A Mapping Strategy for Querying Multiple Object Databases
with a Global Object Schema*

Jia-Ling Koh and Arbee L.P. Chen

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Email : alpchen@cs.nthu.edu.tw

Abstract

In a multidatabase system which consists of object
databases, a global schema created by integrating schemas
of the component databases provides a uniform interface
and high level location transparency for the users to re-
trieve data. The mapping information between the global
and component schemas is tmportant for the global query
processing. In this paper, a mapping strategy is presented.
A mapping equation s defined to denote the mappings
for attributes and object instances among a wvirtual class
and its constituent classes. In addition, a mapping graph
18 used to describe the mapping equation. According to
the mapping information, the mechanism to process global
queries is introduced. One processing unit is responsible
to decompose the global query into the subqueries against
the component databases. Moreover, to handle the effects
of schema restructuring, preprocessing and postprocessing
units are provided for each local DBMS. Finally, the results
returned from component databases need to be integrated.
The certain result and maybe result for a global query are
discussed. Also, the situation where a real-world entity is
represented in different component databases as different
objects is considered for the result integration.

1 Introduction

A variety of approaches to schema integration for a mul-
tidatabase system have been proposed [1], [7], [8], [10],
[11], [14]. Batini et al. discussed twelve methodologies for
database or view integration [1]. Czejdo, et al. used a
language with graphical user interface to perform schema
integration in federated database systems [5]. Schema and
domain incompatibilities were considered in [5], [9] and
[15]. The issues on implementing schema integration tools
were reported in [12] and [20]. In [11], for automating
much of the integration process, the tools to express simi-

larities between structures in two schemas were embedded
within the view integration process. The assertion-based

approach was used in [21]. Other approaches defined a
set of operators to build a virtual integration of multiple
databases or to customize virtual classes [18], [19].

In our previous work, we had proposed a schema in-
tegration mechanism to achieve a global object schema
for multiple existing object databases [16]. We first de-
fine corresponding assertions for the database administra-

*This work was partially supported by the Republic of China
National Science Council under Contract No. NSC 84-2213-E-
007-008.

tor (DBA) to specify the semantic correspondences among
component schemas. Based on these assertions, integration
rules are designed, which use a set of primitive integration
operators to do the integration. The integration opera-
tors are used to restructure or integrate the component
schemas, and the rules specify what integration operators
should be applied in what order in different situations.

The mapping information is important for the decom-
position of a global query against the global schema. The
mapping for the global object schema is more complicated
due to schema restructuring for resolving the various con-
flicts among component object schemas before schema in-
tegration. However, most research for schema integration
did not provide the mapping strategy and the query pro-
cessing mechanism for global queries, especially for the ob-
ject data model. The class constructors for deriving view
class from the underlying classes were provided in [14]. Tt
also proposed the techniques for decomposing the query
into subqueries, and materializing the result. However,
only query processing for class hierarchies was considered.
Jeng, et al. discussed query processing strategies for ho-
mogeneous distributed object database systems, no schema
conflicts were considered [13]. A message-based approach
used to retrieve data in the class composition hierarchies
was proposed in [6], which did not support the integration
of partial results from subqueries.

In this paper, the mapping strategy between the global
and component object schemas is discussed. A form of
equation called mapping equation is defined to denote the
mappings for attributes and object instances among a vir-
tual class and its constituent classes. In addition, a map-
ping graph is used to describe the mapping equation. Ac-
cording to the mapping information, a mechanism to pro-
cess a global query against the global schema is introduced.
Some processing units and auxiliary units are provided
in the query processing system. One processing unit is
responsible to decompose the global query into the sub-
queries against the component databases. To handle the
effects of schema restructuring, the preprocessing and post-
processing units are also needed for each local DBMS. Both
the class hierarchies and class composition hierarchies are
considered in the strategies for query processing. Finally,
the results returned from the component databases need
to be integrated. In our query model, the information for
a real-world entity which is represented in different com-

ponent databases will be integrated for a more informative
query answer.

This paper is organized as follows. The next section
presents some basic concepts used throughout this paper,
and briefly introduces our previous work. The mapping
mechanism between the global and the component ob-

ject schemas is provided in Section 3. Section 4 presents
the strategies for processing the query against the global
schema. Finally, Section 5 concludes this paper with a
discussion of the future work.

2 Background

2.1 Basic Concepts

Inheritance model))
In a class hierarchy, classes are linked according to the IS-A

relationship among them. There are two kinds of object in-
heritance models in a class hierarchy. One model describes
that the objects in the subclasses are also in their super-
class. Thus, when querying a class, all objects in the class
hierarchy rooted at the class will be accessed. The other
model defines that the objects in a class are those objects
which do not belong to its subclasses. When querying a
class, only the objects in the class are accessed unless some
special notation is specified in the query; in which case, all
classes in the class hierarchy rooted at the class will be ac-
cessed [22]. In this paper, we adopt the latter inheritance
model.

Concept of object isomerism

In a multidatabase system, a real-world entity may exist
in different databases as different objects. We have dis-
cussed a strategy in [4] to find such objects, called isomeric
objects. The data for those isomeric objects needs to be
combined for providing more integrated information of a
real-world entity presented in the multidatabase system.
In this paper, we assume that the isomeric objects have
been determined. Each object in the multidatabase sys-
tem is assigned a global object identifier (global Oid), and
the global Oids for the isomeric objects are the same. It
is easier to integrate the data of the isomeric objects by
using the global Oids.

2.2 Previous Work

The mapping strategy is related to the integration op-
erators defined in our previous work [16]. Each integra-
tion operator is briefly introduced as follows. The integra-
tion operators can be categorized into class restructuring
and class integration operators. All the resultant classes of
these operators are virtual classes.

Class restructuring operators are used to restructure the
classes in component schemas to resolve their conflicts.
They may change the structure of attributes in a class
and the structure of a class hierarchy. Note that the first
five class restructuring operators are used to restructure
the attributes of a class. Also, all subclasses rooted at the
class inherit the restructured attributes.

1. Refine(source-class.new-attribute, constant-value)

The Refine operator adds the new-attribute to the source-
class. In addition, the value of the added attribute is as-
signed the constant-value.

2. Hide(source-class.hidden-attribute)
The Hide operator removes the hidden-attribute from the
source-class.

3. Rename(source-class(.source-attribute), new-name)
The Rename operator renames the source-class or the
source-class.source-attribute by the new-name.

4. Aggregate(source-class.{attribute-list},
new-complez-attribute, new-domain-class)
The Aggregate operator aggregates a set of primitive at-

Student

Student
Motorcycle stu-no
i sne name Blood
license-no name %
owner Address Motorcycle blood type
age ANy
. vehicle available
blood-type city car-no)
city
address street p-year sreet
department no no
Graduate Under graduate CS-Student EE-Student
’ advisor ’ ‘ \—‘
DB1 DB2

Figure 1: Component schemas for DB1 and DB2

tributes ({attribute-list}) of the source-classinto the new-
complex-attribute. Moreover, a new virtual class new-

domain-classis created to be the domain class of the new-
complex-attribute.

5. Invert(source-class, inverted-class.inverted-atiribute,
new-complex-attribute)

For the source-class as the domain class of the inverted-
attribute in class inverted-class, the Invert operator

adds the new-complex-attribute to the source-class, with
inverted-class as its domain class. The new-complex-
attribute is called the inverse of the inverted-attribute.

6. Demolish(source-class)
The division characteristic of a class is defined as the prop-
erty which distinguishes the subclasses of the class. We

assume there exists a division characteristic for each class.
The Demolish operator demolishes all the subclasses of the

source-class, and adds all the attributes in the subclasses
into the source-class. Moreover, an attribute which de-

notes the division characteristic of the class is also added
to the source-class.

Figure 1 shows the schemas of two databases: DB1
and DB2, in different schools. They are used to store the
personal information for students. This figure is used for
the examples in this paper. When the operation Demol-
ish(Student@DB1) is applied, the resultant virtual class
V-Studentl in DB1 is shown in Figure 2(a). The at-
tribute degree which is the division characteristic of the

class Student@DB1 is added.

7. Build(source-class, new-class, predicate-clause)
The Build operator creates a subclass (new-class) of the
source-class, which contains the virtual objects satisfying
the predicate-clause in the source-class. The predicate-
clauseis assumed a simple predicate clause on an attribute
in the source-class.

For example, the resultant schema for the operation

Build(V-Student1, V-CS-Student, department=CS) is
shown in Figure 2(b).

After the restructuring process, class integration opera-
tors are then used to integrate classes from different com-
ponent databases.

1. OUnion(source-class1, source-class2, new-class)

The OUnion operator integrates source-class! and source-
class2 into a virtual class new-class. Only the new-class
will appear in the global schema.

2. Generalize(source-classl,source-class2,
common-superclass)

The Generalize operator creates the common-superclass

which 1s the common superclass of source-class! and

source-class2. There will be two more virtual classes, cor-

V-Studentl

V-Student1
Motorcycle sho
Motorcycle

sno license-no name
license-no name owner a0e Address
owner Address o /
age % blood-type city
blood-type city
add es:/ address Street
street department no
department no advisor
advisor degree
degree
V-CS-Student
DB1
DB1

@
(b)

Figure 2: The resultant schemas for restructuring op-
erations

responding to source-classi and source-class2, produced to
be the subclasses of the common-superclass in the global
schema.

3. Specialize(source-class1,source-class2,common-subclass)
The Specialize operator creates the common-subclass which

is the common subclass of source-class! and source-class2.
In addition, there will be two more virtual classes, corre-

sponding to source-classi and source-class2, produced to
be the superclasses of the common-subclass in the global
schema.

4. Inherit(source-subclass, source-superclass)

The Inherit operator builds the IS-A relationship of source-
subclass and source-superclass. The source-superclass is
built as the superclass of the source-subclass. Two corre-
sponding virtual classes are produced in the global schema.

Note that the database name is appended to the class
names for identification if the same class names exist in
different component databases.

The integration rule provided in [16] is the major part
that guides the integrator to do the schema integration.
The process guided by the integration rules is to resolve
the conflicts among attributes or class-hierarchies of the
component schemas first. After that, the semantics-related
classes in different component schemas will be integrated
into virtual classes in the global schema.

3 A Mapping Strategy
3.1 Mapping Equation

Attributes and object instances are the major compo-
nents of a class. Thus, the mapping information should
specify the mapping of attributes and object instances be-
tween a virtual class and the classes in the component
schemas. The attribute m_term and object m_term are de-
fined to represent the identifiers of the attributes and ob-
jects in a class, denoted as the name of the class with sub-
script ”a” and ”0,” respectively. For example, the attribute
m_ term and object m_term for class Student@DB1
shown in Figure 1 are denoted as Student@DB1, and
Student@DB1,, where Student@DB1,={s_no, name,
age, ...} and Student@DB1, contains the Oids of all ob-
jects belonging to Student@DB1. For each virtual class,
the m_terms denote the virtual attributes and virtual ob-
jects in this virtual class. Therefore, the m_terms of virtual
classes are called virtual m_terms. On the other hand, the
classes exist actually in the component schemas are called
actual classes and whose m_terms are thus called actual

m_terms.) .
The mapping equation is used to represent the map-

pings between one virtual class and its constituent classes.
The left-hand side of a mapping equationis an m_term of a
virtual class. The right-hand side is a mapping expression
which is a sequence of m_terms connected by the mapping
operators. The mapping operators are used to perform dif-
ferent kinds of combining operations among m_terms.

In a mapping expression, in addition to the actual
m_terms and virtual m_terms, another kind of m_term
which is called derived attribute may appear. A derived

attribute is the attribute which is added to a class af-
ter the class restructuring operations, such as the new-

attribute in Refine operator, new-name in Rename oper-
ator, or new-complez-attribute in Aggregate operator. A
derived attribute associates with a deriving function (en-
closed in a pair of square brackets) which is used to repre-

sent the value or the source of the derived attribute. There
are five deriving functions as discussed in the following.

e [=c]: cis a constant value. The notation denotes
the constant value assigned to a refined attribute.

e [a]: ais an attribute name which denotes the old
name for a renamed attribute.

o [{ a1, a2 ...,an }]: A set of attributes are listed,
which denote the source attributes for a complex at-
tribute produced from the Aggregate operation.

o [C.a™!]: ais an attribute in class C. The notation
represents the inverse of a to denote the source for an
attribute produced from the Invert operation.

o [C1.d=d1,C2.d=d2,...,.Cn.d=dn]: C1 to Cn are

class names and dI to dn are constant values. The
notation denotes the values for the division character-
istic attribute d when it is added after the Demolish
operation.

According to the kind of the operands, the mapping
operators are divided to attribute mapping operators and
object mapping operators. For attribute m_term, four at-
tribute mapping operators can be performed. U and — are
used to perform the set-union and set-difference on two
sets of attributes defined in a single component schema,

where the attributes inherited from the same class are con-
sidered the same attributes. However, U, and N, are used

to perform the set-union and set-intersection on two sets
of attributes defined in different component schemas. We
assume that the degree of similarity between attributes de-
fined in different component schemas has been determined
[17]. Thus, for those attributes with the same semantics,
they will be considered as the same attribute. On the other
hand, there are eight object mapping operators used to op-
erate on object m_terms. o and II are used to perform the
selection and projection on an object m_term, respectively.
Each result of the projection is considered an object and
assigned a virtual local Oid. U and — are the set-union
and set-difference operators for two sets of objects in a
single component database. Nevertheless, U,, N,, and —,
are used to perform set-union, set-intersection, and set-
difference on two sets of objects in different component
databases. Those objects with the same global Oid are
considered as the same object. Another object mapping
operator, W,, is also performed on two sets of objects in
different component component databases. The result of
the W, operation contains the objects in the left operand
and their isomeric objects in the right operand. Among
these mapping operators, Uq, Na, Us, No, —0, and W, con-
cern the operations for the m-terms whose corresponding
classes come from different component schemas. There-
fore, they are called external mapping operators. The other
mapping operators are named internal mapping operators.

Now the formal definition of the mapping equation is
given:
e attribute mapping equation

<wv-a-m_term> = <a-m_exp>

where the left-hand side is a single virtual attribute
m_term. In addition, the right-hand side denoted by <a-
m_exp> 1s an attribute mapping expression which is a se-
quence of attribute m_terms connected by attribute map-
ping operators. The <wv-a-m_term> and <a-m_exp> can
be defined by a BNF grammar as follows. The notations
contained in < > are nonterminal symbols and the others
are terminal symbols.

<a-m_exp>—><a-m_term>|<a-m_exp><a-m_op><a-m_te7°m>

<a-m_term> — <d-a-m_term > | <a-a-m_term> |
<v-a-m_term> | (< a-m_ezp >)

<d-a-m_term> — derived-attribute [deriving-function]

<a-a-m_term> — actual-class-nameq

<wv-a-m_term> — virtual-class-nameg

<a-m_op> — U | — | Uqg | Na

e object mapping equation

<wv-o-m_term> = <o-m_exp>
where the left-hand side is a single virtual object m_term.
The right-hand side denoted by <o-m_exp> is an object
mapping expression which is a sequence of object m_terms
connected by object mapping operators. <wv-o-m_term>
and <o-m_exp> are defined by a BNF as follows.

<o-m_exp>—< o-m_factor>|< o-m_exp><o-m_op2>< o-m_factor>

<o-m_factor> — <o-m_term> | <o-m_opl> <o-m_term>
<o-m_term>—<a-o-m_term>| <v-o-m_term>| (<o-m_exp>)|¢
<a-o-m_term> — actual-class-names

<wv-o-m_term> — virtual-class-name,

<o-m_opi> — o |II

<o-m_op2> — — | U | Uo [No | =0 | Wo

The situation of <o-m_term> — ¢ will be explained in
the next subsection.

Consider a mapping equation, each virtual m_term on
the right-hand side can be replaced by the right-hand side
in its corresponding mapping equation. After a sequence of
replacements, we can get a mapping equation with one vir-
tual m_term on the left-hand side and only actual m_terms,
derived attributes, or ¢ on its right-hand side. This means
that we can get the equation to denote the mappings be-
tween a virtual class and the actual classes in component
databases.

3.2 Mapping Equations for Integration
Operators

In the process of schema integration, the virtual classes
will be produced after each integration operation. For an
integration operator, the m_term of each produced virtual
class can be described by a mapping equation. In the fol-
lowing, we introduce the mapping equations for the virtual
classes produced after each integration operation.

® Class restructuring operators:
o C' = Refine(C.a, value)

C} = Cq U a[= value] cl=qC,
o C' = Hide(C.a)

Cl=Cy—a Ccl=0a,
o C' = Rename(C, C')

c =, c=q,

C' = Rename(C.a, a')
Cl=CyUa'[a] —a cl=qC,

o C' = Aggregate(C. {a1, az, ..., an}, @', A)

Since the added attribute a’ should be inherited to the
subclasses of C, the virtual class A should contain

the virtual objects from the projection on {ai, a2,
...y @} for the objects in class C and its subclasses.
Each object in the result of the projection on {a1, az,
.c.y @n } 1s assigned a virtual local Oid. Such a virtual
local Oid is useful when processing the queries against
the virtual class A. Assuming classes C1 to Cn are
the subclasses of class C, the m_terms of C’ and A
are as follows.

Cl =Coud[{ar,az,...;an}] — {a1,a2,...,an}

Ccl=0a,

Aq = {a1,az2,...,an}

Ao =0y ,a5,.,0,1(CoUCL,U...UCny)
C' = Invert(C, Cl.qa, a')
Cc=C, U a'[Cl.a_l] cl =0,
C' = Demolish(C)

Assuming classes C1 to Cn are the subclasses of C,
d is the division characteristic of C, and d1 to dn are
the values assigned to d for the objects in C1 to Cn,
respectively. The m_terms of C’ are shown below.
C=C,UC1,UC2,U...UCn,
Ud[Cl.d =d1,C2.d =d2,...,Cn.d = dn]
Cl=C,UuC1,UC2,U...UCn,
C’' = Build(C, Sub_C, a = value)

A new virtual class Sub_C is created from C accord-
ing to the predicate "a = value.” Besides, another

virtual class C’ corresponding to C is created. The
m_terms of Sub_C and C’ are shown below.
C(/z = Ca C(ID = Co — (a'azvalueco)
Sub_Cy, = (4 Sub_Cy = 0g=value

® Class integration operators:
e OUnion(C1, C2, GC)

Only a virtual class GC is created.

GC, =Cl,U, C2, GC, =C1,U,C2,
Generalize(C1, C2, Super_C)
Super_C is produced to be the common superclass
of classes C1 and C2. Moreover, two virtual classes
C1' and C2’ are created corresponding to classes C1

and C2, respectively. The m_terms of C1’, C2’ and
Super_C are shown below.

Super_Cq = Cly Ng C24 Super_C, = ¢
Cl, =C1, c1, =C1,
Cc2, =C2, c2. =02,

¢ denotes an empty object set. According to the
inheritance model adopted in this paper, class Su-
per_C contains the objects which do not belong to
class C1’ or C2’. Thus, the object m_term of Su-
per_C is assigned ¢.
Specialize(C1, C2, Sub_C)
Sub_C is produced to be the common subclass of
classes C1 and C2 In addition, two virtual classes
C1' and C2’ are created corresponding to classes C1
and C2, respectively. The m_terms of C1’, C2’ and
Sub_C are shown below.
Sub_Cy = Clq U, C2,
cl, =C1,
2l =C2,
Inherit(C1, C2)
Class C1 is specified to be a subclass of class C2
and the attributes of C2 are inherited to C1. Two

Sub_Cly = Clo Ny C'2
C1, = Cly —o Sub_C,
2 = 02, —o Sub_C,

virtual classes C1’ and C2’ are created corresponding
to classes C1 and C2, respectively, where C2' is the
superclass of C1’. The m_terms of C1’ and C2’ are

as follows.
Cl, = Cla U, C24 Cl, =C1l,4,C2,
C2l, =C2, c2 =02, —,C1,

Note that the mapping equations for the virtual classes
created from the class restructuring operators only contain
the internal mapping operators. However, for the class in-
tegration operators, the mapping equations for the created
virtual classes mainly contain the external mapping opera-
tors. These properties will be used in the next subsection.

3.3 Mapping Graph

Each virtual m_term can be transformed to a sequence
of actual m_terms or derived attributes connected by map-
ping operators, which can be represented by a mapping
graph. The mapping graph is similar to the expression
DAG (directed acyclic graph) used in a compiler, in which
a node may have more than one parent. The leave nodes
are actual m_terms or derived attributes, and the internal
nodes are mapping operators. The root is the result of a
sequence of mapping operations.

According to the principle of the integration rules in
[16] and the properties observed in Sec 3.2, the internal
mapping operators will be performed before the external
mapping operators in a mapping expression. Thus, the
nodes representing internal mapping operators will be lo-
cated below the nodes representing external mapping op-
erators in a mapping graph.

3.4 Example

Now, we consider the previous example shown in Figure
1 to explain the mapping strategy. The two component
schemas are integrated by using the class restructuringand
class integration operators as follows. Those classes whose
names begin with V are the produced virtual classes.

1. Integrate Student@DB1, Student@DB2 and their
subclasses:

V-S1 = Demolish(Student@DB1)

V-S2 = Invert(V-S1,Motorcycle@DB1.owner,vehicle)

V-S3 = Aggregate(V-S2, {blood-type}, blood, V-B1)

V-S4 = Refine(V-S3.school, "NTHU")

V-S5 = Build(V-S4, V-CS-S1, "department=CS")

V-S6 = Build(V-S5, V-EE-S1, "department=EE")

V-S1' = Aggregate(Student@DB2.{city, street, no},
address, V-A')

V-82' = Rename(V—Sll.stu—no7 s-no)

V-S3' = Refine(V-S2'.school, "NCTU”)

OUnion(V-S6, V-S3', G-Student)

OUnion(V-CS-S1,CS-Student@DB2,G-CS-Student)

OUnion(V-EE-S1,EE-Student@DB2,G-EE-Student)

OUnion(Address@DBI1, V-A’, G-Address)

V-B1l' = Rename(Blood@DB2 type, blood-type)

OUnion(V-B1, V-B1', G-Blood)

2. Integrate Motorcycle@DB1 and Motorcycle
@DB2:

V-M1' = Invert(Motorcycle@DB2,
Student@DB2.vehicle, owner)

V-M2' = Rename(V-M1’, car-no, license-no)

OUnion(Motorcycle@DB1,V-M2’ ,G-Motorcycle)

The constructed global schema is shown in Figure 3. Be-
sides, the m_terms of V-S6 and V-S3’ are listed below.

G-Student

G-Blood
G-Motorcycle sno
license-no name a:/)gij;ble
owner age
p-year blood
address —=> G-Address
vehicle city
department Sreet
advisor no
degree
school
G-CS-Student G-EE-Student

L[]

Figure 3: The constructed global schema

V-S6, = (Student@DB1, U Graduate@DB1,,
U Undergraduate@DB1,)
- Udepartment:CS(StUdent@DBlo
UGraduate@DB1 U Undergraduate@DB1,)
- Udepartment:EE((StUdent@DBlo
UGraduate@DB1o U Undergraduate@DB1)
- Udepartment:CS(StUdent@DBlo
UGraduate@DB1, U Undergraduate@DB1,))
V-S6, = (Student@DB1, U Graduate@DB1,
UUndergraduate@DB1,)
U degree [Graduate.degree = graduate,
Undergraduate.degree = undergraduate]
U vehicle [Motorcycle@DB1 .owner 1]
U blood[{blood-type}] — blood-type U school[=NTHU]

V-83, = Student@DB2,
V-S3/, = Student@DB2, U address [{city, street,no}]
— {city,street,no} U s-no [stu-no] — stu-no U school [=NCTU]

Furthermore, the mapping graphs for the virtual class
G-Student constructed in the global schema are shown
in Figure 4.

4 Global Query Processing

In this section, we discuss the strategies for processing
queries whose format is similar to that used in XSQL [22]
against the global schema. A query consists of three parts:
Select, From and Where clauses. The format of a query is
shown below:

Select <target attributes>

From <range classes>

Where <predicate clause>
where the predicate clause is assumed as in conjunctive
form. Due to page limit, a complete description of the
processing strategies is not included in this paper. Instead,
we present the flow of query processing for the global query,
introduce the processing units and auxiliary units in this
system, and give an example to show the main ideas used
for processing global queries.

4.1 The Flow of Global Query Processing

The flow of global query processing is shown in Fig 5.
There are four main processing units in the system, which
are depicted by ellipses. In the system, there is one global
decomposer and one global result integrator. However, it
is necessary to have a pair of local preprocessor and local
postprocessor for every local DBMS. The bold lines with
arrow show the flow of the query and the result.

First, the global query against the global object schema
is submitted to the global decomposer. The global decom-
poser is responsible to check the range classes in the From

object mapping graph:

GStudents
1

Uo
_— ~—
/— ~ StudentQD B2,

- Tdepartment=EE

//O'departmentzCS
/ u
/U\ Undergraduate@QD B2,
Student@DBl, Graduate@QD B2,

attribute mapping graph:

GStudentg

Ugqg
U — \
PN
— school[=NTHU]
™~

u\\

/u {blood-type} — school[=NCTU]
U\blood[{blood-type}] | \
u/ vehicle[Motoreycle.owner—1] U SP1-1O
~

/ degree[Graduate.degree=graduate, f s-nofstu-no]

U ndergraduate.degree _
/ \ =undergraduate] ~
u {city, street, no}
\ Undergraduate@QD B2qg U\
/ / address[{city,
Graduate@QD B2g Student@D B2, street, no}]
StudentQD Blg

Figure 4: The mapping graph for class G-Student

Global Query Global Result

Global Mapping Global
Decomposor)<< - - - - Information |- - - - = Result Integrator
| Server . 4

v Global-0id | -~ > Cocal
L ocal . .
Prepr ocessor Mapping Postpr ocessor
Server
\ Local
o DBMS

Figure 5: The flow of global query processing

other
L ocal Preprocessors

other

L ocal Preprocessors

clause for decomposing the global query to subqueries.
The tasks for global query decomposition in the global de-
composer are divided into two phases. In the first phase, if
more than one range class are specified in the From clause
for ezplicit joins [2], the global query should be decom-
posed into the subqueries each containing only one range
class. Moreover, a modified global query for processing the
explicit joins needs to be constructed to integrate the re-
sults of the subqueries. After the first phase, although only
one range class is contained in each subquery, the range
class may be a virtual class consisting of several classes in
different component schemas. In this situation, the range
class is the result of a class integration operation and the
external mapping operators can be found in its mapping
graph. Therefore, the task of the second phase is to check
the mapping graph of the range class for the subqueries
produced from the first phase, and to do possible further
decomposition. After the global decomposer completes,
the range class of each resultant subquery should be lo-
cated in a single component database, which may or may

not be an actual class. Then the subqueries are sent to the
local preprocessors of the corresponding local DBMSs.
The virtual class contained in the subquery sent to a
local preprocessor must be produced from the class re-
structuring operations. If it is constructed from more than
one actual class, the internal object mapping operator U
must appear in the corresponding object mapping graph,
and the local preprocessor has to further produce a sub-
query on each actual class. Moreover, it has to process the

derived attributes in th Select and Where clauses in_or-
der to produce the executable queries for the local DBMS.

Among the derived attributes, the refined attributes or di-
viston characteristic attributes are assigned constant val-
ues in their deriving functions. If they appear in the Where
clause, the associated predicates can be processed accord-
ing to the constant values. For processing the attributes
produced by Inwvert, the classes of the inverted attributes
in the same DBMS also need to to be processed. Regard-
ing the attributes produced from Rename or Aggregate,
the preprocessor replaces them with the original attributes
which are specified in the deriving functions. Furthermore,
the preprocessor examines whether there exist attributes
in the Select or Where clause, which are not in the at-
tribute mapping graph of the range class. If there is one
(named missing attribute) in the Where clause, the result
of this query will be marked with maybe result. Otherwise,
the result will be certain result.

By contrast with the local preprocessor, the local post-
processor has to integrate the results of the subqueries
which are decomposed from the preprocessor. Before re-
turning the result to the global result integrator, the de-
rived attributes appearing in the Select clause, whose val-

ues can not be obtained from the local DBMSs should be
processed. Such derived attributes are produced due to

the Refine or Demolish operations, and their values can
be found in their deriving functions. In addition, null val-
ues should be appended to the results for the missing at-
tributes which appear in the Select clause.

At last, the global result integrator integrates the re-
sults returned from the local postprocessors to get the final
result. When integrating the local results, the local maybe
results may be confirmed to be certain results if there exist
isomeric objects in other local DBMSs.

The Flow Control Language defined in [5] can be used
to specify the flow of global query processing.

In addition to the processing units, two auxiliary units
are provided in this system and depicted by rectangles.
The mapping information server stores the mapping graph
for each virtual class in the global schema. Moreover,
the mapping and the type or scale conversion functions

for those attributes with the same semantics in different
component schemas are provided. The global Oid map-

ping server manages the mappings between local Oids and
global Oids. Function L_to_G() is provided to find the
corresponding global Oid of the object by checking the
global Oid - local Oid mapping table when a local Oid is
specified. The dash lines with arrow show the auxiliary
units used by the processing units.

4.2 Example

In the following, according to the global schema con-
structed in the previous example, a query is given to illus-
trate the procedure for global query processing. Consider
query Q, ”Retrieve the name, school, and available situ-
ation of the blood type of the graduate students living in
Taipei, who are younger than 30 years old and whose mo-
torcycles are produced after 1990.” Q is shown in Figure
6(a).

When Q is processed by the global decomposer, the first

phase is skipped because no explicit join exists in Q. The
second phase examines the mapping graph of the range
class G-student. The external mapping operators U, and
U, appearing in the mapping graph show that G-student

is constructed from V-S6 and V-S3’ which come from
different component databases. Thus, Q is decomposed

into Q1 and Q2 as in Figure 6(b) and Figure 6(c), and
sent to the preprocessors of DB1 and DB2, respectively.

The preprocessor in DB1 is responsible to pro-
cess Q1. From the U operations on Student@DB1,,
Graduate@DB1,, and UndergraduateQDB1_ as
shown in the object mapping graph, we know that V-S6
is a virtual class consisting of three actual classes. There-
fore, additional decomposition for Q1 is needed. The ob-
ject mapping expression which is used to represent the ob-
ject m-term of V-S6 needs some transformations to get a
sequence of subexpressions connected by U operations as
follows.

V-S6, = (Student@DB1, U Graduate@DB1o
U Undergraduate@DB1o)

- crdepartmem:Cs(Student@DBlo

U Graduate@DB1 U Undergraduate@DBlo)
— Odepartment=EE ((StUdent@DBlo

U Graduate@DB1o U Undergraduate@DBlo)
- Udepartment:CS(StUdent@DBlo

UGraduate@DB1o U Undergraduate@DB1g))

= Udepartment;éEE ((Student@DBlo
U Graduate@DB1o U Undergraduate@DBlo)
- Udepartment:CS(StUdent@DBlo
U Graduate@DB1o U Undergraduate@DB1g))

= Odepartment#CS and department;ﬁEE(StUdent@DBlo
U Graduate@DB1, U Undergraduate@DB1,)

= (Udepartment;éCS and department#ZEE StUdent@DBlo)
U (Udepartment;éCS and department;ﬁEEGraduate@DBlo)
@]

(Udepartment;éCS and department;ﬁEEUndergraduate@DBlo)

Then the three subqueries Q3, Q4, and Q5 against
classes Student@DB1, Graduate@DB1 and Under-
graduate@DB1 can be constructed as shown in Figure
6(d), 6(e), and 6(f), respectively. The derived attributes

in the Select and Where clauses are then considered. For
processing the predicate involving the division character-

istic attribute degree, the value in the deriving function
is checked. Q3 and Q5 can thus be eliminated and the
predicate ” degree = graduate” in Q4 is true, which can be
removed. A new subquery Q7 is constructed against Mo-
torcycle@DB1 as in Figure 6(h) for processing the pre-
dictate of vehicle.p-year. Then the predicate for vehicle.p-
year and the target attribute blood.available, which is a
missing attribute, are removed from Q4. The attribute

school in_the Select clause is also removed because its
value will be appended to the result in the postproces-

sor. However, Oid should be appended to the Select clause
in Q4 for further result integration. Q4 is modified to Q6
shown in Figure 6(g). Both Q6 and Q7 are submitted
to DB1 for execution. Now, we consider the local pre-
processing for Q2. The V-S3’ is constructed from only
one actual calss Student@DB2. Thus, no further de-
composition is needed. Only the range class is replaced
by Student@DB2. The predicates for the missing at-
tributes degree and age in Q2 are removed because they
are not defined in Student@DB2. Moreover, the result
of Q2 will be marked with maybe result. The refined at-
tribute schoolis also removed. Then the path expression
address.city which is produced from the Aggregate opera-
tor is replaced by city. Finally, Oid also needs to be added
to the Select clause. Q2 is modified to Q8 shown in Figure

Q: Select name, school, blood.avarlable
From GStudent
Where degree = graduate and age < 30
and address.city = Taiper
and vehicle.p-year > 1990
(2)
Q1: Select name, school, blood.available
From V_-Sg
Where degree = graduate and age < 30
and address.city = Taipes
and vehicle.p-year > 1990

(b)

Q2: Select name, school, blood.available
From VS3’

Where degree = graduate and age < 30
and address.city = Taiper
and vehicle.p-year > 1990

(c)

Q3: Select name, school, blood.availabel
From Student@DBI1
Where degree = graduate and age < 30

and address.city = Taiper
and vehicle.p-year > 1990
and department £ CS
and department Z EE
(d)
Q4: Select name, school, blood.available
From Graduate@DB1
Where degree = graduate and age < 30
and address.city = Taipes

and vehicle.p-year > 1990
and department Z CS

and department Z EE
(e)

Q5: Select name, school, blood.available
From Undergraduate@DB1
Where degree = graduate and age < 30
and address.city = Taiper
and vehicle.p-year > 1990

and department £ CS
and department Z EE

()

Q6: Select O:id, name
From Graduate@DB1
Where age < 30

and address.city = Taipes
and department £ CS
and department # BEE

(8)

Q7: Select owner
From Motorcycle@DB1
Where p-year > 1990

(h)

Q8: Select Oid, name, blood.available
From gtudent@DB2

Where vehicle.p-year > 1990
and city = Taiper

®

Figure 6: The global query and the produced sub-
queries in the processing

6(i) and submitted to DB2 for execution.

When the subqueries sent to the local DBMSs are ex-
ecuted, the results are sent back to the corresponding
postprocessors. The postprocessor of DB1 joins the re-
sults of Q6 and Q7 over the joining attributes Gradu-
ate@DB1.0:¢d and owner. Then both the postprocessors
of DB1 and DB2 append the constant values ”NTHU”

and "NTCU” of attribute school to_the results returned
from DB1 and DB2, respectively. Moreover, null values

are also appended to the results of DB1 for the missing
attribute blood.available. At last, these results called R1
and R2 are returned to the global result integrator.

Since the results in R2 are maybe results, their isomeric
objects in R1, which are certain results, should be checked.
The function L-to-G() is used to identify the isomeric
objects which have the same global Oid. For each object
in R2, if its isomeric objcet 1s in R1, it can be turned
into a certain result. If its isomeric object can be found
in DB1 but is not in R1, this maybe result is eliminated
from the results. Otherwise, the maybe result remains.

5 Conclusion

The mapping information between a global schema and
its associated component schemas is important for pro-
cessing a global query against the global schema. In this
paper, we continue our previous research on integrating
multiple object schemas to consider the mapping informa-
tion and query processing strategies. The mapping equa-
tion is defined to denote the mappings of attributes and
object instances among a virtual class and its constituent
classes. In addition, the mapping equation is described by
the mapping graph. These mechanisms provide the map-
ping information between the global and component object
schemas. The query processing flow for the global query
is presented. According to the mapping information, the
strategies for query decomposition and result integration
are discussed. Moreover, the preprocessing and postpro-
cessing units are provided for each local DBMS to handle
the virtual classes and virtual attributes produced from
schema restructuring. Finally, the concept of object iso-

merism is applied to derive more informative query an-
SWETS.

There are many ways to decompose a global query and
many different query execution plans can be produced. In
this paper, we only provide one way to decompose the
global query. The query optimization strategies consider-
ing various cost models will be studied in the future.

References

[1] C. Batini, M. Lenzerini, and S.B. Navathe, A comparative
analysis of methodologies for database schema integration,
ACM Computing Surveys, 18 (4) (1986) pp.323-364.

[2] E.Bertino, M. Negri, G. Pelagatti, and L. Sbattella, Object-
oriented query languages: the notation and the issues, IEFE
Trans. on Knowledge and Data Engineering, 4(3) (1992) pp.
223-237.

[3] A.L.P. Chen, J.L. Koh, T.C.T. Kuo, and C.C. Liu,
Schema Integration and query processing for multiple ob-
ject databases, Journal of Integrated Computer-Aided En-
gineering: Special Issue on Multidatabase and Interoperable
Systems, Wiley Interscience (to appear).

[4] A.L.P. Chen, P.S.M. Tsai, and J.L. Koh, Identifying ob-
ject isomerism in multiple databases (submitted for publi-
cation), 1993.

[5] B. Czejdo, M. Rusinkiewicz and D.W. Embley, An approach

to schema integration and query formulation in federated

database systems, IEEE Third International Conference on
Data Engineering, (1987) pp.477-484.

[6] B. Czejdo, M. Tarylar, Integration of database systems us-
ing an object-oriented approach, Proccedings of IFEE In-
teroperability in Multidatabase Systems, (1991) pp.30-37.

[7] U. Dayal and H.Y. Hwang, View definition and general-
ization for database integration in a multidatabase system,
IEEE Transactions on Software Engineering, 10 (6) (1984)
Pp.628-644.

[8] S.M. Deen, R.R. Amin, and M.C. Taylor, Data integration
in distributed databases, IEEFE Transactions on Software
Engineering, SE-13 (7) (1987) pp.860-864.

[9] L.G. DeMichiel, Resolving database incompatibility: an ap-
proach to performingrelational operations over mismatched
domains, IEEFE Transactions on Knowledge and Data En-
gineering, 1 (4) (1989) pp.485-493.

[10] R. Elmasri and S. Navathe, Object integration in logical
database design, IEEE First International Conference on
Dta Engineering, (1984) pp.426-433.

[11] W. Gotthard, P.C. Lockemann, and A. Neufeld, System-
guilded view integration for object-oriented databases,
IEEE Transactions on knowledge and Data Engineering,
4 (1) (1992) pp.1-22.

[12] S. Hayne and S. Ram, Multi-User view integration sys-
tem (MUVIS) : An expert system for view Integration,
IEEE Sizth International Conference on Data Engineering,
(1990) pp.402-409.

[13] B.P. Jeng, D. Woelk, W. Kim, and W.L. Lee, Query
processing in distributed ORION, MCC Technique Report
Number: ACA-ST-035-89, (1989) pp. 1-26.

[14] M. Kaul, K. Drosten, and E.J. Neuhold, View System

integrating heterogeneous information bases by object-

oriented views, ITEEE Sizth International Conference on
Data Engineering, (1990) pp.2-10.

[15] W. Kent, Solving domain mismatch and schema mismatch
problems with an object-oriented database programming
language, Seventeenth International Conference on Very
Large Data Bases, (1991) pp.147-160.

[16] J.L. Koh and A.L.P. Chen, Integration of Heterogeneous
Object Schemas, Proceedings of the 12th International
Conference on Entity-Relationship Approach, Dec, (1993)
Pp.289-300.

[17] J.A. Larson, S.B. Navathe, and R. Elmasri, A theory of at-
tribute equivalence in database with application to schema
integration, IEEFE Transactions on Software Engineering,
15 (4) (1989) pp.449-463.

[18] A. Motro, Superviews : Virtual integration of multiple
databases, IEEE Transactions on Software Engineering, 13
(7) (1987) pp.785-798.

[19] E.A. Rundensteiner, Multiview : A methodology for sup-
porting multiple views in object-oriented databas es, Eigh-
teenth International Conference on Very Large Data Bases,
(1992) pp.187- 198,

[20] A. Sheth, J. Larson, A. Cornelio, and S. Navathe, A
tool for integrating conceptual schemas and user views,
IEEE Fourth International Conference on Data Engineer-
ing, (1988) pp.176-183.

[21] S. Spaccapietra, C. Parent, and Y. Dupont, Model inde-
pendent assertions for integration of heterogeneous schemas,
VLDB Journal, (1) (1992) pp.81-126.

[22] UniSQL, Inc., UniSQL/X Database System User‘s Manual,
Release 22.0, Austin, Texas, 1993.

