)[X>=1]. In this example,

the Y variable is omitted. That is, thereisno restriction
on the y component of the returned value from Om().

By Om(), users can describe the moving direction and

speed of a symbol object as well as whether a symbol

object is static or not. For example, Om(bird)[X=0 O

Y=0] describes a static bird.

Oom(): It calculates the movement of a symbol object

between the frame in which the symbol object

originates and the current frame. Oom(cat)[|X|<2 O

|Y|<2] demonstrates a cat bounded in a 3x3 area. FP()

can act smilaly to Oom(). For example,

FP(cat)[3<X<7 0 1<Y<5] testsif the cat is bounded in

(3,1) to (7,5). The difference between FP() and Oom()

isthat Oom() boundsthe cat in acertain areawhile FP()

in an exact area, as shown in Figure 3.

* RP(): RP() requires two symbol objects as parameters.
By RP(), relative location between two symbol objects
can be retrieved. For RP(tree, car)[X<0 0O Y<0], the
predicate “the car located at the | eft-bottom of thetree”
is specified. A complex state can be expressed by using
these functions together. RP(tree, car)[X<0 O Y<Q]
and FP(tree)[X=9 0 Y=8] and Om(car)[X>=0 0 Y<=0]

further specifies the tree is located statically at (9,8)
and the car moves to the right-bottom of the frame, as

shown in Figure 4.
10

(@]
=
ORPNWAUIOONOOO

ORPNWAUIONOWO

012345678910 012345678910
. (a) (b)
Figure 3: (a) FP(cat)[3<X<7 " 1<Y<5], and (b)
Oom(cat)[|x]|<2 ™ |Y|<2].

=

OFRPNWAUIIOONOOO

012345678910
Figure 4: The state of RP(tree, car)[X<0 " Y<0] and
FP(tree)[X=9 ~ Y=8] and Om(cat](X>=0 " Y<=0] .

e Exist(): Exist() function examines whether a symbol
object existsin aframe and returns a Boolean value. Q1
shows a simple video query which retrieves frames
from video nthu-campus, in which a symbol object in
symbol object class Person exists. Ql={video nthu-
campus; Exist(Person); frames}. We show the symbol
object hierarchy and some frames of video nthu-
campus in Figure 5. From Figure 5(b), we find that
symbol objects mary, john and alex belong to Person.
Therefore, frames of video nthu-campus in which
symbol objects mary, john or alex appear will be
retrieved as the result of Q1. In Figure 5(a), frames i
and i+2 are retrieved since symbol objects mary and
alex exist in framei and john in framei+2.

h h h] Universal

t t t

|
Tree Person Building
Class Person: (m)ary, (a)lex, (j)ohn
0123456 CIﬁBuiId_ing: mary-(h)ouse
Class Tree: (t)ree

a
m

orNWhUIO

orNWhUIO

orNWhUIO

0123456 0123456
Framei Framei+1 Framei+2

. @) . (b)
Figure 5: (a) Some frames of video nthu-campus,
and (b) the symbol object hierarchy.

* Distance(): Distance() is used to compute the distance
for a two-dimensional value produced by a video
function. For example, in framei of Figure 5(a), RP(t, a)
= (0,22 - (3,3) = (-3,-1) and Distance(RP(t, a)) = ((-3)°
+ (-1)9%° = 10°°. Q2 illustrates an example to find the
frames which include two symbol objects fish and crab
in a short distance. Q2={video sea; Distance(RP(fish,
crab))<3; frames}. Distance() makes different semantics
when it is applied to different video functions, as
depicted below:
1.FP(): It returns the distance of a symbol object from

its current location to (0,0).

2.0m(): It returns the moving distance of a symbol
object from the previous frame to the current frame.

3.00m(): It returnsthe distance of a symbol object from
the current frame to the frame where the symbol
object first appears.

4.RP():It returns the distance of two symbol objects.

By using the video functions, the spatial and temporal
relationships among symbol objects can be specified.

3.2.2. Modifiers: In addition to the video functions, a set
of modifiers can be used to enhance the power of
predicate specifications.

* Increasing, Decreasing and Equal: We have introduced
five video functions for retrieving the information of
symbol objects from video frames. However, the basic
comparative operators for the xy-expression is not
enough. For example, it cannot specify that two symbol
objects keep the same relative location in two or more
continuous frames. The Increasing, Decreasing and
Equal modifiers (named XY modifiers) are proposed
for supporting the xy-expression for a frame sequence.
Q3 illustrates an example which shows two symbol
objects keep the same relative location in two or more
continuous frames. In Q4, video objects containing a
symbol object ball which isfalling faster and faster will
be retrieved. Q3={video *; RP(01, 02)[X Equal, Y Equal;
video}. Q4={video *; Om(ball)[Y Decreasing]; video}.
Therefore, the temporal expression power of the xy-
expression is enhanced by these three modifiers, such
as the variance of speed of moving symbol objects and
the variance of relative position of two symbol objects.
Moreover, a complex xy-expression can be smplified
by XY modifiers. For example, the following predicates
are equivaent: (1)Om(o)[X>0] and FP(0)[X>3];
(2)FP(0)[X>3 O X Increasing].

¢ Continue: In a query, we may have to specify the time
interval for astate. The Continue is used to indicate the
minimum time interval for a state. The Continue
follows an xy-expression or a video function. For
instance, Q5 accesses videos which have at least 30
sequential frames containing a symbol object in
Person. Q5={video *; Exist(Person) Continue 30 frames;
video}. For convenience, the number of seconds can be
used instead of the number of frames as the unit for
timeinterval specification.

* Then: This modifier concatenates two states into a
compound state in time sequence. Q6 retrieves frames
containing a ball moving left and then moving right.
The former state describes a ball moving left and the
latter state describes the ball moving right. Q6={video
sport; Om(ball)[X<0] Continue 10 frames Then
Om(ball)[X>0] Continue 10 frames; frames} .

* Repeat: The Repeat modifier specifies a repeated
complex state. For example, Q6.1={video sport;
(Om(ball)[X<0] Continue 10 frames Then Om(ball)[X>0]
Continue 10 frames) Repeat 2 times; frames} .

Modifiers are used to enhance the capabilities of the
temporal relationship of symbol objects among the frame
sequence. Increasing, Decreasing and Equal are used to
specify the variance of spatial relationships; Continue is
used to depict the time duration that a state has to be kept;
and Then and Repeat modifiers are used to arrange the
time order of each state.

We have introduced the operations for specifying
spatial relationships and temporal relationships between
symbol objects in the query predicate. In the following,
we illustrate some more complex query examples.

Q7{video *; RP(dolphin, ball)[X=0 O Y=1] Continue 3
seconds; video} .

Q8{video *; Om(bird)[|X|<=1 O |Y|<=1] Continue all
frames; video} .

Q9:{video *; FP(bird)[|X|<=3 O|Y|<=3] Continue al frames;
video} .

Q10{video Disaster; Distance(RP(train, car)) Decreasing
to 0 Then !Exist(train, car); frames} .

Q11{video sport; Om(barrier)[X=0 0O Y=0] and
Om(horse)[X>=0 O Y>=0] and RP(barrier, horse)[X<=0]
Then Om(horse)[X>=0 O Y<=0] and RP(barrier,
horse)[X>=0]; frames}.

Q7 retrieves video objects containing a frame sequence
which has a dolphin crowned with a ball. Such a frame
sequence has to be kept for a duration of three seconds.

The target of Q8 are those video objects containing
birds flying dowly. Since the “Continue all frames’ is
specified, all frames of aresult video must have a symbol
object bird satisfying “Om(bird)[|X|<=1 O|Y [<=1]."

QO retrieves videos containing birds and these birds
are bounded in the area (0,0) to (3,3).

In Q10, users want to retrieve video frames of a train
crashing with a car from disaster videos. In the predicate
of Q10, first we describe the state of atrain approaching a
car. After the crash, both the car and train disappear from
the next frame.

Q11 retrieves the frame sequence containing a horse
jumping over a barrier from a sport video. There are two
states in the predicate of the query. The first one describes
a horse running close to the barrier and jumping up, and
the second describes the moving track and the spatial
rel ationships between the horse and barrier after the horse
jumps over the barrier.

3.3. Macros

Macros are defined for the simplification of predicate
specifications. It may be difficult for a user to specify a
complex state by primitive video functions and modifiers.
For example, to describe a crash, instead of the complex
predicate specification as shown in Q10, it will be more
convenient if a crash function is predefined.

A macro can be defined by primitive video functions
and modifiers or the other macros with a set of
parameters. For example, A Near function can be defined
as. Near(04, 0y) = Distance(RP(0,,0)) < 3.

Thethirteen temporal relationships proposed in [1] can

be defined as macros using our video functions and
modifiers. We show the definition of Meet function in the
following. Meet(0;, 0,)=Exist(01, 0,) and !Exist(o;, 0o)
Then 'Exist(01, 0,) and Exist(04, 0,).

The following example illustrates the simplification of
Q10 by defining a crash macro function: Approach(o,,
0,)=Distance(RP(0;, 0,)) Decreasing; Crash(o;, 0y)=
(Approach(oy, 02) to 0 Then !Exist(0;, 02)) and Class(o;,
0,)=Vehicle. Therefore, Q10 can be simplified to:
{ video Disaster; Crash(car, train); frames}.

The Class function is used to limit the parameters since
any symbol object may be applied as a parameter. For the
use of macro, a set of macros are predefined. Users can
define new macros by themselves. The definition of a
macro can be changed by user profiles. For example, the
Near() defines two near symbol objects by their relative
distance“3”. A user may changeit to be “2” for a stricter
criterion.

4. Elimination-based Video Query Processing
A video query may contain a set of videos as range

clause and each video consists of a large amount of

frames. It is time-consuming to evaluate predicates frame

by frame. For CVQL, the query processing is based on a

three phase eimination. The processing steps are

introduced as follows.

1.Video dimination: A video cannct be a query result if
this video does not contain the symbol objects specified
in a predicate. For example, a query retrieves videos
which contain a dog staying in the | eft-bottom corner of
the frame grid. If a video does not contain a dog, it
cannot be a query result. The Video-symbol_object
table is used for the video elimination.

2.Frame elimination: Before the evaluation of predicates,
a video can be filtered by the symbol_object life-time
table. Frames not containing the symbol objects
specified in a predicate can be skipped. For example, a
video contains a dog and a cat; the SLT={ dog: 10-20,
40-45; cat: 15-25, 44-70, 90-102 }; and the predicateis
“RP(dog, cat)[X>2] Continue 5 frames.” Frames do
not contain both a dog and a cat will be skipped. The
frames (15-20) and (44-45) are possible frames.
Furthermore, the predicate specifies to have “Continue
5 frames.” Frames (44-45) are then skipped since they
do not satisfy the Continue clause.

3.Video function evaluation: In the fina phase, the
symbol_object spatial_information table is accessed to
evaluate the remaining frames. Video functions with
the xy-expressions are actually evaluated in this phase.
Qualified frames or videos are returned as the query
results.

5. Implementation

A prototype system is implemented to illustrate the
capabilities of CVQL. In this system, a graphical user
interface is provided. The system architecture is briefly
introduced in the following .

5.1. System ar chitecture

In Figure 6, the architecture of our prototype system is
shown. It can be divided into five components. graphical
user interfaces (GUIs), manager tools, indexes, query
processors and video data. Users can access this system
through GUIs or manager tools. Users may issue queries
by sketching the predicates from the graphical query
interface or by directly inputting a query to CVQL Editor.
The query is converted into CVQL format and passed to
query processor for processing. The query results are
shown by Result Viewer. When a new video isinserted, it
can be classified the new video into avideo class by Video
Manager. Also, for this video, symbol objects as well as
their indexes have to be constructed. It is performed by
Symbol Object Manager and Index Constructor.

Users

Video Symbol Object|
Manager ~ Manager

GraphicalResult Viewel
Query

Index Constructor Interface CVQL Editor

Macro Preprocessor|
Indexes

CVQL Processor

‘ Video Data (MPEG)

Figure 6: Architecture of the prototype system.

5.2. Query specification by the GUI

A query can be specified by the GUI. It contains three
steps: (1) describes the range clause, (2) describes the
query predicate, and (3) describes the target clause. The
range clause can be described by selecting videos or video
classes from Video Browser. A predicate is specified by
sdlecting symbol objects from Symbol Browser and
setting the spatial and temporal qualifications among
them from the sketch board. The Target button is used to
describe query targets. The GUI is shown in Figure 7.

6. Conclusionsand Future Work

In this paper we propose a content-based video query
language for video databases. The video contents are
preprocessed to obtain the indexes of content objects.
Users retrieve video data by specifying the state of video
contents. A set of video functions is provided for
describing the spatial and temporal relationships between
content objects in the query predicate. Moreover,
modifiers are supported for specifying complex states of
desired video contents. The macros allow users to define
semantic operations for smplifying query specification.

Four kinds of indexes are used for query processing. To
avoid evaluating functions video by video and frame by
frame, video and frame elimination are used to save the
processing cost. A prototype video database system is
implemented. Graphical query interface is provided and
queries can automatically be converted into CVQL for
processing.

Query relaxations will be considered in our future work.
It is based on the relaxation of the evaluation of time
intervals, function values and symbol object class

hierarchies. Moreover, the CVQL will be extended for the
integration of video databases and nonmedia databases.

jron gl

L

|5
i I

[l Wi, Crmpt | 3T (.
¥ Decreaxing] Comd tmse 18

il

r—

Figure 7: The GUI.

Reference

[1]3. F. Allen, “Maintaining knowledge about temporal
intervals,” Commun. ACM, vol. 26, pages 832-843, Nov.
1983.

[2]SK. Chang, Q.Y. Shi, and C.W. Yan, “Iconic Indexing by 2-
D strings,” IEEE Tran. Pattern Analysis and Machine
Intelligence, pages 413-428, 1987.

[3]Y.F. Day, S. Pagtas, M. lino, A. Khokhar, and A. Ghafoor,
“Object-Oriented Conceptural Modeling of Video Data,” In
Proc. of |EEE Data Engineering, pages 401-408, 1995.

[4]R. Hjelsvald and R. Midtsraum, “Modeling and Querying
Video Data,” In Int‘l Conf. on Very Large Data Bases, pages
686-694, 1994.

[5]Tony C.T. Kuo, Y. B. Lin and Arbee L.P. Chen, “An
approach for efficient shot change detection on compressed
video data,” submitted for publication.

[6]T.D.C. Little and A. Ghafoor, “Interval-Based Conceptual
Models for Time-Dependent Multimedia Data,” |EEE
Transaction on Knowedge and Data Engineering, pages
551-563, August 1993.

[7]1Suh-Yin Lee and Huan-Ming Kuo, “Video Indexing: An
Approach Based on Moving Object and Track,” In Proc. of
SPIE - The Int'l Society for Optical Engineering, Vol. 1908,
pages 25-36, 1993.

[8]W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
and D. Petkovic, “The QBIC Project: Querying Images By
Content Using Color, Tecture, and Shape,” In Proc. of SPIE
- Thelnt'l Society for Optical Engineering, Vol. 1908, pages
173-187.

[9]Eitetsu Oomoto and Katsumi Tanaka, “OVID: Design and
Implementation of a Video-Object Database System,” |EEE
Transactions on Knowledge and Data Engineering, pages
629-643, August 1993.

[10]E.G.M. Petrakis and S.C. Orphanoudakis, “Methdology for
the Representation, Indexing and Retrieval of Image by
Content,” Image and Vision Computing, 1993.

[11]Stephen W. Smoaliar and HongJiang Zhang, “Content-Based
Video Indexing and Retrieval,” IEEE Multimedia Magazine,
pages 62-72, 1994.

[12]H. Ueda, T. Miyatake, and S. Yoshizawa, “Impact: An
Interactive Natural-motion-picture Dedicated Multimedia
Authoring System,” In Proc. of Human Factors in
Computing Systems (CHI91), pp. 343-354, New Orleans,
Louisiana, 1991.

