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Abstract

In heterogeneous database systems, partial values can
be used to resolve the interoperability problems, includ-
ing domain mismatch, inconsistent data, and missing
data. Performing operations on partial values may pro-
duce maybe tuples in the query result which cannot be
compared. Thus, users have no way to distinguish which
maybe tuple is the most possible answer. In this paper,
the concept of partial values is generalized to probabilis-
tic partial values. We develop a full set of extended
relational operators for manipulating relations contain-
ing probabilistic partial values. With this approach, the
uncertain answer tuples of a query are associated with
degrees of uncertainty. That provides users a compar-
ison among maybe tuples and a better understanding
on the query results. Besides, extended selection and
join are generalized to «-selection and a-join, respec-
tively, which can be used to filter out maybe tuples with
low possibilities — those which have possibilities smaller
than a.

1 Introduction

The advance in communication and database tech-
nologies has changed the data processing capabili-
ties tremendously. The proliferation of independent
databases implies that for effective information sharing
an increasing number of applications are required to ac-
cess and derive data from various independent databases
located in a heterogeneous distributed environment. For
independent databases, the data sources are created and
developed independently; that is, they are pre-existing
in an uncoordinated way without the consideration of
future integration with other databases.

There are two approaches to derive data in a het-
erogeneous database environment. One is to provide
a global schema for the independent databases by in-
tegrating their schemas. Dayal and Hwang [11] and
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Motro [20] adopted this approach based on functional
model, while Breitbart et al. [5] and Deen et al. [12] were
based on relational model. For a comprehensive survey
of methodologies developed for schema integration, refer
to [2]. The other approach is by providing users a mul-
tidatabase query language. Users refer to the schemas
and pose their queries against these schemas using the
multidatabase query language. Litwin and Abdellatif
[18] and Czejdo et al. [10] fell into this category.

To derive data from a heterogeneous database envi-
ronment, we must first solve the interoperability prob-
lems such as data representation conflicts, data scaling
conflicts, naming conflicts, missing data, and inconsis-
tent data [4][5). Among these conflicts, data represen-
tation, data scaling and naming conflicts can be con-
sidered as the domain mismatch problems. To resolve
the domain mismatch problems in heterogeneous sys-
tems, Czejdo et al. [10] used abstract data type to form
a domain knowledge base. Attribute equivalence [16] is
another mechanism for resolving these problems. Litwin
and Vigier [17] used dynamic attributes to define one-one
and many-one mapping between mismatched domains.
This work was later expanded by DeMichiel [13], who
used the notions of virtual attributes and partial values
to provide a general algebraic solution on resolving do-
main mismatch problems.

The concept of partial values [14] is a generalization
of null values [9]. Instead of being treated as an atomic
value, an attribute value in a table is considered as a
nonempty subset of the corresponding domain. A par-
tial value in Grant [14] is represented as an interval such
that exactly one of the values in the interval is the “true”
value of the partial value. In our work, however, we
adopt DeMichiel’s definition on partial values [13], that
is, a partial value is considered as a finite set of possible
values such that exactly one of the values in that set
is the “true” value of the partial value. We discuss the
preservation of functional dependency in partial values
after a join operation and the manipulation of partial
values for a division operation in [21]. Besides, the elim-
ination of redundant partial values is studied in [22).

Partial values can be used to resolve the interoper-



ability problems, including domain mismatch, inconsis-
tent data, and missing data. Performing operations on
partial values may produce maybe tuples in the query
result which cannot be compared. Thus, users have no
way to distinguish which maybe tuple is the most possi-
ble answer. In this paper, the concept of partial values
is generalized to probabilistic partial values. This work
stems from the idea of the probabilistic relational data
model proposed by Barbara, Garcia-Molina and Porter
(1]. We develop a full set of extended relational opera-
tors for manipulating relations containing probabilistic
partial values. With this approach, the uncertain an-
swer tuples of a query are associated with degrees of
uncertainty. That provides users a comparison among
maybe tuples and a better understanding on the query
results. Besides, extended selection and join are gener-
alized to a-selection and a-join, respectively, which can
be used to filter out maybe tuples with low possibilities
— those which have possibilities smaller than a.

In the rest of this paper we will discuss the proba-
bilistic partial values in detail and extend the relational
operators to manipulate probabilistic partial values. In
the next section, basic concepts and definitions for prob-
abilistic partial values are introduced. Section 3 presents
the resolution of the interoperability problems by par-
tial values and an example to show the need for gen-
eralizing partial values to probabilistic partial values.
Section 4 devotes to the extended relational operators
to manipulate relations containing probabilistic partial
values. Finally, we conclude and present our future work
in Section 5.

2 Basic Concepts

Domain mapping and virtual attributes were used in [13]
for the resolution of domain mismatch problems. A do-
main mapping defines a correspondence (can be one-to-
many) between domains of two different attributes. By
mapping values in the attributes to ones in the com-
mon virtual attribute, relations can be transformed into
a union-compatible form suitable for query executions.

When the mapping from one attribute to another is
a one-to-many correspondence, a partial value can be
used to characterize the mapping result. Partial values
are formally defined as follows.

DEFINITION 2.1 A partial value, denoted 7 =
lai,az,...,a,], associates with n possible values,
a1,82,...,8p, n > 1, of the same domain, in which ex-
actly one of the values in 7 is the “true” value of 7.

For a partial value 7 = [a;, a, .. ., @n), a function v
is defined by DeMichiel [13], where v maps the partial
value to its corresponding finite set of possible values;
that is, () = {a;,as,...,a,}. Notice that an appli-
cable null value [9], R, can be considered as a partial
value with ¥(R) = D, where D is the whole domain. In
the following, we will use # and v(n) interchangeably

when it does not cause confusion. For example, v € 5 if
v € ¥(n).

The cardinality of a partial value 7 is defined as
| ¥(n) |in [13]. When the cardinality of a partial value
equals to 1, i.e., there exists only one possible value, say
d, in the partial value, then the partial value [d] actually
corresponds to the definite value d. On the other hand, a
definite value d can be represented as a partial value [d].
Besides, a partial value with cardinality greater than 1
is referred as a proper partial value in [13].

For any two proper partial values, say n; and n,, 7, #
72 even if ¥(11) = v(n2). This is because the true value
of 71 may riot be the same as the true value of 7.

3 Resolving the Interoperability
Problems

The rosolution of the interoperability problems are de-
scribed as follows.

1. Naming conflicts. When semantically-related (re-
spectively, semantically-irrelated) data items are
named differently (respectively, identically), they
are mapped to a canonical virtual attribute (respec-
tively, different virtual attributes).

2. Data representation conflicts. This can be re-
solved by defining a conversion function between
the semantically-related attributes and the canoni-
cal virtual attribute.

3. Data scaling conflicts. This occurs when
semantically-related attributes stored in different
databases use different units of measure. DeMichiel
[13] resolved this problem by partial values when
their mapping relationship is one-to-many.

4. Missing data. This occurs when relations with dif-
ferent sets of attributes are to be integrated into
a global relation. Missing data are all applicable
null values which can be represented by the partial
values R.

5. Inconsistent data. This occurs when semantically-
related attributes have different data values in dif-
ferent databases. Partial values can also be used
to resolve this problem. That is, these inconsistent
data, are collected together to form a partial value.

In the following, we give an example to illustrate the
resolution of these interoperability problems. This ex-
ample will also show why we generalize partial values to
probabilistic partial values.

EXAMPLE 3.1

Consider the databases in Figure 1. Site 1 and Site
2 both contain information about computer science re-
searchers in Taiwan, 0r.gion=Taiwan (CS-Researchers)
and 0,pecialty=cs(Taiwan-Researchers), respectively,
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which come from different source relations, CS-
Researchers and Taiwan-Researchers, respectively.
Suppose there are only three cities in Taiwan, namely
Taipei (T), Hsinchu (H), and Kaohisung (K). Besides,
Computer Sciences (CS) are assumed to fall into ei-
ther Artificial Intelligence (AI), Database (DB), or
Software Engineering (SE). Then, the attributes re-
gion and city in 0, .gion=Taiwan (CS-Researchers) and
a.,,c,-,,u,-_-cs(Taiwa.n-Researchers), respectively, are
semantically-related but mismatched in their domains.
The same situation occurs on the attributes speciaity
and specialty in 0,cgion=Taiwan(CS-Researchers) and
Ospeciaity=cs(Taiwan-Researchers), respectively.

To cope with such situations, the relation CS-2
can be obtained from the relation ¢region=Taiwan(CS-
Researchers) by applying a domain mapping from the
attribute region to the virtual attribute city with {T,
H, K} as its domain.

Analogously, the relation Taiwan-2 can be derived
from 0,pcciaity=cs(Taiwan-Researchers) by mapping
the attribute specialty to the canonical virtual attribute
specialty with {AI, DB, SE} as its domain. Figure 2
depicts these two derived relations. Note that since the
domain mapping is one-to-many, the mapping result is
characterized by partial values.

Now suppose we want to find database researchers in
Hsinchu with their ages greater than or equal to 27. We
can first “union” CS-2 and Taiwan-2 into the relation
Taiwan-CS. Notice that partial values are used to re-
solve inconsistent data and missing data. This is shown
in Figure 3.

With the derived relation Taiwan-CS, our query can
be posed as

a(city=H)A(apecialty=DB)A(agc227)(Taiwan' CS)

and the tuple depicted in Figure 4 can be obtained as
the query result.

Note that the column status in Figure 4 does not
correspond to an attribute. It shows whether the cor-
responding tuples are “definite” (with status true) or
“maybe” (with status maybe) [3][8]. For those maybe
tuples, we don’t know how possible it is a true answer.
Therefore, we generalize partial values to probabilistic
partial values to provide more informative answer for
users. a

We generalize partial values to probabilistic partial
values by regarding an attribute as a discrete random
variable [1]{19]. The probability of an attribute value is
therefore a conditional probability depending on the key
value of that tuple (key values are assumed definite). To
illustrate, consider the following relation, where name is
the key attribute.

name cily [ specially | age |
Jesse | [1°%, H'S, KV 1] SE 30
Annie K [DB%Z, +93] | 27
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This relation describes two entities, “Jesse” and “An-
nie”. The probability that Jesse’s city is T (Taipei) is

Prob(city = “T” | name = “Jesse”) = 0.4

Note that there is an asterisk ‘*’ with 0.8 probability
in the “Annie” tuple. This probability is called a missing
probability and used to specify incomplete probability
distributions [1). In the “Annie” tuple, 0.8 probability
has not been assigned to particular specialties. It is as-
sumed that this missing probability is distributed over
all ranges in the domain of specialty, without any as-
sumptions being made as to how it is distributed. That
is,

0.2 < Prob(specialty = “DB” | name = “Annie”) < 1
We define a probabilistic partial value as follows.

DEFINITION 3.1 A probabilistic partial value, denoted
¢ =[a}",d}?,...,aB"], associates with n possible values,
ay,ds,. .., 0y, of the same domain DU{*}, where each a;
associates with a probability p; # 0 such that 37, p;
1.

A relation consisting of tuples with probabilistic partial
values is called a probabilistic partial relation. We also
use v to denote the function that maps a probabilistic
partial value to its corresponding finite set of possible
values. That is, for a probabilistic partial value £ =
[af*,ab?,...,a8*], v(€) = {a1,a2,...,an}. Besides, v(€)
and € are used interchangeably when it does not cause
confusion.

The probabilities of a probabilistic partial value come
from the resolution of the interoperability problems. To
simplify our discussion, we assume probabilities are sni-
formly distributed over all possible values in a partial
value. This assumption, however, can be adjusted to fit
the specific requirements of different applications. For
instance, some applications may assign probabilities ac-
cording to the timeliness of the possible values. That
is, a conflict between a twenty-year-old datum and a re-
cent datum may cause the probability of the old datum
to approach to zero and that of the recent one approach
to one.

By this approach, the relations in Figure 2 can be
modified as Figure 5 depicts. Besides, Figure 3 can be
modified as Figure 6 shows. We integrate tuples from
different sites by the assumption that they have equal
probability on the corresponding conflict attribute val-
ues. In Figure 6, for example, the probability of city =
“T” in the “Andy” tuple is computed as 1 x1+1x4 = 4.

Notice that in Figure 6 we resolve the conflicting data
agein the “Andy” tuple by a missing probability. There-
fore, the query result of

a(cityzﬂ)A(apect’alty=DB)A(age_>_27)(Taiwan'CS,)
can now be specified as Figure 7 depicts. Note that
the column poss (possibility) in Figure 7 does not corre-
spond to an attribute. This column gives us the possibil-
ities of the answer tuples (the computation of these pos-
sibilities will be discussed later) that satisfy the query



condition. These quantitative information is used to fa-
cilitate qualitative comparisons.

In general, a query result is regarded as a fuzzy set
[24], where each result tuple is associated with a possi-
bility that denotes the grade of its membership in the
result set.

4 The Extended Relational Op-
erators

In this section, the full set of our extended relational
operators will be presented. Our extended relational
operators are all marked by a hat (7) over the operator
symbols. The possibility of a tuple t is only computed
when performing the extended selection and join. The
other extended operations all generate the possibility 1
for their result tuples.

If a query Q involves a sequence of extended rela-
tional operators, Oy, 0, ...,0,, then the possibility of
an answer tuple ¢ of Q is equal to [];¢;<, Oi(poss(t)),
where O;(poss(t)) is the possibility of t computed from

4.1 Selection

An extended selection on a relation R is of the form:
Gp(R), where P is a predicate defined by the following
grammar specified by the syntax of YACC [23]:

P:-PVP
|[PAP
|- P
| Attr @ Constant /* 8 € {>,<,=,#,<,>} */
| Attry 0 Attr,

3

Note that Attr, Attr; and Attr, are regarded as prob-
abilistic partial values (recall that we can transform a
definite value into a probabilistic partial value of cardi-
nality one). The lines of a grammar of YACC syntax
are listed in the order of increasing precedence. Given a

tuple in a source relation R, we define the possibility of’

an answer tuple of an extended selection to be computed
by the following action routines:

P :- PV P {88 = maz($1,83);}
| PAP{3$=51x83;}
|- P {83=1-82;}
| Attr 8 Constant {38 = 3" vacs1)a0s3) Prob(a); }
| Attr; 8 Attr,

{88 = (vaesiyvoessy(asn) [Prob(a) x prob(8)); }

Note that the “$$” in an action is called a pseudo-
variable, which is used to represent a return value of the
left-hand-side symbol P. Besides, “$i” is used to rep-
resent the value associated with the ith right-hand-side

179

symbol. For instance, in the first line of this grammar,
PPV P, $lis‘P’, $2is ‘V’ and $3 is ‘P’. Accord-
ing to the selection predicate P, the answer of Gp(R) is
defined as

op(R) = {t |t € R A possp(t) > 0},

where “possp(t)” is the possibility of a tuple ¢ € R com-
puted according to the predicate P by the action rou-
tines presented above. The following example illustrates
this.

EXAMPLE 4.1 By referring to Figure 6, the answer of
the following selection

3(«:-‘ty:H)v(agezg-()(TaiWan-CS')

is as Figure 8 shows. Notice that the possibility of the
“Andy” tuple is an interval between max(%,O) = % and
max(},1) = 1 inclusively.

If the disjunction is changed into conjunction, then
the answer is as shown in Figure 9. ]

As we can compute the possibility of an answer tuple
for an extended selection, a more general selection, call
a-selection, can be defined as follows.

DEFINITION 4.1 An o-selection, denoted G§(R), in-
volving a threshold @, 0 < a < 1, is defined as

7%(R) = {t|t € RApossp(t) > a},
where “possp(t)” is the possibility of a tuple ¢.

If the query in Example 4.1 is changed into the a-
selection

AL 3
”(’«:.':,,:H)v(agegﬂ)(Ta‘wan'CS')

involving a threshold 1, then the answer is as shown in
Figure 10.

The a-selection subsumes both the extended selec-
tion and the conventional selection. When a = 1,
7% (R) works as the conventional selection op(R). When
0<a<min o [possp (1)), it works as the extended
selection 7p(R). Notice that when o = 0, 5p(R) = R.
Besides, for any a; < a2, we have 33°(R) C 7p'(R).

The concept of a-selection is similar to the concept
of a-cut in a fuzzy set [15].

4.2 Projection

The projection for a probabilistic partial relation is the
same as the conventional projection. Let the source rela-
tion be A(X) and T C X. Then #r(A) = {t | Qu)(u €
ANt =uT)}



4.3 Union and Intersection

The extended union is defined on two union-compatible
relations A and B. Let the source relations be A(K, N)
and B(K, N), where K is the key and N the set of non-
key attributes. Then AUB is defined as follows.

AOB={t|te AA(Bu)(u € BAu.K =t.K)}
U{t|te BA(Bu)(u€ AANuK =t.K)}
U{t1(Bu)3v)(ue AAvEB

ALK = u.K =v.K)
A(VC)(C e NALLC =uCUvC
A(Ve)(e € t.CA
prob c(e) = 3(probu.c(e) + proby.c(¢))))},

where prob.(e) is the probability of e in z.

Tuples in A and B are collected first. Then, for tuples
t; € A and t; € B, if the key of ¢, is the same as
that of ¢, then they are unified into a single tuple with
the probabilities of their corresponding attribute values
being redistributed. Example 4.2 illustrates this.

EXAMPLE 4.2 Consider the following probabilistic par-
tial relations A and B:

A
key Al | A2 _]
k1l b =%, y‘”"]_T
k2 00.6’ cO.4 [wo.s’ J:0.2]
k3 b0.2' CO‘B} [xo.‘i, *0.6]

B
ch | Al | A2 ]
k1 [b0'4, c0.6] [zo.l , yO.s’ zo.ll
k3 [ao.l, d09] [30.2, zo.s]

The result of AUB is

AUB
[ key | Al [ A2 ]
k1 bE %t P D)
k2 [80'6,60'4] [wO.S, :0.2]
k3 | [a% 0% % d5] [ 275,24

The extended intersection is defined as follows.

ARB={t|(Gu)(Qv)(u€c AAvEB
ALK = u.K =v.K)
A(VC)C € NAt.C=u.CUv.C
A(Ve)(e € t.CA
probe.c(e) = 3(probu.c(e) + proby.c(€))))}

where prob;(e) is the probability of e in z.

For tuples t; € A and t; € B, only when the key
of t; is the same as that of ¢, are they unified into a
single tuple with the probabilities of their correspond-
ing attribute values being redistributed. This tuple is
regarded as an answer tuple of the extended intersec-
tion. Therefore, the result of ANB contains the “k1”
and “k3” tuples of AUB.

4.4 Set Difference

The extended set difference of two probabilistic partial
relations A and B, AZB, is defined as follows. Let the
source relations be A(K, N) and B(K,N), where K is
the key and N the set of non-key attributes. Then

AZB={t|te AN(Bu)(u€ BA(t.K =u.K))}

That is, for any tuple t € A, if the key of ¢ is not iden-
tical to that of all tuples in B, then t € A—B. For the
example relations in Example 4.2, A—B contains the
“k2” tuple only.

4.5 Cartesian Product

The extended cartesian product works as in a conven-
tional system. Let the operand relations be A(X) and
B(Y). Then

AXB = {t | (Qu)(Iv)(u € AAv € BAL.X = uALY = v)}.

4.6 Join

The extended join, denoted A48, B, where A;0B; is
the join predicate and A; and Bj are attributes of A and
B, respectively, is defined by

ADAQA,'DBJ»B = GAiij(A;B) =

{t|te AXB A possa,eB,(t) > 0},

which is consistent with .the conventional definition.
Therefore, the possibility of an answer tuple of an ex-
tended join can be computed by the action routines in
the last line discussed in Section 4.1. The following ex-
ample illustrates this.

EXAMPLE 4.3 Consider the following two relations A
and B.

A

B
'T;(tl: [ [ 0.2 ;?)13 0.5J [ key-B I B1 J
KA2 - [bﬁzycﬂ’?']—]" [ KB1 [ [00-3rcnl|

Then the result of Abis1=p1B is

Aba1=81 B
[ key-A | Al [keyB] BI | poss |
KAI | [a%2,6°3,c°%] [ KB1 [ [a"°,c™ 0.41
KAz | 0% | KBI | [o°3,87 |06

The possibilities of “KA1” and “KA2” are computed
as 0.2 x 0.3+ 0.5x 0.7 = 0.41 and 0.8 x 0.7 = 0.56,
respectively. o

Moreover, similar to the a-selection, we can define a
more general join, called a-join, as follows.
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DEFINITION 4.2 An a-join, denoted AS3p B, involving
a threshold a, 0 < a < 1, is defined as

ARSB = 33(AXB) = {t |t € (AXB) A possp(t) > o},
where “possp(t)” is the possibility of a tuple t € (AXB).

In Example 4.3, if we change ASRu-p1B into
AR, -p; B, where a = 0.5, then the answer is

AMA]:BlB
(key-A| A1 | keyB| BI | poss |
[ kA2 [ [0°%,&°% | KBI [ [a"3,7] ] 0.56 |

Analogous to the a-selection, the a-join subsumes
both the extended join and the conventional join. When
a = 1, A4} B works as the conventional join A pap B.
When 0 < a < min, = g[possp(t)], ASAp B works
as the extended join AsdpB. Similarly, when o = 0,
AREB = &:;(AXB) = AXB. Besides, for any a; < a3,
we have Asap’B C Aip' B.

5 Conclusion and Future Work

In this paper, we propose a probabilistic approach to
query processing in heterogeneous database systems. To
compare our work with that of DeMichiel [13], we be-
lieve that a query result with quantitative “possibili-
ties” is more informative than that with just “maybe”
status. Moreover, our resolution of the interoperability
problems by partial values is more complete.

The query optimization techniques used in a con-
ventional database system need to be reconsidered in
a heterogeneous database system. In conventional sys-
tems, time-consuming operations (e.g., union and join)
are usually performed as late as possible. However, in
a heterogeneous system, different relations from differ-
ent sites may need to be “unioned” and their conflicts
resolved before other operations can be performed. We
have studied the optimization techniques in heteroge-
neous database systems in [6][7]. Further work on the
optimization techniques based on the probabilistic ap-
proach will be pursued.
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Oregion=Taiwan (CS-_Researchers) Oypeciaity=cs(Taiwan_Researchers)

[(name | region | specially | age | degree | [ name [ city | specialty | age [ affiliation |

Andy | Taiwan Al R MS Andy | T CS 25 NTU

Frank | Taiwan DB 26 | PhD Frank | H CS 28 NCTU

Jesse | Taiwan SE 30 MS Annie | K CS 27 NCKU
Site 1 Site 2

Figure 1: Example Databases for Example 2.1.

CS-2 Taiwan-2
[ name | city specially | age | degree | | name | city | specialty [ age | affiliation |
Andy |[T.H.K]| Al | R | MS Andy | T |[AL DB,SE[] 25 | NTU
Frank , H, K DB 26 | PhD Frank | H Al, DB, SE] | 28 NCTU
Jesse | [T,H, K SE 30 MS Annie | K Al, DB, SE] | 27 NCKU
Site 1 Site 2
Figure 2: The Derived Relations CS-2 and Taiwan-2.
Taiwan-CS
[ name city specialty age | degree | affiliation ]
Andy | [T, H, K] | [AL, DB, SE R MS NTU
Frank | [T, H, K] | [Al, DB, SE] | [26, 28] | PhD | NCTU
Jesse | [T, H, K SE 30 MS R
Annie K [AI, DB, SE] 27 R NCKU

Figure 3: The Relation Taiwan-CS Obtained from “unioning” CS-2 and Taiwan-2.

O(city=H)A(specialt =DB)A(¢ue>2')(Taiwan'Cs)

[ name city specialty age degree | affiliation || status |
Andy | [T, H, K] | [A], DB, SE R MS NTU maybe
[Frank | [T, H, K] | [Al, DB, SE] | (26, 28] | PhD | NCTU || maybe

Figure 4: The Relation o(city=H)A(specialty=D B)A(age>27)( Taiwan-CS).

CS-2' Taiwan-2’
name | city [ speciaity | age | degree |[ name [ city | specialty [ age | affiliation |
Andy [ [T3,H3,K3]] A1 [[#)] MS |[Andy | T [[AI}, DBS,SE3] | 25 | NTU
Frank | [T3,H5,K3]| DB | 26 | PhD || Frank | H | [AI}, DB3,SE3] | 28 | NCTU
Jesse | [T3,H3,K3]| SE 30 | MS || Annie | K | [AI3, DB3,SES] | 27 | NCKU
Site 1 Site 2

Figure 5: The Derived Relations CS-2' and Taiwan-2’ with probabilities.
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Taiwan-CS’

name city [ specially age | degree | affiliation
Andy | [T, H?, K3] [ [AI%, DB?, SE¢] | (253, 43] | MS NTU
Frank | (T%, H? K% | [AI%, DB?, SEF) | [26%,283] | PhD | NCTU
Jesse | (T3, HY, K¥] SE 30 MS [+!]
Annie K [AI}, DB, SE3] 27 [+!] | NCKU

Figure 6: The Relation Taiwan-CS’ Derived from CS-2' and Taiwan-2'.

n(Taiwan-CS’)

O(city=H)A(specialty=D B)A(age>27
[ name | city specialty age degree | affiliation poss '
Andy | [T3, HY, K¥] | [AIf, DB%,SEs] | [253,+3] | MS NTU [o<p<ixixli
Frank | [T%, H?, K3] | [AI+, DB¥, SE?] | [26%,28%) | PhD | NCTU dx4xl=12
Figure 7: The Relation o(city=H)A(specialiy=D B)A(,,,czgn(Taiwan-CS').
& city= H)v(age>27)(Taiwan-CS’)

[ name | city | specially age | degree | affiliation It poss ]
Andy [Ti, HE, K] [ [AI, DB%, SE?] | [25%,+%] | MS NTU | max(},0) < p < max(}, 1
Frank | [T, H?, K3] | [AIf, DB?, SE?] | [26%,28%] | PhD | NCTU max(},1) =1
Jesse | [T3, H3, K3) SE 30 MS [#1] max(},1) = 1
Annie K [AI}, DB3, SE3) 27 [+ | NCKU max(0,1) = 1

Figure 8: The Relation 3(6.-,,___11)\,(‘,,,227)(Taiwan-CS')
Ocity=H)A ale>27)(Taiwm'Csl)
name | city | specialty age degree | affiliation poss
Andy | [T3, HY, K¥] [ [AI, DB?, SE3] | [253,+%] | MS NTU | ix0<p<ixi
Frank | [T%, HY, K3] | [AIf, DB?, SE?] | [263,28%] | PhD | NCTU ixl=1
Jesse | [T3, HS, K3] SE 30 MS [*!] lx1=1
Figure 9: The Relation G(C;,y=H)A(,,,227)(Taiwan'-CS')
a(ts’ty:ll)h(cue)Zﬂ(Taiwm'CS’)
[ name | city specially age degree | affiliation ||  poss
Frank | [T3, HY K3] | [AI5, DB?, SE?] | [26}, 28%] | PhD | NCTU 4xi=1
Jesse | [T3, HS, K3] SE 30 MS [+!] Lx1=14

Figure 10: The Relation ﬁ(ga-,p HA( ¢,e227)(T"iwm‘Csl)
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