IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 3, MAY 1992

325

A Parallel Execution Method for Minimizing
Distributed Query Response Time

Chihping Wang, Member, IEEE, Arbee L. P. Chen, Member, IEEE, and Shiow-Chen Shyu

Abstract— Performance studies [6), {17] show that traditional
semi-join processing methods are sometimes inefficient because
of the storage and processing overhead. To remedy this problem,
we propose a new semi-join processing method, called one-shot
semi-join execution. This method allows parallel generation of all
the semi-join projections, parallel transmission of all the semi-
join projections, and parallel execution of all the semi-joins. We
apply this method to optimize the response time for processing
distributed queries. A response time model is established, which
comsiders both data transmission time and local processing time.
Based on this model, we develop and analyze an efficient query
processing algorithm.

Index Terms—Distributed query processing, distributed data-
bases, one-shot semi-joins, query optimization, semi-join process-
ing.

I. INTRODUCTION

UERY processing in distributed relational databases [7]
often requires shipping relations between different sites.
To reduce the data transmission cost, semi-joins were
introduced {2], [3]. A semi-join from relation R; to relation
R;, denoted by R;x R;, is defined as PROJECTR; (R; ™ R;),
where R; pa R; is the join of R; and R;, and PROJECT 4(B)
is the projection of relation B on the attributes of relation A.
In a distributed database system, it is implemented as follows:
Project R; on the join attributes (of the join between R; and
R;), then ship this projection (called a semi-join projection)
to the site of R; and perform the join with R;.
It has been proposed that a distributed query be processed
as follows [1], [4], [5]):

1) Initial local processing: all local operations including
selections and projections are processed.

2) Semi-join processing: the only operations left after initial
local processing are joins between relations at different
sites. A semi-join program is derived from the remaining
join operations and executed to reduce the size of the
relations.

3) Final Processing: all relations which are needed to
calculate the answer of the query are transmitted to a

Manuscript received November 23, 1990; revised June 10, 1991. This work
was supported in part by the Republic of China National Science Council
under Contract NSC 80-0408-E-007-01.

C. Wang is with the Department of Computer Science, University of
California, Riverside, CA 92521.

A.L.P. Chen is with the Department of Computer Science, National Tsing
Hua University, Taiwan 30043.

S.-C. Shyu is with [BM Santa Teresa Laboratory, San Jose, CA 95150.

IEEE Log Number 9107408.

final site where joins are performed and the answer to
the query obtained.

Numerous algorithms [8], [9], [15], [21], [23] have been
developed to determine a semi-join program for optimal dis-
tributed query processing. The heuristic for SDD-1 developed
by Bernstein ef al. [4] is a typical one and can be described
as follows. It repeatedly evaluates the benefit and cost of
the candidate semi-joins, selects the most profitable one,
updates the cardinality of the relation to be reduced by
this semi-join, until there are no profitable semi-joins left.
Researchers have studied this problem for processing several
special classes of queries. Hevner and Yao [14] developed an
optimal algorithm for simple queries. Their approach has been
generalized [1] and a heuristic based on exhaustive search
has been found. Chiu, Bemnstein, and Ho [11] developed a
dynamic programming algorithm for chain queries. Chiu and
Ho [12] further generalized this algorithm to processing tree
queries. Yu, Ozsoyoglu, and Lam [22] considered the same
class of queries. But they further reduced the search space by
identifying some properties of the optimal strategies. Pramanik
and Vineyard [16] developed an algorithm for a more general
class of tree queries where two relations may have more than
one join attribute. Chen and Li [10] studied star queries and
found an optimal algorithm based on some assumptions. Some
of their assumptions were later relaxed by Wang and Li [18].

Most semi-join algorithms favor executing semi-joins se-
quentially such that the reduction effect of a semi-join can
be propagated to reduce the cost of later semi-joins. For
example, the cost of R; X R; may be lowered if another semi-
join R; X Ry is executed first. However, performance studies
(6], [17] show that such semi-join processing strategics are
sometimes inefficient for the following reasons:

1) Loss of parallelism: The sequential execution of semi-
joins excludes the possibility of parallel semi-join exe-
cution in a distributed system.

2) Processing overhead: Before R; x R; is executed, R;
has to be scanned in order to generate the semi-join
projection. If R x R; also appears in the sequential
semi-join program, R; has to be scanned again, which
increases the processing overhead.

3) Loss of global semi-join optimization: The sequential
execution of semi-joins excludes the possibility of per-
forming multiple semi-joins to the same relation simulta-
neously, for which global optimization techniques [20]
may be applied.

4) Inaccurate semi-join reduction estimation: In order to
find a good processing strategy, it is needed to accurately

1045-9219/92$03.00 © 1992 IEEE

326 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 3, MAY 1992

estimate the cost and reduction benefit of semi-joins. If
such estimation is done each time after a semi-join is
executed, too much processing cost may be incurred.
If all such estimates are done before the semi-join
processing, the accuracy may be low because estimation
errors may propagate and be magnified through the se-
quential execution of semi-joins. This inaccuracy affects
the semi-join algorithm’s ability to determine an optimal
strategy.

To alleviate the above problems, we have proposed a new
semi-join processing procedure, named one-shot semi-join
execution [19]. This method executes all applicable semi-joins
to the relations at a time. That is, each relation will be reduced
by a set of semi-joins at a time, and the semi-join processing
at all sites can be performed simultaneously. As a result, each
relation needs to be scanned only once to process all applicable
semi-joins. These semi-joins can be processed employing a
global optimization algorithm. Moreover, since all applicable
semi-joins are executed at one shot, no inaccurate estimation
of the semi-join cost and benefit will be propagated. The query
optimizer therefore decides a semi-join program which is a set
instead of a sequence of semi-joins.

In this paper, we consider using the one-shot semi-join
execution to optimize the response time of distributed query
processing. Both data transmission time and local processing
time (including disk 1/O) are considered in the approach. This
distinguishes our work from most existing query optimization
methods. The one-shot approach makes use of various kinds
of parallelism for minimizing the query response time. The
kinds of parallelism include parallel generation of all the
semi-join projections, parallel transmission of all the semi-join
projections, and parallel execution of all the semi-joins. The
response time, including both data transmission time and local
processing time, is modeled as the time for generating and
transmitting semi-join projections, executing the semi-joins,
transmitting the reduced relations, and processing the final
joins.

Distributed INGRES [13] and AHY [1] query optimization
algorithms also considered minimizing the query response
time. In distributed INGRES the optimization of response time
was achieved by “equalizing” the data sizes at each site such
that each site requires about the same amount of processing
time. There is no cost model defined for local processing, and
the assumption that equal data size requires equal processing
time is rather unrealistic. Moreover, the distributed INGRES
algorithm is a heuristic while our approach is optimal based
on our cost model.

AHY is also a heuristic whose cost model includes only data
transmission. Although it allows parallel transmission of semi-
join projections, parallel generation of semi-join projections
and parallel execution of semi-joins are not considered. As a
result, its cost function favors sequential semi-join executions
and suffers the inefficiencies as we pointed out earlier. On
the other hand, our approach explores more parallelism and
considers both transmission and processing time in the cost
model.

The rest of the paper is organized as follows. In Section II,
we describe the one-shot semi-join execution. In Section III,

the response time is modeled and its minimization is formu-
lated. A polynomial-time algorithm is developed in Section IV,
together with its correctness proof, its complexity analysis,
and an example to illustrate the algorithm. We conclude in
Section V.

II. ONE-SHOT SEMI-JOIN EXECUTION

As described in the previous section, the goal of the one-shot
semi-join execution is to remedy the inefficiency of traditional
semi-join processing strategies, which favor sequential execu-
tion of semi-joins. Under this new method, the initial local
processing and final join processing steps remain the same.
However, the query optimizer has to decide a set of semi-joins
to execute in the semi-join processing step. These semi-joins
are executed in three phases, namely, the projection phase,
the transmission phase, and the reduction phase. They are
explained in the following:

The Projection Phase: During the projection phase, each
relation R; is scanned once to generate all the necessary semi-
join projections. That is, if R;, X R;, Rj, X R;,---, R;, X R;,
are to be executed, R; is scanned once to generate Hr“ R;,
Hrj2 R, -, Hm R;, where r;, is the join attribute between
R;, and R;. All semi-join projections are hashed at the time
they are generated. Hashing is used because it speeds up the
processing during the reduction phase.

To reduce memory overhead, semi-join projections can be
pipelined to the transmission phase.

The Transmission Phase: All the semi-join projections are
then transmitted in parallel to the corresponding sites.

The Reduction Phase: After the transmission phase, all
semi-join projections for reducing a relation R; are available
at the site where R; resides. Since all semi-join projections are
hashed, R; needs to be scanned only once to process all these
semi-joins. Each tuple in R; is checked against the semi-join
projections by using hashing. For each join attribute in the
tuple, if a matching value can be found from the associated
semi-join projection, then this tuple is included in the result.
Otherwise, it is not.

II. MINIMIZING QUERY RESPONSE TIME

In this section, we study the problem of using one-shot semi-
join execution to minimize the response time of distributed
query processing.

The response time for processing a distributed query in-
cludes the local processing time, the semi-join processing time,
the time for transmitting the relations after semi-join reduction
to a final site, and the final processing time. To simplify the
discussion, the time for initial local processing is excluded
from the response time model. Moreover, we refer to the
“original size” of the relations as the one after initial local
processing.

A semi-join reduction model and a response time model
are given next. They will be used to formulate the one-shot
semi-join optimization problem.

WANG et al.: MINIMIZING QUERY RESPONSE TIME

A. The Semi-Join Reduction Model

A selectivity model [3] has been developed to predict the
reduction effect of semi-joins. Under this model, we may
assume that a selectivity, p, is associated with each semi-join
R; x R;. p} is a rational number ranging from O to 1. After
R; x R is executed, the size of R; becomes p}- | R; |, where
| R; | denotes the original size of R;. We further assume that
semi-join reduction effects are independent, i.e., after the one-
shot execution of a set of semi-joins {R; x R; | i € S}, the
size of R; becomes ([[;csp?) - | R; |-

B. The Response Time Model

Under the one-shot semi-join execution method, the re-
sponse time for processing a query includes the time for
generating and transmitting the semi-join projections, the time
for executing the semi-joins, the time for transmitting the
reduced relations to a final site, and the time for performing
the joins. Each of these delays is described next.

Generating and Transmitting Semi-Join Projections: Since
the time for generating the semi-join projections is dominated
by the relation scan time and a relation needs to be scanned
only once to generate all its semi-join projections, we assume
that multiple projections on R; can be generated in parallel. We
also assume that multiple projections on R; can be transmitted
in parallel. This is true if the network has a high bandwidth
and multiple channels, and the delay due to network contention
is negligible. Finally, We assume that there is no data skew,
i.e., semi-join projections are uniformly hashed into the hash
tables.

If a semi-join R; x R; is to be executed, R; has to be
projected, hashed, and transmitted to the site where R; is
located. We use s] to denote the total time needed for this
projection (including disk 1/0), hashing, and transmission.
Since we assumed that multiple projections on R; can be
generated and transmitted in parallel, no waiting is necessary
when R; has to be projected for another semi-join Rx X R;.

Executing the Semi-Joins: The processing of semi-joins to
R; has to wait until all semi-join projections arrive. R; is then
scanned to perform the semi-joins and to ship the remaining
tuples to the communication channel. Specifically, each tuple
in R; is checked against all the semi-join projections through
hashing. If it does not have a matching value in each of the
projections, it is discarded; else it is sent to the communication
channel. We assume the time for hashing is negligible, and the
time for scanning R; is C;.

Transmitting the Relations: The communication channel
transmits the reduced R; to the final site after all tuples in
R; have been scanned. Suppose there are X; tuples left. We
assume the transmission time is Dj;- X; + E, where D; and E
are constants corresponding to the speed of the transmission
and the setup time, respectively.

The Final Join Processing Time: Let Ry, R, ---, R, be
the relations sent to the final site for processing the joins.
The joins are processed after all these relations arrive. In
this paper, we assume the worst case time complexity of
the join operation. That is, the amount of time needed for
processing the joins is proportional to the product of the

327

relation cardinalities. Thus, the final join processing time can
be expressed as F” - [\, X;, where F” is a constant.

C. Formulation

We call ¢ the relation index of R;. A semi-join R; X R; is
feasible if and only if R; ba R; is implied in the given query.
Let U; be a set of relation indexes such that ¢ € U; if and
only if R; x R; is a feasible semi-join. The one-shot semi-join
execution method chooses a subset B; of U; to reduce R;.
Our goal is to find {B;, Bs,- -, By} to minimize the overall
response time.

We first consider the semi-join processing time for a single
relation R;. If R; x R; is chosen, ie., i € Bj, then it
takes s7 amount of time to generate and transmit the semi-
join projection of R;. Since semi-join projections can be
generated and transmitted in parallel, the time for generating
and transmitting all the semi-join projections to reduce R; is
max;ep; 5;. After all the semi-join projections arrive at the
site where R; is located, R; is scanned once to process these
semi-joins, which takes C} amount of time. The size of R;
after the semi-join processing becomes [[;c 5 (p7):| R; |. The
transmission time for sending the reduced .kj to a final site
is therefore D - [I;cp,(p!)- | R; | +Ej. To summarize the
above discussion, the total amount of time for R; to be semi-
joined and transmitted to the final site is max;ep;(s7) + Cj +
D} Tlies, () | R | +E;;

The processing of joins begins when all R;’s arrive at
the final site. This needs max;<;<n(max;ep;(s?) + C} +
D -]'I,-ij(pf)- | R; | +Ej) amount of time. 'The time
for processing the joins is F' - I]; ;<. (ILics, B | R; |)
according to the final join processing time discussed in the
last subsection. The overall response time can therefore be
expressed as a function of By, By, - -+, By, in the following:

RESP(By,B;,---,B,) = max (I,gan(s{) +Cj+Dj

1<j<n 4

- 1 D)1 R; | +E3)

i€B;

+F - TICTT (o) 1 Bs).
j=1 i€B;

To simplify the above expression, we further make the
following three definitions: 1) C; = C} + Ej, 2) D; = Dj- |
R; |, and 3) E = F' - [;_,(| R; |). Minimizing the response
time by one-shot semi-join execution can be stated as the
following mathematical programming problem.

Definition 1 (RES): Given P = (E, (C1,D1,{(s},p}) |i €
Ul})’ (Cg,Dz,{(S?,p?) I i€ UZ}))',"(C,’MDﬂv{(s?vp?) |
i € Uy)), where E, C;, Dj, si, p! are positive ra-
tional numbers and 0 < p! < 1, find an optimal B =
(B1, B2, ,Bn) such that

RE(B) = max (megx(s{) +Cj+ D; - H W) +E
SIEn 5 i€B;
i
j=1i€B;

is minimized.

328 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 3, MAY 1992

In the rest of the paper, we use maz;(B;), prod;(B;),
and MAX(B) to denote maxep,(s]), HzeB (p?), and

max; <j<n(maX;e s, (s1)+C;+D;- ‘Ilien, (p})), respectively.

Note that when B; = &, maz;(B;) and prod;(B;) are
defined to be zero and one, respectively. This corresponds to
the query processing strategy where no semi-join is applied
to R;. Hence, there is neither semi-join processing cost nor
reduction effect on R;.

IV. AN ALGORITHM FOR RES

One way to solve RES is to examine all possible B’s.
Clearly this method is prohibited for the size of the search
space is (2")™. In this section, we shall explore the properties
of RES and use them to reduce the search space to n2.
An efficient algorithm, P-RES, will then be presented. Its
correctness and complexity will be studied and an example
will be given.

A. Some Properties of the Optimal Solution

We first consider the one-shot semi-join execution on a
single relation R;. All subsets of U; are candidates for the
optimal B; and there are 2!Us| of them (| U; | denotes the
cardinality of U;). To reduce this search space, we notice that
if B; is optimal and i € By, then {h | s, < s!} C B,.
Intuitively speaking, since R; X R; is to be executed and
the semi-join projections can be generated and transmitted
in parallel, including another semi-join R; X Ry, can further
reduce the size of R; without introducing extra delay as long
as s), < sJ. From thls observation, we can sort the elements in
U; into a list L' according to the increasing order of s7. Let o,
be the sorting function, i.e., sij(l) < sﬁj(z) - < Soj(|U e
The candidates for the optimal B;, 47,0 < k §| Uj |, are
defined in the following:

i {{Oj(1)70j(2)»“‘a0j(k)} if1<k<|U;|
%)

if k=0.
The following lemma shows that the optimal B; must be
one of the b]’
Lemma 1: If B = (By, By, -+, B,) is optimal, then for
al 1 <j<mn Bje {b{;,b{,---,b{,jjl}.
Proof: If B; is @, then it equals b); else there is a
maximum index k such that 0,(k) € B;.
Suppose B; # b). There must exist k' < k such that
o](k’) ¢ B;. Cons1der B = (Bl, ,Ba, ,-++, Bj|U{oj(k")},
By). Note that s k) S 8,) because k' < k Since 0 <
P Sk < 1, prod;(B; U{o;(¥")}) = Po (%) - prod;(Bj) <
prod (Bj). Also note that max;(B; U{oj(k’)}) max;(B;)
= soj (ky- Therefore, RE(B') < RE(B) and B is not optimal.
QED.
Given b{c, we define the selectivity of b%, denoted by pfg, to
be the product of the selectivities of all the semi-joins in b{c
pi can be expressed as
pak'z{n,-ebipz if1<k<|U |
1 if k=0.

Note that after the execution of b] the size of R; becomes
pk times of its original size. We further define v}, to be the
amount of time needed for executing the semi-joins in b7, and
transmitting the resultant R; to the final processing site. vi

can be expressed as
ol = o(k)+C+D p,’C if1 <k<|U;|
=\ ¢+ D, if k= 0.

From Lemma 1, an optimal B can be expressed as

(by,, b2 %, ">k) and RE(B) can be rewritten as
RE(B) = max vk +E- Hp; (1)
7j=1

The search space for the optimal B can be further reduced.
Let m be the subscript such that vk = maxi<;<n v,c In
other words, R,, is the last relation to arrive at the final
site. Therefore, for any relauon Ry, (including R,,), bﬁh must
be chosen such that vk < v . However, among all b?
which satisfy this requirement, bi’h has to be the one with
the smallest selectivity because the final size of R; can thus
be most reduced without incurring extra delay. Applying this
observation, we may search for the optimal B by first sorting
{b | 1 <3 <n,0<k <|Uj|}into a list L according
to the increasing order of vi. L is then scanned iteratively.
During iteration i, only the first ¢ elements in L are considered.
Specifically, for each relation Ry, bﬁh is chosen, among the
first ¢ elements in L, to be the b with the smallest selectivity.

A few useful notations are defined next. (j(), k()) denotes

the sorting function which generates L. That is, vfcgg <

igg < < vig;, where T = > p_.(| Un | +1).
We use jk~1() to denote the inverse of (j(), k()). That is,

jk71(4,k) = i means bJ is the ¢th element in L. We use a set
K, (%) to specify which ones from the first i elements in L are
candidates for bh More precisely, an index d is an element of
K, (i) if and only ifd < i and j(d) = h. m (%) denotes the one
in K h(z) with the smallest select1v1ty That is, m(z) € K (3)
and pk(m’l(z)) = minymek, @) pk(m) mp () is undefined
if Kp(i) = . The candidate for the optimal solution at
iteration ¢ is B(z) = (b k(ml(l)),bk(mz(i)), 3 Dgmn iy))- B(E)
is undefined if there exists h such that mp(2) is undefined, i.e.,
none of the first ¢ elements in L is a candidate for the optimal
B),. We define ip,;, to be the the minimum index such that
B(imin) is defined. Note that for any i > imin, B(3) is always
defined. Since it is possible that the candidate solutions at
different iterations are the same, we say B(7) is minimal if for
all ¢/ < 4, B(¥') # B(i).

The following lemma states that one of the B(z)’s is the
optimal solution.

Lemma 2: There exists 4, imin < 2 < T, such that B(3) is
optimal and minimal.

Proof: 1et B be an optimal solution. By Lemma 1,

B = (blln’b%y"'vbzn)- Let i = maxi<g<n jk™1(g, ky)-
Clearly, imin < % < T. We shall first prove B(7) is optimal
by showing RE(B(i)) < RE(B).

By the definition of ¢ there is h such that (k(3),j(3)) =
(kn, k). So MAX(B) = maxi<y<nvf, > vj,. But for all

WANG et al.: MINIMIZING QUERY RESPONSE TIME

i ; i(8) _
1 < g <nomy() < i Thus vi,, o) < Vg = v,
Consequently, MAX(B(i)) < v} < MAX(B). From (1),
it remains to show that for all g, pi(mg(i)) < pig. We note
that i > jk~1(g, kg), which implies k~'(g, k4) € K¢(i). By
the definition of my(i), DY 1)) < P, -

We have shown that B(i) is optimal. If it is not minimal, let

i’ be the smallest index such that B(i') = B(:). Then B(i)
is both optimal and minimal. Q.ED.

The next lemma describes some properties of the B(i)

which were used in the design of P-RES.

Lemma 3:

1) B(4) is minimal if and only if m;(;)(i) = i.

2) If B(i) is minimal, then MAX(B(i)) = vi((:))

Ny (D) n
RE(B(3i)) = Ui(,') +E-[[hz P’iz(m,.(i))-
Proof:

1) ma(i) < i if h # j(i). Therefore, m;(;)(i) # ¢ implies
B(i) = B(i — 1) and B(:) is not minimal. Conversely,
since i & Kj(i)(i') for all i’ < 4, m;(;)(i) = ¢ implies
mjg) (i) # mj)(s). Thus, B(i) # B(i') and B(i) must
be minimal. »

2) From (1), it suffices to show vi) = MAX(B(3)) =
MaX) Ch<n Vn(m, (i) NOte that ¢ < ¢ implies "i((:")) <
vitD. But by definition my (i) < i for all 1 < b < n.
S0 Vm, (iy) < vi((:)) for all h. On the other hand, B(i)
is minimal implies m;(;)(i) = i and therefore viz)) =
vi((:zlj(i)(l.)). Accordingly, "18)) = MaXi<h<n V(ma (i)

and

Let i,p; be the smallest index such that B(iopt) is both
optimal and minimal. Algorithm P-RES iterates to find
MAX (B(iopt)), and RE(B(iopt)). During each iteration 4,
RE(B(3)) is calculated only if B(i) is minimal. If B(i)
turns out to be the best candidate solution found so far, then
both RE(B(i)) and MAX(B(i)) are recorded. To calculate
RE(B(i)), [Tj=1 Pl(mn(s)) heeds to be computed. Instead of
taking (n — 1) multiplications in each iteration, we use an
array p(h), 1 < h < m, to store P}, ;). Another variable
PROD s used to tecord [T, <h<p Ph(my(i))- We Dotice that
ma(i + 1) = ma(i) except when h = j(i + 1), in which
case mj(,'+1)(1: + 1) =i+ 1if p‘;c((i":gl().'-u)(i)) > ((1;—:11))
Therefore, only one of the p(h)’s, namely p(j(i + 1)), may
be changed during iteration i + 1. If p(j(i + 1)) is changed,
Mi<h<n 1’2(m,.(-‘+1)) can be evaluated as

j(i+1) ;. j(i+1
(qu1< Ph(ma (i) ~P’L((i11))/pi((':j()(+l,(.‘))

j(i+1)
P (i+1)
P +1)
where PROD" and p*(j(i+1)) are the values stored in PROD
and p(j(i + 1)), respectively, after iteration i. Thus, only
one multiplication and one division are required in order to
compute [T} << Phmni+1)°

After determining MAX (B(iop¢)), P-RES enters the second
phase to construct B(iopt) (B(éopt) is not recorded during the

= PROD' -

329

first phase). Specifically, we use the fact that k(mp(iopt))
should be the biggest index such that wi,. . . <
MAX (B(iopt)). This is formally stated in the following
lemma:

Lemma 4: 1f B(i) is optimal, then
k(mp(i)) = maxXo<ge<|u,), vt <MAX(B()) 9-

Proof: ltis clear that v, ;) < MaXi<c<n Vh(me () =
MAX(B(3)). We shall show that there does not exist d >
k(my(3)) such that v < MAX(B(z)). Suppose there is such
d. Consider B’ = (b ,b% ,---,bk) where

K, = {Z(ma(i)) ifa#h

ifa=h.

MAX(B') < MAX(B(i)) because v} < MAX(B(3)).
Furthermore, k(my(i)) < d implies b,) C bk, and
therefore pf,,), > Pi- Hence, RE(B') < RE(B(i)) and
B(%) is not optimal. Q.ED.

P-RES is formally stated on the next page.

B. Correctness

Some properties of the “for loop” starting at line 8 are
studied first. We define p(h), MAX®, PROD', and RE® to
be the values stored in p(h), MAX, PROD, and RE after
iteration 4 if imin < % < T, and to be the initial values (after
line 7) stored in p(h), MAX, PROD, and RE if i = imin.

Lemma 5: Forallh,1 < h < n,and forall 4, imin <4 < T
P'(R) = Pim, i)

Proof: The proof is by induction on i. From line S, the
hypothesis is true when ¢ = imin.

In the induction step we assume the hypothesis is true when
imin < @ < d. Consider when i = d+ 1. For any hl1<h<mn,
there are two cases:

1) j(d + 1) # h: p(h) is not updated during iteration

i = d+ 1 and therefore p**1(h) = pi(h). Also,
p’,;("lh&d)) = p’,:(mh(d+1)) because d + 1 € Kin(d + 1).
But p“(h) = p;:(mh(ay) from the induction hypothesis.
Thus, p+1(h) = p(h) = Pl(ma@)) = Ph(ma(d+1))"

2) j(d + 1) = h: From the induction hypothesis
pi(h) = pz(m(4+ Then from fine 11 and line 18,
p*ti(h) = min{p} ., (d)),pi((‘ﬁll))}. But since Kp(d +
1) = Ku(d)U{d + 1}, min{Pﬁ(mh(d))vPi((ﬁll))} =
Phma ey Hence PHR) = B, @41y

Lemma 6: For all i, imin < i < T, PROD* = [T5_; P'(h)-

Proof: The proof is by induction on i. If 2 = imin, then
PROD = [[<p<np(h) from line 6.

Assume the hypothesis is true when ¢ = d. Consider
i = d + 1. There are two cases:

1) Line 13 and line 18 are executed during itera-
ion i = d + 1: Since line 18 is executed,
p((d + 1) = plgyy). Note that pi*i(h) =

p(h) if h # j(d + 1). Thus, Mhoi o (h) =
(TTh=1 P%(R)) pi((‘ﬁll)) /p*(j(d+1)). From the induction
hypothesis, PROD® = 1, <h<n P*(h). Consequently,

TI"_, p*+'(h) = PROD® - piery) /p*((d + 1))- The

330 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 3, MAY 1992

ALGORITHM P-RES
0) input (n, E, {(C;

) Te—n+3Xi_,|U |;

3) derive the sorting function (k(),j()) such that 028 <w

DU | 1< <n), {(s], p)) | 1S5 S mii €U;])
) 1<35< n,sort{s’ | ¢ € Uj} to compute pi, vi.

i(T)

3(2) < - <L Uk(T)’

Vk(2)

4) find the minimum ¢, denoted by %y, such that V1 < h < n, Elzh, in < iand j(ip) = b

5) 1 < h < n, p(h‘) A manz 1<iminAJ(1)= hpk((,))y
6) PROD « TI;_ p(h);

7)) MAX « w0 RE « olt™) 4 E . PROD;

(tm
8) for i ~ lmm—f—ltoT

9) begin

10) (k,5) — (k(i),5(2));

11) if (7], < p(j)) then

12) begin)

13) PROD « PROD - p}/p(5);

14) if (RE > v} + E - PROD) then

15) begin ‘ ,

16) MAX « v}; RE «— v} + E - PROD;
17) end {if}

18) p(J) < pis

19) end {if}

20) end {for}

21) forj — 1ton

22) begin

23) find the maximum k such that v} < MAX;
24) B; «~ bi;

25) end {for}

26) output (By, B, ---, B,; RE)

hypothesis is therefore true when ¢ = d + 1 according
to line 13.

2) Line 13 and 18 are not executed: Then p*tl(h) =
p%(h) for all h and PROD**'! = PROD?. Hence
PROD*! =TT7_ p%(h) = [T, p**'(h). QE.D.

RE and MAX are initialized at line 7 and updated at line
16. The next two lemmas study when these two variables are
updated and what values they record.

Lemma 7: For all ¢, iy, + 1 < @ < T, the “if” statement
at line 14 is executed during iteration ¢ if and only if B(s)
is minimal.

Proof: From Lemma 3, B(i) is minimal if and only if

m](l)(i) = 4. For all i > ipy,, m;iy(¢) = 4 if and only if

(i) j(3) (i)
pi(l) < pfc(mj(,(i—1))- But from Lemma 5, pk(mm)(l) =

p"71(j(i)). Thus, B(i) is minimal if and only if the “if
condition” at line 11 becomes true during iteration 3. Finally,
note that line 14 is executed if and only if the “if condition”
at line 11 is true. QE.D.

Lemma 8: For all 4, imin +1 < ¢ < T, if line 16 is
executed during iteration i, then RE' = RE(B(:)) and
MAX' = MAX(B(:)).

Proof: line 16 is executed only if line 14 is executed.
B(3) is therefore minimal from Lemma 7. Then by Lemmas
3,5, and 6, RE' = RE(B(i)) and MAX' = MAX(B(i)).
Q.E.D.

Recall 7,,; denotes the smallest index such that B(4,,;) is

both optimal and minimal. Lemma 2 guarantees the existence
of ,p¢. The next lemma shows that after the completion of the
“for” loop starting at line 8, RE(B(ip¢)) and MAX (B(iop:))
are stored in RE and MAX, respectively.

Lemma 9: RET = RE(B(iop)) and MAXT =
MAX (Bliops))

Proof: 1t suffices to prove that 1) RE‘» = RE(B(i,p;))
and MAX*" = MAX(B(iopt)), and 2) line 16 will not be
executed after iteration ¢ = ip,.)

We first prove that RE“» = RE(B(i,p:)) and MAX ' =
MAX(B(igpt)). If Gopt = imin, then RE!min = RE(B(zopt))
and MAX** = MAX(B(iopt)) from line 7. If 4op; > 4mmin,
then from Lemma 8, it is enough to show that line 16
will be executed during iteration i = 7,p,. Since B(i,pt)
is minimal, line 14 will be executed from Lemma 7. Let
i = ¢ be the iteration during which RE is last updated before
iteration ¢ = i,,. If there is no such 4/, let ¢/ = i,;,. Note
that RE‘»~! = RE(B(i')). But B(i') cannot be optimal
because 7,,, is the smallest index such that B(i,p:) is optimal.
Accordingly, RE‘»~! > RE(B(i,y)) and the “if condition”
at line 14 becomes true during iteration § = 1ope. Line 16 will
therefore be executed.

It remains to prove that line 16 will not be executed after
iteration 7 = z,,,,t Durlng any iteration ¢ = ¢/ R i > z,,pg, line
16 is executed only if RE¥~! > RE(B(i’)) (from line 14).
But from line 14 and line 16, the value stored in RE never
increases during the execution of the “for” loop. Since the

WANG et al.: MINIMIZING QUERY RESPONSE TIME

Fig. 1. An example query.

minimum value, i.e., RE(B(iopt)), has already been stored

in RE during iteration i = .5, RE*~! < RE(B(Y)).

Accordingly, line 16 will not be executed during iteration

1=1. Q.E.D.
Theorem 1: P-RES is correct.

Proof: From Lemma 9, RET = RE(B(iop)) and
MAXT = MAX(B(iopt)). From Lemma 4, the “for” loop
starting at line 21 computes b;:(m;.(i.,,,))’ forl < h < n.
The output of P-RES is therefore B(iop;) together with
RE(Bl(iopt))- QED.

C. The Complexity of P-RES

We assume it takes constant time to add, multiply, or divide
two rational numbers. To compute pi’s, and v]’s, one needs
to find the sorting functions {0;() | 1 < j < n}. Thus, it
takes O(nZlogn) time to execute line 1. Similarly, it takes
O(n?logn) time to execute line 3. Line 4 and 5 takes O(n?)
time. The “for” loop starting at line 8 iterates n? times, each
iteration takes O(1) time. The “for” loop staring at line 21
iterates n times. During each iteration, it takes O(n) time to
find k and to construct b). To summarize, The overall time
complexity of P-RES is O(n?logn).

We assume it takes constant space to store a rational number.
The space complexity for storing s}’s, p}’s, v;’s, and pi’s is
O(n?). b], is only used at line 24 and it can be constructed by
using the ordering function o;(). Therefore, no extra space is
needed. We need O(n?) space to hold B;, 1 < j < n. The
overall space complexity of P-RES is O(n?).

D. An Example

We use an example to illustrate P-RES. The example query
is represented as the join graph in Fig. 1:

The parameters are:

)E=15

2) sl’s and p!’s are given in Table L

3) Cj’s and Dj’s are given in Table II:

P-RES first compute 0;(k), pi, and v}. They are recorded
in Table I Take (j,k) = (1,2) for example. From Table I,
s} < s} < s3.Thus, 01(2) = 4; p} = p3-p4 = 0.75:0.8 = 0.6;
and v = s} +C1+ D -py =173

After sorting v]’s, P-RES starts to scan the sorted list L at
lines 4 and 5. From the first four elements in L (Table IV),
imin is 4. After line 7, We have p(1) = 0.3, p(2) = 1,
p(3) = 1, p(4) = 0.36, PROD = 0.108, MAX = v3 = 6.5,
and RE = 6.5 + 15 - 0.108 = 8.12. The execution of

331

7\

Ry R,

AN

Rs

Fig. 2. The optimal set of semi-joins.

TABLE 1
THE VALUES OF s}’s AND p}’s IN THE EXAMPLE
AYER! 2 3 4
1 4 15,09 1.2, 0.6 15,09
(shohy= 2 |1075 |1 L L
3 2,05 L 1 2,04
4 1.8,0.8 1 25,05 1
1 denotes “undefined.”
TABLE I
. THE VALUES OF C;’s AND D;’s IN THE EXAMPLE
J G D;
1 2.5 5
2 34 3
3 4.5 2
4 3 4

the “for loop” starting at line 8 is summarized in Table V.
Take iteration i = 11 for example. Since p} = 09 <
1 = p(2), PROD = 0.0324-0.9 = 0.02916. v} + E -
PROD = 7.6 + 15-0.02916 > 7.872. Thus, RE remains
unchanged.

The final value of MAX is 6.9. The “for” loop at line
(21) generates the following B;’s: By = by = {2,3,4};
By, = b = @ By = b} = {1}; By = b4 = {1,3}. The
optimal set of semi-joins for minimizing the response time is
represented as the semi-join graph in Fig. 2, where R; —» R;
denotes R; X R;.

V. CONCLUSIONS

We employed the one-shot semi-join execution strategy to
optimize the response time for processing distributed queries.
This strategy selects a set of semi-joins as the semi-join
program, and executes these semi-joins in parallel in three
phases: the projection phase, the transmission phase, and the
reduction phase. A response time model was established,
which considers the semi-join processing time, the time for
transmitting the relations to a final site, and the final pro-
cessing time. This model takes into account the parallelism
of local processing and data transmission. A polynomial-time
algorithm was then developed based on this response time
model.

The proposed algorithm may be generalized. Specifically,
we like to consider the average processing time for the final

332

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 3, NO. 3, MAY 1992

TABLE III R
THE VALUES OF 0;(k)’s, p}.'s, AND v]’s
£\J 1 2 3 4 .
0 1,1,75 1,1,64 1,1,65 1,17
(0j(k).ph.v]) = 1 2,075,725 | 1,09,76 1, 0.6, 6.9 1,09, 8.1
2 4,06, 7.3 £ 4,03,7.6 3, 0.36, 6.44
3 3,03,6 1 L 4
TABLE IV . . .
. [9]1 A.L.P. Chen and V.O.K. Li, “Improvement algorithms for semi-
THE ELEMENTS IN L WHICH DETERMINE ipmip, join query processing programs in distributed database systems,” JEEE
. (). (i J60) () Trans. Comput., vol. C-33, pp. 959-967, Nov. 1984.
¢ (k(4), (1)) Viih) A [10] “An optimal algorithm for distributed star queries,” IEEE Trans.
1 3,1) 6 03 Software Eng., vol. SE-11, pp. 1097-1107, Oct. 198S.
G - [11] D.M. Chiu, P. A. Bernstein, and Y.C. Ho, “Optimizing chain queries
2 0,2) 6.4 1 in a distributed database system,” SIAM J. Comput., vol. 13, no. 1,
3 2.4) 6.44 0.36 pp- 116-134, Feb. 1984.
[12] D.M. Chiu and Y.C. Ho, “A method for interpreting tree queries
4 ©3) 6.5 1 into optimal semi-join expressions,” in Proc. ACM SIGMOD Int. Conf.
Mananagement Data, 1980.
[13] R. Epstein, M. Stonebraker, and E. Wong, “Distributed query processing
TABLE V in a relational data base system,” in Proc. ACM SIGMOD Int. Conf.
THE SUMMARY OF THE EXECUTION OF THE “FOR LoOP” AT LINE 8 Management Data, May 1978, pp. 169-180.
[14] A.R.Hevner and S. B. Yao, “Query processing in distributed databases,”
; N i | i | proD x| rE IEEE Trans. Sofware Eng., vol. SE-S, pp. 177-187, May 1979.
! R T0) | vy | ey 0 MAX | R [15] W. Perrizo and C. Chen, “Composite semijoins in distributed query
5 (1,3) 6.9 0.6 0.0648 6.9 7.872 processing,” Inform. Sci., Mar. 1990. o
- [16] S. Pramanik and D. Vineyard, “Optimizing join queries in distributed
6 ©,4) 7 1 0.0648 6.9 7.872 databases,” IEEE Trans. Software Eng., vol. SE-14, pp. 1319-1326,
7 1, 1) 7.25 0.75 0.0648 6.9 7.872 1] ﬁ{ept. 1988. b d
[. Templeton, D. Brill, A.L.P. Chen, S. Dao, and E. Lund, “Mer-
8) 73 06 0.0648 69 7.872 maid —Expériences with network operation,” in Proc. 2nd IEEE Data
9 ©,1) 75 1 0.0648 6.9 7.872 Eng. Conf., Feb. 1986.
10 2,3 76 0.3 0.0324 6.9 7872 [18} C.P. Wang and V.O.K. Li, “The relation-partitioning approach to
. distributed query processing,” in Proc. 2nd IEEE Data Eng. Conf., Feb.
11 1,2) 7.6 0.9 0.02916 6.9 7.872 1986.
12 1,4 8.1 0.9 0.02916 6.9 7.872 [19] C.P. Wang, V.O.K. Li, and A.L.P. Chen, “One-shot semi-join exe-
cution strategies for processing distributed queries,” in Proc. 7th IEEE
Data Eng. Conf., Apr. 1991.
. . L . [20] E. Wong and K. Youssefi, “Decomposition—A strategy for query
joins and relax the assumption that semi-join reduction effects processing,” ACM Trans. Database Syst., 1976.
are independent. [21] C.T. Yu, K. Guh, and A.L.P. Chen, “An integrated algorithm for dis-
. . . tributed query processing,” in Proc. IFIP Conf. Distributed Processing,
We proposed to use hashing to process multiple semi-joins Oct. 1987
in this paper. The size of the hash tables and the reduction of [22) C.T. Yu, Z. M. Ozsoyoglu, and K. Kam, “Optimization of distributed
the relations represent a tradeoff for the selection of the hash ‘lfgg 4‘1“""“’" J. Comput. Syst. Sci., vol. 29, no. 3, pp. 409445, Dec.
functions. We intend to investigate this issue under the same (23] C.T. Yu et al., “Query processing in a fragmented relational distributed

semi-join execution strategy and response time model.

(1]

[21
B3]
[4]

[5

[}

[6

-

(71
(8]

REFERENCES

P.M.G. Apers, A.R. Hevner, and S.B. Yao, “Optimization algo-
rithms for distributed queries,” IEEE Trans. Software Eng., vol. SE-9,
pp. 57-68, Jan. 1983.

P.A. Bernstein and D.M. Chiu, “Using semi-joins to solve relational
queries,” J. ACM, vol. 28, no. 1, pp. 25-40, Jan. 1981.

P.A. Bemnstein and N. Goodman, “The power of natural semijoins,”
SIAM J. Comput., vol. 10, no. 4, pp. 751-771, Nov. 1981.

P.A. Bemnstein er al., “Query processing in a system for distributed
databases (SDD-1),” ACM Trans Database Syst., vol. 6, no. 4,
pp. 602-625, Dec. 1981.

P.A. Black and W.S. Luk, “A new hueristic for generating semi-join
programs for distributed query processing,” in Proc. IEEE COMPSAC,
Dec. 1982, pp. 581-588.

D. Brill, M. Templeton, and C.T. Yu, “Distributed query processing
strategies in Mermaid, A frontend to data management systems,” in
Proc. IEEE Data Eng. Conf., Feb. 1984,

S. Ceri and G. Pelagatti, “Distributed Databases: Principles and Sys-
tems. New York: McGraw-Hill, 1984,

A.L.P. Chen, D. Brill, M. Templeton, and C.T. Yu, “Distributed
query processing in a multiple database system,” IEEE J. Select. Areas
Commun., issue on Databases in Communications Systems, Apr. 1989.

system: Mermaid,” IEEE Trans. Software Eng., Aug. 1985.

Chihping Wang (5’84 -M’88) received the B.S. de-
gree in electrical engineering from National Taiwan
University, Taiwan, Republic of China, in 1983, and
the Ph.D. degree in computer engineering from the
University of Southern California, Los Angeles, in
1988.

Since September, 1988 he has been with the
Department of Computer Science, University of
California, Riverside, where he is an Assistant Pro-
fessor. His research interests include distributed
databases, object-oriented databases, distributed sys-

tems, and performance modeling.
Dr. Wang is a member of the Association for Computing Machinery and
the IEEE Computer Society.

WANG et al.: MINIMIZING QUERY RESPONSE TIME

Arbee L. P. Chen (S’80-M’84) received the B.S.
degree in computer science from National Chiao
Tung University, Taiwan, Republic of China, in
1977, and the Ph.D. degree in computer engineering
from the University of Southern California, Los
Angeles, in 1984.

He is a Professor in the Department of Computer
Science, National Tsing Hua University, Taiwan. He
was a Member of Technical Staff at Bell Com-
munications Research, NJ, from 1987 to 1990, an
Adjunct Associate Professor in the Department of
Electrical Engineering and Computer Science, Polytechnic University, Brook-
lyn, NY, and a Research Scientist at Unisys, Santa Monica, CA, from
1985 to 1986. He is currently also an Advisor to Industrial Technology
Research Institute and Institute for Information Industry in Taiwan. His
research interests include distributed databases, heterog databases,
active databases, and distributed computing systems. He has published over
30 papers in various journals and conference proceedings.

Dr. Chen is a member of the Association for Computing Machinery and the
IEEE Computer Society, and was a member of the ANSI/X3/SPARC/Database
Systems Study Group.

333

Shiow-Chen Shyu was born in Panchiou, Taiwan,
in 1961. She received the B.S. degree in computer
engineering from National Chiao Tung University,
Taiwan, in 1984, and the Ph.D. degree in computer
engineering from the University of Southern Cali-
fornia, Los Angeles, in 1988.

She is currently a staff member at the IBM Santa
Teresa Laboratory, San Jose, CA. Her research
interests include distributed algorithms, distributed
databases, performance modeling, object-oriented
databases, and real-time systems.

