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ABSTRACT 

In this article, we discuss the techniques used in content-based music information 

retrieval. The techniques include the methods to represent music objects, the similarity 

measures of music objects, and indexing and query processing for music object retrieval. To 

represent music objects, we introduce three coding schemes, i.e., chord, mubol, and music 

segment. Various similarity measures are then presented, followed by various index structures 

and the associated query processing algorithms. The index structures include suffix tree, 

n-gram, and augmented suffix tree. A qualitative comparison of these techniques is finally 

presented to show the intrinsic difficulty of the problem of content-based music information 

retrieval. In addition, the platform for evaluating MIR approaches is introduced. Some 

preliminary results of efficiency study are illustrated.  

1. INTRODUCTION 

Rapid progress of hardware and software technologies makes it possible to manage and 

access large volumes of multimedia data. While most researchers focus on the content-based 

retrieval of image and video data, it is getting more attention on the content-based retrieval of 

audio and music data. In the area of multimedia databases, the content representation, indexing 

and searching techniques for multimedia data are key issues.  

A friendly interface for users to pose queries is important in content-based music data 

retrieval. The queries are usually a piece of music, which should not be restricted to be the 

incipits, the beginning of music objects, but can begin at any position of the music objects. 

Meanwhile, it is required to provide the functionality of approximation in music databases 

when taking into account the errors caused by frequent inexact query specifications. It is also 
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reasonable to provide functionalities of transposition2 invariant and scale invariant for query 

processing, which will be discussed in Section 2.  

To meet the requirements of content-based retrieval, the techniques in music databases are 

developed, as shown in Figure 1. By using proper coding schemes and similarity measures, it 

fulfills the requirement of approximation, transposition invariant and scale invariant. With the 

benefit of index structures, the functionality of partial matching can be supported, and user 

queries can be efficiently processed even when a large number of music objects are stored in 

the databases. 

 
Figure 1:  Techniques used in music databases to meet the requirements. 

In this article, we introduce various techniques for content-based music retrieval. The 

issues of representing music objects, similarity measure, index construction, and query 

processing are discussed. The rest of this article is organized as follows. In Section 2, we focus 

on the representation issues and present three coding schemes of music objects. The similarity 

functions based on these schemes are presented as well. The index structures and query 

processing are described in Section 3 and Section 4, respectively. In Section 5, the discussion 

and comparison of various techniques are presented. We describe the platform for evaluating 

the performance of each approach in Section 6, as well as the experiment results to show the 

efficiency. Finally, Section 7 concludes this article.  

1.1. Related Work 

The contributions in the field of music databases are presented as follows. Selfridge-Field 

(1998) provides a survey of clarifying and resolving conceptual and representational issues in 

melodic comparison. Ghias, et al. (1995) propose an approach for modeling the content of 
                                                 
2 The shifting of composition into another key without any alteration of melodic intervals so that 
the result sounds exactly the same within itself apart from being at a different basic pitch (Burke, 
1993). 
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music objects. A music object is transformed into a string which consists of three kinds of 

symbols, ‘U’, ‘D’, and ‘S’ which represent a note is higher than, lower than, or the same as its 

previous note, respectively. The problem of music data retrieval is then transformed into that of 

approximate string matching. Prather (1996) proposes a linked list data structure to store the 

scores of music data. By applying the harmonic analysis method to traverse the scores, the 

chord information can be derived for further processing. In the paper (Blackburn and DeRoure, 

1998; DeRoure and Blackburn, 2000), a system supporting the content-based navigation of 

music data is presented. A sliding window is applied to cut a music contour into sub-contours. 

All sub-contours are organized as an index structure for the navigation. Tseng (1999) proposes 

a content-based retrieval model for music collections. The system uses a pitch profile encoding 

for music objects and an n-gram indexing for approximate matching. Similar techniques have 

also been employed in the papers (Yanase and Takasu, 1999; Uitdenborgerd and Zobel, 1999; 

Downie and Nelson, 2000; Yip and Kao, 2000). The work (McNab, et al., 2000) focuses on 

music retrieval from a digital library. The issues of melody transcription and the requirements 

of string matching are analyzed to show the trade-off between the matching criteria and 

retrieval effectiveness.  

When considering polyphonic music objects, Uitdenbogerd and Zobel (1998) propose a 

method for extracting the monophonic melody from a polyphonic music object in MIDI 

format. A framework is also proposed in which the music objects are organized as an n-gram 

structure for efficient searching (Uitdenborgerd and Zobel, 1999). Lemstrom and Perttu (2000) 

also present a prototype handling polyphonic music objects. Using dynamic programming, a 

bit-parallel algorithm is presented for efficiently searching melodic excerpts. In the bit-parallel 

processing, the whole table for dynamic programming need not be created, and thus it leads to 

a better performance. Clausen, et al. (2000) design a web-based tool for searching polyphonic 

music objects. The applied algorithm is a variant of the classic inverted file index for text 

retrieval. A prototype is implemented and its performance is investigated. 

To develop a content-based music database system, we have implemented a system called 

Muse (Chen and Chen, 1998; Chou, Chen and Liu, 1996; Liu, Hsu, and Chen, 1999a). In this 

system, we use various methods for content-based music data retrieval. The rhythm, melody, 

and chords of a music object are treated as music feature strings and a data structure called 

1D-List is developed to efficiently perform approximate string matching (Liu, Hsu, and Chen, 

1999a). Similarity measures in the approximate string matching algorithm are based on music 

theory. Moreover, we consider music objects and music queries as sequences of chords (Chou, 

Chen and Liu, 1996) and mubol strings (Chen and Chen, 1998). An index structure is 

developed for each approach to provide efficient matching capability. In the paper (Chen and 
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Chen, 1998), we propose an approach for retrieving music objects by rhythm. Instead of using 

only melody (Blackburn and DeRoure, 1998; DeRoure and Blackburn, 200; Chou, Chen and 

Liu, 1996; Ghias, et. al., 1995; Liu, Hsu, and Chen, 1999a) or rhythm of music data, we 

consider both of the information plus the music contour and define music segments to represent 

music objects (Chen, et. al., 2000). Two index structures, called one-dimensional (1-D) 

augmented suffix tree and two-dimensional (2-D) augmented suffix tree, are proposed to speed 

up the query processing. By specifying the similarity thresholds, we provide the capability of 

approximate song retrieval. When considering more than one feature of music objects for query 

processing, we propose multi-feature index structures (Lee and Chen, 2000). With the 

multi-feature index, both exact and approximate search functions on various music features are 

provided. 

In addition to the issues of music data retrieval, we also address the feature extraction 

problem (Hsu, Liu, and Chen, 2001; Hsu, Liu, and Chen, 1998; Liu, Hsu, and Chen, 1999b). 

We define repeating patterns as sequences of notes which appear more than once in music 

objects. Repeating patterns are considered one of the most expressive features of music objects 

which meet both efficiency and semantic-richness requirements for content-based music data 

retrieval. We propose two efficient algorithms to extract repeating patterns from music data in 

(Hsu, Liu, and Chen, 2001; Hsu, Liu, and Chen, 1998; Liu, Hsu, and Chen, 1999b).  

2. THE REPRESENTATION OF MUSIC OBJECTS 

Instead of handling raw data of wave format in audio retrieval system, music objects are 

often handled in score-like or symbolic format, such as MIDI format (MIDI) in music 

information retrieval. Music objects can be monophony3 or polyphony4. In this article, we only 

consider monophonic music objects.  

In the following, we introduce three approaches of representing music objects and the 

corresponding similarity measures.  

2.1. Chord 

It is not expected that queries can be exactly specified, especially for non-expert users. 

Four types of approximation, i.e., duplication, elimination, disorder, and irrelevance, are 

defined in the paper (Chou, Chen, and Liu, 1996), which are handled by the chord 

                                                 
3 Music for a single voice or part, e.g., plainchant and unaccompanied solo song. The term is 
contrasted with ‘polyphony’ (music in two or more independent voices) (Sadie, 1988). 
4 Term, derived from the Greek for ‘many-sounding’, used for music in which two or more notes 
sound simultaneously. It is used in distinction to monophony (‘one-sounding’, for music consisting of 
a single line) (Sadie, 1988). 
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representation. A chord is the simultaneous sounding of two or more notes (Stanley, 1980). 

The use of chords is the basic foundation of harmony. A chord set is given in Figure 2. 

 

C1: do C2: do, mi C: do, mi, sol C7: do, mi, sol, si 
D1: re D2: re, fa Dm: re, fa, la Dm7: re, fa, la, do 

E1: mi E2: mi, sol Em: mi, sol, si Em7: mi, sol, si, re 

F1: fa F2: fa, la F: fa, la, do F7: fa, la, do, mi 

G1: sol G2: sol, si G: sol, si, re G7: sol, si, re, fa 

A1: la A2: la, do Am: la, do, mi Am7: la, do, mi, sol 

Figure 2:  A chord set. 

Given a music object, the coding process based on the chord set is described as follows. For 

each measure, the five principles are applied one by one to determine its chord representation. 

As a result, a music object is represented as a chord string.  

 

THE PRINCIPLES FOR THE CHORD DECISION: 

1. Find the candidates of chords which contain the most notes in the measure. 

2. Preserve the minimal-length chords. 

3. Preserve the chords whose roots5 have the maximal occurrence frequency. 

4. Preserve the chords whose fifths have the maximal occurrence frequency. 

5. Preserve the chords whose thirds have the maximal occurrence frequency. 

 

Example 1  

Given a music object of two measures, say |sol, mi, mi| do, mi, la, sol, do|. For each 

measure, we apply the five principles to determine the chord for the measure. 

MEASURE 1:  

By applying Principle 1, the set of candidate chords is {‘C’, ‘C7’, ‘E2’, ‘Em’, 

‘Em7’, ’Am7’}. Next, according to Principle 2, only ’E2’ is left, which represent the measure. 

MEASURE 2:  

By applying Principle 1, the set of candidate chords is {’C’, ’C7’, ’Am’, ’Am7’}. Then, 

according to Principle 2, the candidate set is {’C’, ‘Am’}. By applying Principle 3, chord 

representation of the measure is determined as ’C’. 

Therefore, the chord string of the music object is ‘E2’-‘C’.  

                                                 
5 The “root” of a chord is the note on which it seems to be built (Stanley, 1980). The “third” is the 
note which is three degree to the root and the “fifth” is the note which is five degree to the root. 

 5



2.2. Mubol 

Considering the rhythm information of music objects, the representation of music objects 

by mubol strings is discussed as follows.  

 

DEFINITION 1:  

A mubol is the rhythmic pattern of a measure in a music object. A mubol string of a music 

object is the string of mubols which are determined by the measures of the music object.  

 

 Mubols are the alphabet of mubol strings. For example, as shown in Figure 3, the mubol 

string R consists of four mubols to represent the four measures of the original music object. 

 
Figure 3:  An example of music object and its corresponding mubol string R. 

Five operators over mubols are defined in the paper (Chen and Chen, 1998) and illustrated in 

Figure 4. By means of these operators, the similarity measure of two mubol strings is defined 

as follows. 

 

 
Figure 4:  The illustration of five operators over mubols. 

 

DEFINITION 2:  

Two mubol strings A and B of the same length are k-similar to each other if A can be 

changed to B by applying k times of the operators on A, or vice versa.  
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Example 2  

 and  are 1-similar to each other, while 

 and  are 3-similar to each other. 

 
2.3. Music Segment 

The concept of music contour has been employed in (Ghias, et. al., 1995; Blackburn and 

DeRoure, 1998; Liu, Hsu, and Chen, 1999a; Selfridge-Field, 1998) for retrieval of music data. 

From the study (Selfridge-Field, 1998), “recently studies in musical perception suggest that 

durational values may outweight pitch values in facilitating melodic recognition”, in this 

subsection, we describe an approach which takes into account of music contour and rhythm to 

represent music objects.  

A music segment is a triplet which consists of the segment type and the associated beat 

and pitch information. There are four segment types defined to model the music contour, i.e., 

(type A), (type B), (type C), and (type D). Define the segment base as the 

horizontal part of a music segment. The beat information of a music segment is represented by 

the segment duration which is the number of beats in the corresponding segment base. The 

pitch information of a music segment is represented by the segment pitch which is the note 

number in the MIDI standard of the corresponding segment base minus the note number of the 

segment base of the previous segment base. For example, for the piece of music shown in 

Figure 5, the corresponding representation as a sequence of music segments is shown in Figure 

6. The music segment (A, 1, +1) indicates that it is a type A segment with the segment duration 

and segment pitch being 1 and +1, respectively. When coding by music segments, the first 

music segment and the last music segment are ignored due to lack of information to assign the 

segment type.  

 
Figure 5:  A piece of music. 

 

 7



note number

beat

60

62

65

64

67

(B, 3, -3)

(A, 1, +1)

(D, 3, -3)

(B, 1, -2)

(C, 1, +2)

(C, 1, +2)

(C, 1, +1)

 
Figure 6:  The corresponding sequence of music segments of the score in Figure 5. 

There exist transposition and inaccurate pitch or rhythm in the queries. The music 

contour, however, is usually correct. Therefore, the music segment approach (Chen, et. al., 

2000) requires that the music contour of the query (i.e., the sequence of the segment types of 

the query) have to exactly match with the results from the database. A dissimilarity measure for 

approximate retrieval of music data based on the beat and pitch information is defined as 

follows. 

 

DEFINITION 3: DIS_SIM (Q, C) 

Given two sequences of music segments of the same length, a query sequence Q = (i1, j1, k1) 

(i2, j2, k2) ... (in, jn, kn), and a candidate sequence from the database C = (i1, x1, y1) (i2, x2, y2) ... 

(in, xn, yn).  
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The dis_simduration and dis_simpitch stand for the dissimilarity degrees of the beat and pitch, 

respectively. As in (2), the dis_simduration is a value between zero and one, where the value of 

one means the two sequences are the most dissimilar with respect to beat. The system-defined 

constant MaxDuration specifies the maximal value when calculating the difference of note 
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duration. Also in (3), the dis_simpitch is a value between zero and one with respect to pitch. The 

constant MaxPitch specifies the maximal value when calculating the difference of note pitch. 

The wduration and wpitch are the coefficients for the two terms, and the weighted dissimilarity 

degree, DIS_SIM (Q, C), is within zero and one, where the value of one means the two 

sequences are the most dissimilar.  

 

Example 3  

Given a sequence of music segments (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+2) (C,1,+2) 

(C,1,+1) (A,5,+2) (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+4) (A,2,+3) (D,4,-3) (B,5,-2) 

(C,1,+2) (A,2,+1) (B,5,-1) (C,1,+1) (A,3,+2) (B,3,-3) (A,1,+1) (D,3,-3) (B,1,-2) (C,1,+4) 

(A,2,+3). The Code_(a~b) denotes the subsequence ranging from the a-th position to the b-th 

position in the sequence of music segments. 

Assume the query sequence Q is (B,1,-2) (C,1,+5) (A,2,+3), the MaxDuration is 3 and the 

MaxPitch is 4, and both weights wduration and wpitch are 0.5. Only the four subsequences, i.e., 

Code_(12~14), Code_(16~18), Code_(19~21), and Code_(25~27) have the same sequences of 

segment types. For Code_(12~14), the dissimilarity DIS_SIM(Q, Code_(12~14)) is 0.072, the 

dis_simduration is 0 and the dis_simpitch is 0.144. For Code_(16~18), the DIS_SIM(Q, 

Code_(16~18)) is 0.425, the dis_simduration is 0.333 and the dis_simpitch is 0.520.  

 

2.3.1) An Extension 

The coding scheme of music segments preserves the property of transposition invariant 

and is able to handle the cases of inaccurate pitch and speed of singing when posing queries.  

However, for two music object A and B, if all the notes of MA and MB all the same, but 

the beats of each note in A is directly proportional to the corresponding one in B, the coding of 

MA and MB will not be the same. Moreover, the dissimilarity measure would be also 

substantial to distort the ranking of retrieval results. For example, MA = (B, 3, -3) (A, 1, +1) 

(D, 3, -3) and MB = (B, 6, -3) (A, 2, +1) (D, 6, -3). As considering the scale invariant on 

duration, MA will be exactly same as MB.  

If the scale invariant on duration is one of main concerns, we provide an extension of the 

coding scheme by music segment to accommodate the situation. Instead of absolute duration of 

segment, we use the relative duration of segment to represent the beat information of music 

objects. The n-th relative duration of segment is the ratio of the n-th segment duration to the 

(n−1)-th segment duration, such that the refined coding scheme has the property of scale 

invariant on duration. For the same music object in Figure 5, the refined sequence of music 

segment is shown as in Figure 7.  
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note number

beat

60

62

65

64

67

(B, 3, -3)

(A, 1/3, +1)

(D, 3, -3)

(B, 1/3, -2)

(C, 1, +2)

(C, 1, +2)

(C, 1, +1)

 
Figure 7:  The sequence of music segments of the score in Figure 5 by using the 

relative duration. 

3. INDEXING 

In this section, we introduce three indexing methods. For ease of reading, we illustrate 

ideas through examples. 

3.1. Suffix Tree-based Indexing 

We first introduce the data structure of suffix tree, and then take the chord strings as an 

example to use the suffix tree-based indexing. 

3.1.1) Suffix Tree 

A suffix tree is originally developed for substring matching (Chen and Seiferas, 1984; 

McCreight, 1976, Gusfield, 1997). For example, Figure 8 shows the suffix tree of the string 

S=”ABCAB”. Each leaf node (denoted by a box) corresponds to a substring starting at the 

position indicated in the node in S, and each link is labeled with a symbol α, where α ∈ ∑ ∪ 

{$}, ∑ is the alphabet of S and ‘$’ is a special symbol denoting end-of-string. As a result, all 

the suffixes, i.e., “ABCAB”, “BCAB”, “CAB”, “AB”, and “B”, are organized in the tree.  

1 4

A
B C

B C

C $

$
2 5

3

 
Figure 8:  The suffix tree of the string S = “ABCAB”. 
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3.1.2) Indexing Chord Strings 

We make use of suffix tree to construct the index of music objects in chord strings. In 

Figure 9, the leaf node (denoted by a box) in the suffix tree indicates the string id with the 

associated substring organized in the suffix tree.  

 

Example 4  

Given four music objects coded as chord strings, the suffix tree of chord strings is 

constructed as shown in Figure 9. 

S1: ’Am’-’F2’-‘Dm’-‘Am’ 

S2: ‘C’-‘C’-‘F’-‘C’ 

S3: ‘G’-‘Em’-‘C’-‘D’ 

S4: ‘E1’-‘G’-‘Am’-‘Bm’ 

 

3

2

1

F2
Dm
Am

Bm

S1 S3S4S2 S1S2S3S4S1S3S2S3S2S4S1S4

Am
Bm C D

Dm
Am

E1
G
Am
Bm

Em
C
D

F
C

F2
Dm
Am G

C
F
C D

F
C

Am
Bm

Em
C
D

Am Am
Bm

Am
F2
Dm
Am

Bm C C
C
F
C

C
D

C
F
C

D Dm
Am

E1
G
Am
Bm

Em
C
D

F
C

F2
Dm
Am

G
Am
Bm

G
Em
C
D

 
Figure 9:  The suffix tree of chord strings in Example 4. 

3.2. (N-gram+Tree)-based Indexing 

Similarly, we first introduce the n-gram indexing, and then take the mubol strings as an 

example to use the (n-gram+tree)-based indexing. 

3.2.1) N-gram indexing 

The n-gram indexing has been widely used in the area of information retrieval (Frakes and 

Baeza-Yates, 1992; Witten, Moffat, and Bell, 1994). For a given string, each n-gram is 

determined by associating continuously n-characters fragment with the position where the 

n-characters fragment is located. Given a query string of length l, where l ≥ n, the n-gram 

method decomposes the query string into (l−n+1) n-grams which are treated as subqueries. The 
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results to the (l−n+1) n-grams are collected for further checking to avoid the situation in which 

all the (l−n+1) n-grams match, but not in right order. 

3.2.2) Indexing Mubol Strings 

The n-grams organized as a tree, we call it (n-gram+tree)-based index structure, are used 

to index mubol strings of music objects in the paper (Chen and Chen, 1998). The index 

structure, called L-tree, is a tree with two kinds of links, i.e., solid and dotted lines. The 

internal nodes are connected with solid lines, while the leaf nodes with the associated positions 

are indicated by dotted lines. 

In priori to constructing the L-tree index, the system-defined parameter h, which is the 

height of L-tree, has to be determined. The height of L-tree is a trade-off between the elapsed 

time of query processing and the index size. It is suggested to be the reasonable length of query 

strings.  

 

Example 5  

The music object of eight measures is coded in the mubol string R1, as shown in Figure 

10. The n-grams of R1, where n = 1, 2, …, h (h is set to 3), with the associated positions are 

also listed in the table of Figure 10. All the prefixes of an n-gram can be found in the 

(n−1)-grams, (n−2)-grams, …, and 1-grams. With the table, it is able to construct the L-tree in 

a level-wise manner. As in Figure 11, the nodes in Level 1 of the tree indicate the first mubols 

of 1-grams. The nodes in Level 2 indicate the second mubols of 2-grams, and so on.  
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Figure 10:  The mubol string R1 and its n-grams associated with the corresponding 

positions. 

 

 
Figure 11:  The L-tree of the mubol string R1. 

3.3. Augmented Suffix Tree-based Indexing 

The previous index structures are suitable for strings, such as chord strings and mubol 

strings, but not for sequences of pairs or triplets, such as sequences of music segments. For 

handling such kind of cases, the augmented suffix tree is proposed in the paper (Chen, et. al., 

2000). In the following, we take music segments as an example to present the one-dimensional 

and two-dimensional augmented suffix tree index structures.  
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3.3.1) The One-dimensional Augmented Suffix Tree 

A 1-D augmented suffix tree is a suffix tree with the segment duration information being 

added to the edge labels. First, a suffix tree based on the sequences of the segment types is 

constructed. Each edge of the suffix tree refers to a symbol appearing in one or more positions 

in the sequence. For example, let the sequence of music segments be (A,2,+1) (B,5,-1) (C,1,+1) 

(A,3,+1) (B,3,-2). Using only the segment types, the suffix tree can be constructed as shown in 

Figure 8. The bold-faced edge in Figure 8 refers to the ‘B’ in the second and fifth position. 

Since the corresponding segment durations are 5 and 3, we attach the range of segment 

duration <min, max> = <3, 5> to the edge label. This range can be used to filter out some 

results which cannot be answers during query processing. Figure 12 shows an example of a 

1-D augmented suffix tree.  

To exploit the filtering effect, the range <min, max> should be as compact as possible. For 

a given population of segment durations, such as {1, 2, 2, 3, 7, 8, 8}, two ranges <1, 3> and <7, 

8> are better than one range <1, 8>. Thus, the edge should be split into two edges labeled with 

<1, 3> and <7, 8>, respectively. Better ranges can be found by applying a clustering algorithm 

for a given population of segment durations. This method is called dynamic splitting. Some 

well-developed clustering algorithms are available (Jain and Dubes, 1988). We will not address 

the details of the clustering algorithms in this article. In some cases, however, if it is hard to 

find compact ranges from a given population, we may apply static splitting method by splitting 

a range into some predefined smaller ranges which can be obtained from the statistics of data 

set. 

o r ig in a l s u ff ix  t re e  

ro o t  

A  

C  

A  

  1 -D  a u g m e n te d  s u ff ix  t re e  

ro o t

A < 1 ,1 >  

C < 7 ,8 >  C < 1 ,3 >

A < 7 ,8 >  A < 3 ,4 >

 
Figure 12:  An example of the 1-D augmented suffix tree. 

The algorithms of 1-D augmented suffix tree construction are described as follows. Three 

steps are included in Algorithm C1. Given a set of music objects in MIDI format, the first 

step is to code these music objects as the sequences of music segments. Based on the segment 
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types in the sequences of music segments, we construct a suffix tree in the second step. In the 

third step, for each edge of the suffix tree, we collect the corresponding music segments as 

MuSeg. The MuSeg will be evaluated by the Algorithm C2 to decide whether to split the 

edge or not. In the Algorithm C2, we apply a clustering algorithm on the set of 

one-dimensional points which are the segment durations in MuSeg. If two or more clusters are 

determined, the edge will be split accordingly. Finally, we attach the range information to the 

edge or all the split edges. For example, as in Figure 12, when processing the bold-faced edge 

C of the original suffix tree, the set of segment durations in MuSeg is {1, 2, 2, 3, 7, 8, 8}. Two 

clusters are found by the clustering algorithm, and the corresponding range, <1, 3> and <7, 8>, 

will be attached to the splitted edges, respectively.  

 
Algorithm C1 Construct_1-D_Augmented_Suffix_Tree(S, T) 
// parameters:  
//  S, the set of songs in MIDI format 
//  T, the 1-D augmented suffix tree to be constructed 
Begin 
// Step 1: coding  
// for each song s in S, 
//  parse the midi file to derive its melody and rhythm information, 
//  and then code s by the music segments 
CodedS = Coding(S);  
 
// Step 2: construct an original suffix tree 
T = Construct_Original_Suffix_Tree(CodedS); 
 
// Step 3: edge-split  
for each edge e in T 
 // retrieve the corresponding music segments as the set MuSeg 
 DescS = retrieve the songs descending from the edge E; 
 MuSeg = sample the music segments, which are specified by the  
    edge E, of all the songs in DescS; 
 // evaluate the set MuSeg to decide whether split the edge or not 
 if (Evaluate_1D(MuSeg) == true) 
  split the edge e with the range being added to the edge labels; 
 else 
  add the range, <min, max>, to the edge label; 
End. 
 
Algorithm C2 Evaluate_1D(MuSeg) 
// parameters:  
//  MuSeg, a set of music segments 
// return:  true or false 
Begin 
 // PS = {d1, d2, …}, a set of one-dimensional points 
 PS = retrieve all the values of the segment duration in MuSeg; 
 // apply a clustering algorithm on PS to find out clusters if any. 
 no_clusters = clutering_algm(PS); 
 if (no_clusters ≥ 2) 
  return true; 
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 else 
  return false; 
End. 
 

3.3.2) The Two-dimensional Augmented Suffix Tree 

The 2-D augmented suffix tree is an extension of the 1-D augmented suffix tree by 

attaching both the segment duration and the segment pitch information to the edge label. The 

construction of the 2-D augmented suffix tree are similar to the 1-D augmented suffix tree. 

4. QUERY PROCESSING 

With proper indexing structures, the query processing methods, especially for the partial 

matching and approximate matching, are described in this section. 

4.1. Exact Matching 

With all three tree-based index structures, the functionality of exact partial matching can 

be easily supported. We go through some examples to show the query processing of exact 

matching. 

 

Example 6  

Given a suffix tree as shown in Figure 8, suppose that the query string is “AB”. We follow 

the leftmost path to the black node, and all the leaf nodes rooted from the black node are the 

results, i.e., the substrings “ABCAB” and “AB”. 

 

Example 7  

Given the same music objects as in Example 4, suppose that the query has been 

transformed into the chord string ‘C’-‘F’ by the chord decision algorithm. When processing the 

first chord ‘C’, from the root node, the branch associated with the label ‘C’ will be followed 

and we reach node 2. For the next chord ‘F’, we select the right branch of node 2 with the label 

‘F’-‘C’, and stop at node 3. All leaf nodes descending from node 3 are the answers to the 

query, i.e., S2 in this example.  

 

Example 8  

Given the L-tree, shown in Figure 11, suppose that the query string is  for 

exact searching. The query string will be processed by traversing the L-tree in level-wise 

manner. When processing the first mubol  against Level 1 of the L-tree, node A is 

matched and its children will be reached for processing the next mubol. When processing the 
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second mubol  against Level 2, those children (only node B in this example) will be 

compared to the second mubol. Since node B is matched to the second mubol, the two children 

of node B will be reached for further processing. Moreover, all the mubols of the query have 

been processed, and the node (R1:2,5) will be the answer.  

 
The L-tree is a (n-gram+tree)-based index structure. In the approach of n-gram indexing 

and query processing, if the length of the query string is larger than n, the cases of false match 

might happen. For the L-tree of tree height h, if the query length is larger than h, the query will 

be divided into subqueries and the intermediate answers with respective to each subqueries will 

be merged and confirmed by the join processing. Different ways of query division will lead to 

different performance. A simple model to estimate the cost of each division is presented as 

follows, which the cost is defined as the total number of intermediate answers to be joined.  

Assume each non-leaf node in the L-tree has b children and the length of the list at each 

leaf node is f. Therefore, the length of the list at the leaf node in Level i is f×b(h−i) where h is the 

tree height of L-tree.  

For example, assume h = 4, b = 3, and f =1. If the length of query is 5, the query can be 

either divided into two subqueries of lengths 4 an 1 or the ones of length 3 and 2. In the former 

case, the total length of lists, i.e., the number of intermediate answers to be joined, is 28× 

(30+33). In the latter case, it is 12× (31+32). The estimated cost of the latter case is smaller than 

the former case.  

In general, it is better to divide the query string into substrings of similar lengths.  

4.2. Template-based Matching 

Given a query in mubol string QR, to find all the music objects containing the mubol 

strings which are m-similar to QR, where 0 ≤ m ≤ K, is called a K-similar searching. 

The template-based matching is designed for the K-similar searching. The basic idea of 

template-based matching is to construct a template containing the variants of the query within 

K operators. The system first generates a template of the query by referencing all the possible 

mubol operators in the L-tree. The nodes in Level i of the template indicate the i-th mubol of 

the query and all the mubols by possible operators. Therefore, all the candidates can be 

represented in the template. For each candidate, we apply the method of exact searching to 

confirm if the candidate is matched.  

 

Example 9  
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Given the L-tree, shown in Figure 11, suppose that the query string is  

for 1-similar searching. According to the query string, we first generate the template, shown in 

Figure 13(a). In the template, the query string is represented by the nodes in three levels with 

solid lines. The paths formed by dotted lines indicate the candidate mubol strings which are 

1-similar to the query. Accordingly, the L-tree will be traversed by the method of exact 

searching for each candidate. In this example, two candidates are matched, shown in Figure 

13(b). The answers are (R1:3) and (R1:6). 
 

 
Figure 13:  The template for 1-simliar searching and query results in Example 7. 

4.3. Thresholding-based Matching 

For the case of approximate queries in which the approximation is specified by means of 

thresholds, it is called thresholding-based matching. 

We take the music segments as an example. When posing an approximate query, the user 

specifies two thresholds for segment duration and segment pitch, denoted δduration and δpitch, 

respectively. The sequences whose dis_simduration and dis_simpitch are less than δduration and δpitch, 

respectively, will be the answers, provided an exact match for the sequence of segment types 

exists. All the results will be sorted by the dissimilarity, DIS_SIM.  

 

Example 10  

As in Example 3, assume the query sequence Q is (B,1,-2) (C,1,+5) (A,2,+3), the δduration 

and δpitch are 0.2 and 0.3, respectively, the MaxDuration is 3 and the MaxPitch is 4, and both 

weights wduration and wpitch are 0.5. By comparing the sequences of the segment types, 

Code_(12~14), Code_(16~18), Code_(19~21), and Code_(25~27) are the candidates. For the 

candidate Code_(12~14), the dissimilarity DIS_SIM(Q, Code_(12~14)) is 0.072, the 

dis_simduration is 0 and the dis_simpitch is 0.144. Since the dis_simduration and the dis_simpitch are 

both less than the thresholds, Code_(12~14) is one of the answers. For the candidate 
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Code_(16~18), the DIS_SIM(Q, Code_(16~18)) is 0.425 , the dis_simduration is 0.333 and the 

dis_simpitch is 0.520. Since the dis_simduration is greater than δduration or the dis_simpitch is greater 

than δpitch, Code_(16~18) is not an answer. Further checking shows that Code_(19~21) is not 

an answer while Code_(25~27) is. 

 

In the following, we develop query processing methods for thresholding-based matching 

in augmented suffix trees. 

4.3.1) Query Processing for the One-dimensional Augmented Suffix Tree 

Given a query in the form of the sequence of music segments and a threshold δduration, we 

traverse the 1-D augmented suffix tree to find the answers. Based on the query specification in 

which n is the number of query segments and MaxDuration is the predefined constant, we first 

define the threshold Δduration as follows.  

durationduration nnMaxDuratio δ××=Δ  

The threshold Δduration, which denotes the maximal accumulated difference of note 

duration, is used for internal processes when traversing the 1-D augmented suffix tree. When 

processing the first music segment, it is compared with the edges descending from the root 

node. Only the edge whose label matches the segment type of the first music segment and its 

range satisfies the following conditions (i.e., Case 2 and Case 3) will be followed for 

processing the second music segment. Specifically, when processing the i-th music segment of 

the query, we compare the query range <di−Δduration′, di+Δduration′> with the range of the 

corresponding edge label <min, max>, where di denotes the segment duration of the i-th music 

segment in the query, and Δduration′ denotes a reduced threshold to be detailed in the following. 

There are three cases to consider, as shown in Figure 14: 

Case 1: (max < di−Δduration′) or (di+Δduration′ < min)  

The range <di−Δduration′, di+Δduration′> and the range <min, max> have no intersection. The 

edge need not be followed. 

Case 2: (di−Δduration′ < max < di) or (di < min < di+Δduration′)  

The range <di−Δduration′, di+Δduration′> intersects with the range <min, max>. The edge has 

to be followed. However, the threshold Δduration′ can be reduced by the threshold propagation 

function in which Δduration′′ represents a further reduced threshold. If Δduration′′ is less than zero, 

the searching process will terminate immediately. 
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DEFINITION 4: Threshold Propagation Function for the One-dimensional Augmented 

Suffix Tree 

( )( )
( )( )⎩

⎨
⎧

Δ+<<−−Δ
<<Δ−−−Δ

=Δ
'    if     , MIN '

'  if    , MIN '
"

durationtiiiduration

idurationiiduration
duration dminddminnMaxDuratio

dmaxdmaxdnMaxDuratio
 

 

Case 3: min < di < max  

When di is covered by the range <min, max>, the edge has to be followed for processing 

the next music segment without any reduction of the threshold.  
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Figure 14:  The illustration of three cases when processing a music segment. 

 

Example 11  

Based on the 1-D augmented suffix tree in Figure 12, we give an example to illustrate the 

traversal process. Given the threshold δduration = 0.22, and the query (A,2,−) (C,5,−) (A,4,−). 

When posing and processing 1-D queries, the segment pitch (i.e., the third element of the 

triplet in the query sequence of music segments) is not needed and denoted by ‘−‘. 

First, the threshold Δduration is calculated as 3 × 0.22 × 3 = 1.98. When processing the first 

music segment (A,2,−), Case 2 holds. We apply the threshold propagation function and the 

threshold is reduced to 0.98. When processing the second music segment (C,5,−), there are two 

edges to consider. However, in both situations, Case 1 holds. The searching process stops and 

there is no answer for the query. 
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The algorithms of query processing for the 1-D augmented suffix tree are described in 

Algorithm Q1 and Algorithm Q2. There are two procedures in Algorithm Q1. The 

procedure ProcNode is to filter out impossible songs and derive a candidate set, CR. For each 

candidate in the set CR, we make a further check if it satisfied the given thresholds. All the 

answers will be ranked by the dissimilarity DIS_SIM, in the procedure Check_and_Sort.  

The Algorithm Q2 is a recursive procedure. The first part is the boundary condition of 

recursion. Once the reduced threshold is less than zero or there are no more edges of the tree to 

be matched against the query, the procedure ProcNode returns empty set. If all the music 

segments of the query have been matched, all the descending leafs will be returned as the 

candidate results. Followed by the boundary condition, the edges of the node N will be 

retrieved for comparison. For each edge, we consider three cases as described above. If Case 2 

or Case 3 hold, we invoke a recursive call of the procedure ProcNode to process the next 

music segment of the query.  

 
Algorithm Q1 Query_Process_1D(Q, th, T, R) 
// parameters:  
//  Q, the user query Q = (t1, d1)(t2, d2) … (tn, dn) 
//    where t is segment type and d is segment duration 
//  th, the threshold of segment duration 
//   T, the 1-D augmented suffix tree 
//  R, the result set of songs which satisfied Q and th 
Begin 
 CR = ∅;  // CR, the candidate result set 
 th = n * MaxDuration * th; 
 CR = ProcNode(root of T, 1, th) 
 R = Check_and_Sort(CR); 
 return R; 
End 
 
Algorithm Q2 ProcNode(node N, i, th) 
// parameters:  
//  N, the current node when traversing the tree T 
//  i, the i-th music segment to be matched when calling the ProcNode 
//  th, the reduced threshold 
 
Begin 
 // the boundary condition of recursion 
 if ((th < 0) or (node == NULL)) 
  return ∅; 
 else if (m == n) 
  TR = retrieve all leafs descending from the node N; 
  return TR; 
  
 // body 
 E = retrieve all the edges of the node N; 
 TR = ∅; 
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 for each edge e = (e_type, e_duration) of E do 
  if (e_type ≠ ti) 
   skip the edge e; 
  else 
   // e_duration = (e_min, e_max) 
   // case 1: 
   if ((e_max < (di-th)) or ((di+th) < e_min))  
    skip the edge e; 
   // case 2: 
   else if (((di-th) < e_max < di) or (di < e_min < (di+th))) 
    a_th = apply_1-D_threshold_propagation(th); 
    TR = TR + ProcNode(child node of edge e, (m+1), a_th); 
   // case 3: 
   else  
    TR = TR + ProcNode(child node of edge e, (m+1), th) 
 return TR; 
End. 
 

4.3.2) Query Processing for the Two-dimensional Augmented Suffix Tree 

The 2-D augmented suffix tree is an extension of the 1-D augmented suffix tree. The 

query processing for the 2-D augmented suffix tree is similar to the one for the 1-D augmented 

suffix tree, but considering both information of duration and pitch attached to the edges. The 

threshold propagate function has to be revised for considering both thresholds. Define the 

threshold Δpitch as the maximal accumulated difference of note pitch.  

22 δ pitchpitch nMaxPitch ××=Δ  

Let di and pi denote the segment duration and segment pitch of the i-th music segment in 

the query, respectively, and <Bmin, Bmax> and <Nmin, Nmax> be the ranges of the corresponding 

edge for the segment duration and segment pitch, respectively. The threshold propagation 

function for the 2-D augmented suffix tree is defined as follows. 

 

DEFINITION 5: Threshold Propagation Function for the Two-dimensional Augmented 

Suffix Tree 
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5. DISCUSSION 

We have discussed the issues and methods for the representation and indexing and query 

processing. In this section, we provide a qualitative comparison of various methods to show the 

intrinsic difficulties of the problem of content-based music information retrieval.  

5.1. Comparison of Representation Methods 

The comparison of three representation methods described in Section 2 is summarized in 

the table of Figure 15.  

Representation Melody Rhythm Transposition
invariant 

Scale 
invariant

Approxi-
mation Similarity measure  

Restriction of 
measure 
boundary  

Chord        

Mubol      # of mubol operators  

Music Segment  1  2  Distance function, 
DIS_SIM  

Note:  
1 only considering the duration information. 
2 when applying the extension of music segment in Section 2.3.1. 

Figure 15:  The comparison of representation methods. 

First of all, the chord decision algorithm can be applied, provided that the measure 

boundaries of music objects are determined first. However, in some cases of coding music 

objects, especially user queries, such kind of restriction makes the representation of chord 

unfeasible. Also, the restriction of measure boundary is applied to the representation of rhythm 

when transforming music objects into mubol strings.  

Some questions remain unsolved and deserve further study. It is believed that there is no a 

universal representation method suitable for any kinds of applications. For the three 

representation models, the target domain and applications, such as music genre of the 

collections, have not been identified. Also, it is not convinced whether the semantics captured 

by each representation method coincides with the user perception. For example, in the chord 

representation model, it is not been demonstrated that similar music objects from user point of 

view will be coded as the same chord strings. Similarly, the issue remains in the chord and 

music segment representation model. 

In the rhythm representation model, however, the mapping processing from measures to 

mubols is not clear enough. The set of mubols should be defined explicitly, as well as the 

mapping processing. For example, suppose two measures are almost the same, but in little 

difference. The two measures map into either one mubol or two distinct mubols. The former 

case introduces the issues of similarity measurements, while the latter case results in a large 
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mubol set (too many kinds of mubols). Between the two cases, there is a trade-off to be 

explored.  

In the music segment representation model, if the consecutive notes are the same in pitch, 

the adjacent notes with same pitch will be combined and coded as one music segment. It might 

be distinguishable for users that the case of four consecutive one-beat notes in same pitch is 

different from the case of only one note in four beats. However, the coded segments for the two 

cases are the same. Besides, the way of dealing with rests is not discussed. If considering grace 

notes and unstable pitch from user queries by singing, the smoothing techniques can be 

involved when coding music contours into music segments. 

5.2. Comparison of Indexing and Query Processing 

The comparison of indexing and query processing methods described in Section 3 and 

Section 4 is summarized in the table of Figure 16. 

Indexing Exact 
matching 

Partial 
matching

Approximate 
matching Space Efficiency (filtering effect) 

Suffix tree-based    2 As only the exact matching is 
required 

(n-gram+tree)-based   template-based 1 When query length ≤ tree 
height 

Augmented suffix 
tree-based   thresholding-based 3 

1. When handling sequences 
of pairs or triplets 

2. In the cases of specifying 
thresholds 

Figure 16:  The comparison of indexing and query processing methods. 

The exact matching and partial matching are supported for all three methods by using 

suffix tree and n-gram techniques. Considering the approximate matching, the template-based 

and the thresholding-based query processing methods are applied to achieve the approximation 

with the (n-gram+tree)-based and the augmented suffix tree-based indexing, respectively. 

Compared to template-based matching, the way of handling approximation by the 

thresholding-based matching is more accurate. In the thresholding-based matching, the 

approximation degree can be described by the one or two user-specified thresholds rather than 

number of operators. 

Considering the space consumption, the rank of storage required in the three index 

structures is L-tree, suffix tree, augmented suffix tree, in an increasing order. Suffix trees, 

including augmented suffix trees, suffer from the space consumption. Moreover, the height of 

suffix tree is the maximal length of all feature strings, such as chord string and mubol string, in 

databases. On the contrary, the height of L-tree is predefined, not related to the data set. 

Meanwhile, typical length queries would not be as long as the length of feature strings in 
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databases. Therefore, it is not needed to spend such space to maintain full suffix tree just for 

queries of unreasonably long length. Such that, in real application, the tree height of suffix tree 

might be set to a certain value, which will be discussed in Section 6. 

Regarding efficiency of indexing and query processing, although the complexity analysis 

doe not include in the table, the efficiency in terms of filtering effect is discussed as follows.  

When the query length is less than the tree height of L-tree, the (n-gram+tree)-based 

indexing is suggested. As user queries are longer than the tree height, the queries have to be 

divided into subqueries of shorter lengths which are determined by the cost model. However, 

the cost model seems too rough such that it can not handle the unbalanced L-tree from real data 

set. 

When dealing with queries of general length in exact matching, the suffix tree-based 

indexing is suggested. If considering the data as sequences of pairs or triplet and/or 

approximate matching, the augmented suffix tree-based indexing is suggested rather than the 

suffix tree-based indexing.  

For example, with the coding scheme by music segments, the music objects are 

transformed into sequences of music segments. Intuitive, we can construct a suffix tree-based 

index structure for the sequences of the segment types of the songs in the database. For a query 

Q and the thresholds δduration and δpitch, we traverse the suffix tree according to the sequence of 

the segment types of Q and collect the leaf nodes as the candidates. For each candidate, if the 

dis_simduration and dis_simpitch satisfy the thresholds, the candidate will be considered as an 

answer and the DIS_SIM is then computed for ranking all the answers. Since the suffix tree is 

constructed based on the sequences of segment types, there might still be lots of candidates. 

Moreover, the computation of dis_simduration and dis_simpitch can only be done when traversing 

down to the leaf nodes. On the contrary, the augmented suffix tree-based indexing makes use 

of pitch and duration information attached to edges for applying threshold propagation function 

to prune out the impossible music objects and reduce the search space. As a result, it leads a 

better filtering effect. 

5.3. Intrinsic Difficulties 

With having various techniques of coding schemes, indexing, and query processing, it is 

crucial but not easy to formulate the conditions, even the strategies and heuristics, of choosing 

proper methods to build a content-based music information retrieval system.  

The overall and comparative study with real-scale experiments among these techniques is 

currently in process. Without the support by experimental results, some critical statements, 
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such as the effectiveness of indexing and the discriminability of representation, could not be 

easily justified.  

Although the intrinsic difficulties of content-based music information retrieval, we have 

presented three approaches based on the representations of chord, mubol, and music segment 

(denoted by APC, APM, APS) in the paper (Chou, Chen, and Liu, 1996; Chen and Chen, 1998; 

Chen, et. al., 2000), respectively. The approaches are summarized in the table of Figure 17.  

Approach Techniques employed Coding 
scheme 

Similarity functions / 
operators 

Index and query 
processing 

APC Chord + Suffix tree + Exact A  P 

APM Mubol + L-tree + Exact, Template-based  A P+A 

APS Segment + AST + Exact, 
Thresholding-based A+T+S A P+A 

Note:  
P: partial matching 
A: approximation 
T: transposition invariant 
S: scale invariant 

Figure 17:  The comparison of three approaches on ways of handling PATS. 

Concerning the applicability of three approaches, APS outperforms APC and APM, 

because of not restricted to determining measure boundary. Also in the table of Figure 17, all 

the four properties, including P, A, T, and S, can be preserved when apply APS approach.  

Compared to the space requirement of the chord suffix tree, the space requirement of 

L-tree will not explode, because of predefined tree height. For the benefit of space 

consumption, APM has the advantage of fixed tree height, rather than APC and APS. 

Although, only part of efficiency study in elapsed time of query are concluded in the 

preliminary experiment results. We still can share some observations when comparing the three 

approaches. By adding extra information to the edges in augmented suffix trees, the fan-outs of 

node would be APS, APM, and APC, in descending order. In general, higher fan-out of each 

node in balanced trees suggests better filtering effects. Note that too many fan-outs also 

introduce more computation.  

The partial matching, one of most essential functionalities, is provided for all three 

methods by using suffix tree and n-gram techniques. As for the approximate matching, 

different techniques are applied to achieve the approximation in the three approaches. In APC, 

the approximation can be just done by chord decision algorithm. Only exact matching is 

provided by the index structure and its query processing algorithms. In APM, the 

approximation is measured by the number of applying mubol operators. The dedicated query 

processing algorithm is developed for approximation matching. User can specify the 

approximation degree by the parameter K. Compared to APC, the way of handling 
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approximation by APM is more flexible. In APS, the approximation is done by three ways. 

First, the coding scheme by music segment provides an approximation. We also devise a 

similarity function to measure the difference between two segment strings. Similar to query 

processing algorithms of APM, the approximation degree can be described by the 

user-specified thresholds. Moreover, the functionality of scale invariant is provided by the 

refined coding scheme, detailed in Section 2.3.1. 

Among the three approaches, the comparative study of effectiveness, by means of 

precision and recall, is not easily concluded without the experimental support. We cannot 

formulate the discriminability between the representation of melody (the chord in APC, the 

music segment in APS) and rhythm (mubol in APM). However, it is clear that the 

discriminability of coding by music segment is better than the one by chord. Note that too 

much discriminability does not always suggest better retrieval effectiveness, especially for 

non-expert users. 

6. EXPERIMENTS: THE PRELIMINARY RESULTS 

We initiate the Ultima project to construct a platform with the goal to make a 

comprehensive and comparative assessment of various MIR approaches. Therefore, a 

quantitative study for performance is achieved. In the first subsection, we illustrate the 

platform. In the following, the efficiency issues of approaches are demonstrated, as well as the 

experiment results to support the comparison study described in the previous section. The 

Ulrtima project and performance study are detailed in the report (Hsu and Chen, 2001) 

6.1. Implementation 

The system is implemented as a web server, which is running on the machine of Intel 

Pentium III/800 with 1GB RAM, on MS Windows 2000 by JDK 1.3. In addition to provide the 

realistic performance of our approaches, the system is designed to serve as a real-scale and 

unified platform. Therefore, under the same environment with the real data set, we will have a 

comparative results to support the quantitative study in Section 5, and even to provide 

guidelines of choosing appropriate representation schemes, indexing structures, and query 

processing methods when building a MIR system. 

In designing the platform, the issues of architecture, interface, efficiency and effectiveness 

study, relevance judgment, generation of query set, and measurement are considered. The 

system architecture, shown in Figure 18, is described as following. For posing queries at the 

client end, we provide the ways of humming songs, playing the piano keyword, uploading 

MIDI files, and the set of computer keyboard and mouse.  
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The server end consists of a mediator, four modules, and a data store, as shown in Figure 

1. The mediator receives user queries and coordinates with other modules. The music objects 

and the corresponding information, such as title, composer, and genre, are organized as 

standard MIDI files and relational tables, respectively. The summarization module aims to 

resemble and visualize query results. The query generation module aims to generate 

parameterized user queries for performance evaluation, as discussed in Section 2.3. The 

implementations of the two modules are not finished yet. The report module aims to monitor 

and assess the performance of the system, such as the elapsed time of query processing, space 

of indices, and precision and recall of the retrieved results. The query processing module aims 

to resolve queries from the client end or the query generation module. The query processing 

module is designed as a “container” to which each query processing methods can be 

“plugged-in”. Whenever a new method is proposed, it can be easily plugged into the module 

for performing experiments under the same environment. Both APC and APS are suffix 

tree-like approaches. Moreover, the suffix tree-based approach can be considered as a special 

case of the augmented suffix tree-based approach. In the current stage, we have implemented 

three approaches, i.e., 1D_List (Liu, Hsu, and Chen, 1999a), APS, and APM.  

 

Client (browser)

Network

Upload MIDI file

Client (browser)

Jave Servlet

Web Server (IIS 5.0)
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Figure 18:  The system architecture: (a) the client-sever system, (b) function blocks 

of the server. 

6.2. Efficiency Study 

To show the efficiency of the approaches, a series of experiments are performed. We 

describe the testing data, and then illustrate some experiment results regarding performance 

issues, i.e., index construction and exact query processing, of APM and APS.  

The testing data of music objects, from CWEB Technology, Inc., is a collection of 3500 

single track and monophonic MIDI files. Most of them are pop music of Chinese and English 

songs in various genre.  

The average object size is 328.05 notes. When coding these objects in the mubol and 

music segment representation, the average object size is 78.34 (mubol) and 272 (segment), 

respectively. The note count is defined as the number of distinct notes appearing in a music 

object. According to the MIDI Standard, the alphabet size is 128. Therefore, the note count of 

every melody string is between 1 and 128. According to the experiments, the average note 

count of the real music objects is 13.46. The distributions of the object size and note count of 

the testing data are shown in Figure 19 and Figure 20. 
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Figure 19:  The distribution of object sizes of CWEB data set. 
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Figure 20:  The distribution of note counts of CWEB data set. 

The elapsed time and space requirement of constructing index of APR and APS are 

illustrated as follows.  

For APM, the tree height of L-tree is set to 6 in our experiments. As shown in Figure 21 

and Figure 22, the L-tree scales well as increasing the number of music objects by means of 

elapsed time and memory usage.  
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Figure 21:  The index construction of APM (L-tree, elapsed time vs. # of objects).  
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Figure 22:  The index construction of APM (L-tree, memory usage vs. # of objects).  

For APS, the augmented suffix tree also suffers from the space consumption. Meanwhile, 

it is not reasonable to construct a full and complete augmented suffix tree just for handling rare 

cases of extremely long-length queries. On the contrary, an augmented suffix tree of longer tree 

height is benefit to the efficiency of query processing. In our experiments, the tree height of 

augmented suffix tree is set to be 4, 8, 16, 32, and 64. The index construction of APS is shown 

in Figure 23 and Figure 24, where ‘h_4’ indicates the augmented suffix tree of tree height four, 

‘h_8’ indicates the one of tree height eight, and so on. The augmented suffix tree of a certain 

tree height scales well as increasing the number of music objects. However, as increasing the 

tree height, it introduce large amount of space consumption. In our platform, we can construct 

the augmented suffix tree whose tree height is at most 32.  
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Figure 23:  The index construction of APS (2-D AST, elapsed time vs. # of objects).  
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Figure 24:  The index construction of APS (2-D AST, memory usage vs. # of 

objects). 

In the following, we discuss the efficiency of processing exact queries for APM and APS 

approaches. The factor of query length is explored, as shown in Figure 25 and Figure 26. For 

APM, Figure 25 shows the elapsed time versus query length, where ‘obj_0.5K’ indicates five 

hundred music objects in the collection, ‘obj_1.0K’ indicates one thousand objects, and so on. 

When processing queries of length from one to six, the elapsed time decreases rapidly. As 

processing queries of length seven, the elapsed time rises up substantially. In the experiment 

setting, the tree height of L-tree is six. As in Section 4.1, if the query is of length seven, it will 

be divided into two subqueries, i.e., two times of L-tree traversal. In addition, the join 

processing also contributes an extra computation. For queries of length from seven to thirteen, 

similar behavior can be obtained. When processing queries of length from seven to twelve, the 

elapsed time decreases. As processing queries of length thirteen, the elapsed time rises up 

again, and so on.  
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Figure 25:  The query processing of APM (L-tree, elapsed time vs. query length). 
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Figure 26:  The query processing of APM (2D-AST, elapsed time vs. query length). 

For APS, Figure 26 shows the elapsed time versus query length. The curves in Figure 26 

have a similar trend to the curves in Figure 25. However, for shorter queries ranging from one 

to eight music segments, such kind of trend is not obvious in APS. Two reasons are given as 

follows. In APM, leaf nodes are regarded as results, while leaf nodes of APS are just 

candidates for further confirmation. In addition, the number of leaf nodes retrieved in APS is 

much more than the one in APM. Post processing of a large number of candidates results in 

extra computation which smoothes the curves. 

The total elapsed time of query processing in APS consists of three parts, i.e., tree 

traversal, joining processing (if the query length is longer than the tree height), and post 

processing (for similarity computation). Among the three parts, the post processing consumes 

most of the elapsed time. For example, with the 2-D AST of tree height ten, the total elapsed 

time of processing a ten-segment query is 811 milliseconds, where 10 milliseconds for tree 

traversal and 801 milliseconds for computing similarity. When processing queries whose 
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length is longer than the tree height, the query will be divided into subqueries. The number of 

candidates will be reduced after the joining processing. However, our database of 3500 music 

objects is only of moderate size. No matter what the tree height is, the number of candidates 

does not change much.  

7. CONCLUSION 

In this article, we discuss the issues of representation, similarity measure, indexing and 

query processing in content-based music information retrieval. Various methods for each issue 

are presented. For the representation of music objects, we introduce the chord, rhythm, and 

music segment model, as well as the similarity measurements. All music objects are coded into 

feature strings, accordingly. To support efficiently matching, the feature strings are organized 

as an index structure, such as suffix tree-based, (n-gram+tree)-based, and augmented suffix 

tree-based indexing. Regarding the methods of query processing, the exact matching and 

approximate matching, including template-based and thresholding-based, are presented in 

cooperation with appropriate index structures. Finally, a discussion and comparison of these 

techniques is presented, which shows the intrinsic difficulty of the problem of content-based 

music information retrieval. To show the performance of our approaches, we are currently 

building a platform and the comparative study of efficiency is also illustrated.  

7.1. Future Work 

Some of further improvements to polish various methods of representation and indexing 

and query processing have been described in Section 5. In addition, two issues regarding the 

augmented suffix tree-based indexing will be investigated in the future. First, when splitting an 

edge in the tree construction, the clustering algorithm will be applied to find clusters, and then 

the edge will be split based on the clustering results. Thus, the filtering effect when resolving 

queries will be enhanced. On the other hand, too many clusters will also introduce processing 

overhead when resolving queries. The impact of clustering algorithms and the trade-off 

between the number of clusters and filtering effect remains unclear. Second, the suffix tree-like 

data structures suffer from space consumption. One solution to the problem is to cut the 

augmented suffix tree in a certain height which is similar to L-tree. Another possible solution is 

to partition the augmented suffix tree into some subtrees. When applying our approach on 

moderate memory space, the partitioned subtrees still can be fitted in such environment.  

In our work of modeling music objects, some components of music objects are ignored for 

simplicity, such as grace note and rest. We are considering an improvement of coding schemes 

for handling the two cases. Meanwhile, we are also considering various features, such as 
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density and tempo, to capture semantics of music objects for better filtering, classification, and 

recommendation. In addition to continuing our research on monophonic objects, the modeling, 

representation, indexing and query processing for polyphonic music objects are also one the 

future research directions.  

Furthermore, we are working on the project to provide a unified platform in real scale for 

assessing the efficiency and retrieval effectiveness of our approaches. Without any benchmarks 

(standard testing data), the relevance judgment and query set generation are the key issues in 

this project, as well as the measurement of effectiveness. In the first stage, we will implement 

the approaches of representing music objects by mubol and music segment, and the 1D-List 

approach to make a comparative study regarding the key issues. Some preliminary results are 

reported in Section 6, and the comprehensive and comparative study is still in developing. In 

the long term, the platform will be continuously maintained and served as the testbed whenever 

new approaches of content-based music information retrieval are proposed.  
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