An Efficient Approach to Discovering Knowledge from
Large Databases*

Show-Jane Yen and Arbee L.P. Chen

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Email: alpchen@cs.nthu.edu.tw

Abstract

In this paper, we study two problems: mining as-
sociation rules and mining sequential patterns in a
large database of customer transactions. The prob-
lem of mining association rules focuses on discover-
ing large itemsets where a large itemset is a group of
items which appear together in a sufficient number of
transactions; while the problem of mining sequential
patterns focuses on discovering large sequences where
a large sequence is an ordered list of sets of items
which appear in a sufficient number of transactions.
We present efficient graph-based algorithms to solve
these problems. The algorithms construct an associa-
tion graph to indicate the associations between items
and then traverse the graph to generate large item-
sets and large sequences, respectively. Our algorithms
need to scan the database only once. Empirical eval-
uations show that our algorithms outperform other
algorithms which need to make multiple passes over
the database.

1 Introduction

From a large amount of data, potentially useful in-
formation may be discovered. Techniques have been
proposed to find knowledge (or rules) from databases
(1, 2,3 6,9, 10, 15, 17, 21, 22, 24]. The knowledge
discovered can be used to answer cooperative queries
[7, 14], handle null values [20] and facilitate semantic
query optimization [8, 12, 17, 18, 19, 23].

Data mining has also high applicability in retail in-
dustry. The eftective management of business is signif-
icantly dependent on the quality of its decision mak-
ing. It is therefore important to analyze past trans-
action data to discover customer purchasing behav-
ior and improve the quality of business decision. In
order to support this analysis, a sufficient amount of
transaction items needs to be collected and stored in a
database. A transaction in the database typically con-
sists of customer identifier, transaction date (or trans-
action time) and the set of items (itemset) purchased

*This work was partially supported by the Republic of China
National Science Council under Contract No. NSC 86-2213-E-
007-009.

0-8186-7475-X/96 $5.00 © 1996 IEEE

in the transaction. Because the amount of these trans-
action data is very large, an efficient algorithm needs
to be devised for discovering useful information em-
bedded in the transaction data.

In this paper, we study two problems: mining asso-
ciation rules and mining sequential patterns in a large
database of customer transactions. The problem of
mining association rules over customer transactions
was introduced in [2]. An association rule describes
the association among items in which when some items
are purchased in a transaction, others are purchased
too.

In order to find association rules, we need to dis-
cover the itemsets which occur often enough within
transactions. The first step to find association rules
1s therefore to identify all itemsets that are contained
in a sufficient number of transactions above a certain
minimum threshold. After discovering all such item-
sets, the association rules can be generated as follows
[2]: If the discovered itemset Y = L) 1. Iy, k > 2, all
rules that reference items from the set {I1, I, ..., I} }
can be generated. The antecedent of each of these
rules is a subset X of Y, and the consequent is Y — X.
The rule X = ¥ — X holds in the database D of
transactions with confidence factor c if at least <%
of the transactions in D that contain X also contain
Y — X. An example of such an association rule is
”95% of transactions in which coffee and sugar are
purchased, milk is purchased too.” The form of this
rule is "coffee, sugar = milk.” The antecedent of
this rule consists of coffee and sugar and the conse-
quent consists of milk alone. The percentage 95% is
the confidence factor of the rule.

The following definitions are adopted from [2]. A
transaction supports an itemset Z, if Z is contained in
the transaction. The support for an itemset is defined
as the ratio of the total number of transactions which
support this itemset to the total number of transac-
tions in D. Hence, the major work of mining associa-
tion rules is to find all itemsets that satisfy a certain
user-specified minimum support. Each such itemset is
referred to as large itemsel. An itemset of length k
is called a k-itemset and a large itemset of length k a
large k-itemset,.

The problem of mining sequential patterns in a

large database of customer transactions was intro-
duced in [5). An example of such a pattern is that cus-
tomers buy books about ”basic computer concepts,”
and then about ”programming language,” and then
about ”system programming.”

The problem is stated as follows [5]: A sequence
is an ordered list of itemsets. A sequence s is de-
noted as < sy, 89, ..., 5, >, where s; is an itemset. The
items in s; represent that these items were bought to-
gether. A sequence < ay,as,...,a, > Is contained in
another sequence < by,bs,..., 0, > if there exist in-
tegers 11 < i3 < ... < 1y, 1 < 4 < m, such that
a1 € by, ..,an C bi,. In a set of sequences, a se-
quence s 1s mazimal if s 1s not contained in any other
sequence. All the transactions of a customer, ordered
by increasing transaction-time is a customer-sequence.

A customer supports a sequence s if s is contained
in the customer-sequence for this customer. The sup-
port for a sequence is defined as the fraction of total
customers who support this sequence. Each sequence
satisfying a certain minimum support threshold is a
large sequence. A sequence of length k is called a k-
sequence and a large sequence of length £ a large k-
sequence. The problem of mining sequential patterns
[5] is to find the maximal large sequences among all
large sequences.

Various algorithms [2, 4, 5, 11, 13, 16] have been
proposed to discover large itemsets or sequential pat-
terns. These algorithms generate candidate k-itemsets
(k-sequences) (k > 1) for large k-itemsets (lare k-
sequences), scan each transaction in a database to
count the supports of these candidate k-itemsets (k-
sequences) and find all large k-itemsets (k-sequences)
in the kth iteration based on a pre-determined min-
imum support. However, because the size of the
database can be very large, it is very costly to scan
the database to count supports for candidate itemsets
in each iteration. Hence, the key issue to improve the
performance of large itemset and large sequence dis-
covery is to reduce the number of candidates and the
amount of data that has to be scanned in each itera-
tion.

In this paper, we propose two algorithms, DLG (Di-
rect Large itemset Generation) and DSG (Direct Se-
quential pattern Generation), for efficient large item-
set generation and efficient sequential pattern gen-
eration, respectively, which are significantly different
from previous approaches [2, 4, 5, 11, 13, 16]. DLG
and DSG are very efficient for finding large 1temsets
and sequential patterns, respectively, because they
need not generate candidates and need to scan the
database only once. The algorithms DLG and DSG
construct an assoctation graph to indicate the asso-
ciations between items, and then traverse the graph
to generate large itemsets and sequential patterns, re-
spectively.

The rest of this paper is organized as follows: Sec-
tion 2 describes the related work. The algorithm DLG
proposed for generating large itemsets and the experi-
mental results for the performance evaluation are pre-
sented in Section 3. Section 4 describes the algorithm
DSG for sequential pattern generation and evalutes
the performance of DSG. Finally, we conclude this pa-

per and present directions for future research in Sec-
tion 5.

2 Related Work

An algorithm for finding all association rules, called
AIS algorithm, was presented in [2]. AIS generates
candidate itemsets and counts their supports as the
database is scaned in each iteration. After reading a
transaction, it is determined which of the large item-
sets found in the previous iteration are contained in
this transaction. During a database scan, new candi-
date itemsets are generated by extending these large
itemsets with other items in the transaction, and sup-
port information is collected to evaluate which of the
candidates actually are large. However, it was found
[4] that the problem with AIS is that it generates
too many candidates that later turn out to be small.
Hence, the AIS algorithm is rather inefficient.

The Apriori and AprioriTid algorithms [4] generate
the candidate itemsets to be counted in an iteration
by using only the itemsets found large in the previ-
ous iteration without considering the transactions in
the database. This results in generation of a smaller
number of candidate itemsets. However, for each can-
didate itemset, it needs to count its appearances in all
transactions. In the Apriori algorithm, each iteration
requires one pass over the database. In the Apriori-
Tid algorithm, the database is not scanned after the
first iteration. Rather, the transaction-id and candi-
date k-itemsets which were present in each transaction
are generated in each iteration. This is used to count
supports for candidate k + 1-itemsets during the next
iteration. It was found that in the initial stages, Apri-
ori is more efficient than AprioriTid, since there are
too many candidate k-itemsets to be tracked during
the early stages of the process. A hybrid algorithm
of the two algorithms was also proposed in [4], and
shown to lead to better performance in general.

Park, Chen and Yu [16] pointed out that the key
issue to improve the pertormance of large itemsets dis-
covery Is the initial candidate set generation, espe-
cially for the candidate 2-itemsets, and the amount
of data that has to be scanned during large item-
set generation in each iteration. They utilized hash
method to reduce the number of candidate 2-itemsets
generation and employed pruning techniques to pro-
gressively trim the transaction database. The prun-
ing techniques are described as follows: an item in a
transaction can be trimmed if it does not appear in
at least k of the candidate k-itemsets in the kth it-
eration. However, in order to reduce the number of
candidate 2-itemsets, the overhead for building hash
table is large. Moreover, in order to trim the database,
it 1s necessary to scan each transaction in the database
to determine which of the candidate itemsets are con-
tained in the transaction.

Agrawal and Srikant [5] presented two algorithms
called AprioriAll and AprioriSome for mining sequen-
tial patterns in a large database of customer trans-
actions. These two algorithms make multiple passes
over the data. In each pass, they use a seed set to
generate candidate sequences, and count supports for

each candidate sequence. At the end of the pass, it is
determined which of the candidate sequences are actu-
ally large. These large candidates become the seed for
the next pass. The two algorithms generate too many
candidate sequences to be counted, and the database
needs to be scaned repeatedly.

In {16], the DHP algorithm is shown to provide the
best performance for large itemsets generation. Hence,
DHP is used as the base algorithm to compare with
our algorithm DLG. The analysis and experimental
results are shown in Section 3.3. AprioriAll and Apri-
oriSome have the similar performance, which is shown
in [5]. We take AprioriAll algorithm to compare with
our algorithm DSG. The analysis and the experimen-
tal results are shown in Section 4.3.

3 Association Rule Discovery

In this section, we present the algorithm DLG for
efficient large itemset generation. There are three
phases in the DLG algorithm: The first phase is the
large 1-itemset generation phase which generates large
items (large 1-itemsets) and records related informa-
tion. The second phase is the graph construction phase
which constructs an association graph to indicate the
associations between large items. In this phase, large
2-itemset can also be generated. The last phase is the
large itemset generation phase which generates large
k-itemsets (k > 2) based on the constructed associa-
tion graph.

In the previous approaches [2, 4, 11, 13, 16], they
all need to sort the 1tems in each transaction in their
lexicographic order. However, our approach need not
to sort the items in each transaction.

3.1

Before performing the DLG algorithm, each item is
assigned an integer number. Suppose item ¢ represents
the 1tem whose item number 1s 7. In the first phase,
algorithm DLG scans the database once to count the
support and build a bit vector for each item. The
length of each bit vector is the number of transactions
in the database. If an item appears in the ¢th trans-
action; the ¢th bit of the bit vector associated with
this item is set to 1. Otherwise, the ith bit of the bit
vector is set to 0. The bit vector associated with item
¢ is denoted as BV;. The number of 1’s in BV} is equal
to the number of transactions which support the item
¢, that is, the support for the item z.

For example, consider the database in Table 1.
Each record is a <TID, Itemset> pair, where TID
is the identifier of the corresponding transaction, and
Itemset records the items purchased in the transac-
tion. '

Association graph construction

TID | Itemset
100 314
200 532
300 | 1235
400 52

Table 1: A database of transactions

10

Assume that the minimum support is 2 transac-
tions. In the large 1-itemset generation phase, the
large items found in the database shown in Table 1
are items 1, 2, 3 and 5, and BV;, BV;, BV3 and BVs
are (1010}, (0111), (1110) and (0111), respectively.

Property 1. The support for the itemset {i1,is,
..,ix } 1s the number of 1’s in BV;, A BV, A...ABV;,,
where the notation ”A” is a logical AND operation.

After the first phase, the database need not be
scanned again. In the graph construction phase, DLG
constructs an association graph to indicate the asso-
clations between items. For the association graph, if
the number of 1’s in BV; A BV} (i < j) is no less than
the minimum support, a directed edge from item ¢ to
item j is constructed. Also, itemset {i,5} is a large
2-itemset. The association graph for the above exam-
ple is shown in Figure 1, and the large 2-itemsets are

{1,3}, {2,3}, {2,5} and {3,5}.

(1010)
1

N

(1110)

0111 2 5 (0111)

Figure 1: The association graph and the bit vector
associated with each large item for Table 1

3.2 Large itemset generation

The large k-itemsets (k > 2) are generated based on
the association graph constructed in the second phase.
The data structure used to implement the association
graph 1s a linked list.

The large 2-itemsets Lo is found in the graph con-
struction phase. In the large itemset generation phase,
the DLG algorithm generates large k-itemsets Ly (k >
2). For each large k-itemset in Ly (k > 2), the last
item of the k-itemset is used to extend the itemset
into k + 1-itemsets. Suppose {ij,i, ...,ix} 1s a large
k-itemset. If there is a directed edge from item
to item u, then the itemset {i1,72,...,ix} is extended
into k + l-itemset {iy1,is, ...,ix,u}. The itemset {i1,is,
.oik,Ut Is a large k + 1-itemset if the number of I’s in
BV;, ABVi, A...ABV;, A BV, is no less than the mini-
mum support. If no large k-itemsets can be generated,
the DLG algorithm terminates.

For example, consider the database in Table 1. In
the second phase, the large 2-itemsets Lo = {{1,3},
{2,3{, {2,5}, {3,5}} is generated. For large 2-itemset

2,3}, there is a directed edge from the last item 3
of the itemset {2,3} to item 5. Hence, the 2-itemset
{2,3} is extended into 3-itemset {2,3,5}. The number
of I’sin BV, ABV3ABV; (i.e., (0110)) is 2. Hence, the

3-itemset {2,3,5} is a large 3-itemset, since the num-
ber of 1’s in its bit vector 1s no less than the minimum
support. The DLG algorithm terminates because no
large 4-itemsets can be further generated. After com-
pleting the DLG algorithm on Table 1, the large item-
sets are {1,3}, {2,3}, {2,5}, {3,5} and {2,3,5}. The
DLG algorithm for each phase is shown as follows:

* Large 1-itemset generation phase x\
forall items ¢ do
set all bits of BV; to 0;
for (j =1, < N;j++) do begin
* N is the number of transactions in database D *\
forall items 7 in the jth transaction do begin
i.count++;
set the jth bit of BV, to 1;
end
end
Li=¢;
forall items ¢ in database D do begin
if i.count > minsup then
* minsup is the minimum support threshold *\
L1 = Ll U {Z},
end

* Graph construction phase *\
if L1 # ¢ then begin
forall large 1-itemsets [€ L; do
allocate a node for Item[l] and
Item[l].link=NULL;
Ly, =
for every two large items ¢, j (i < j) do begin
if (the number of 1’s in BV; A BV;) > minsup
then begin
* create an directed edge
from ¢ to j in the association graph *\
allocate a node p;
plink = Item[l,].link;
p.Item = Iy;
Item[l,].link = p;
Ly = LoU {{i,j}};
* generate large 2-itemsets *\
end
end
end

* Large itemset generation phase *\

k=2
while L # ¢ do begin
L1 = ¢;

forall itemsets (71 iz ... i) € Ly do begin
pointer = Item[ig].link;
while pointer # NULL do begin
u = pointer.Item;
if (number of 1’s in BV;, A ... A BV},
ABV,) > minsup then
Liyr = LU {{in, ik,ut}s
pointer = pointer.link;
end
end
k=k+1
end

11

3.3 Experimental results

To assess the performance of the DLG algorithm
for large itemset generation, we perform several ex-
periments on Sun SPARC/10 workstation. The exper-
iments show that the DLG algorithm is very efficient
for large itemset generation, because it takes only one
database scan to generate large itemsets. We first de-
scribe how the datasets are generated for the perfor-
mance evaluation. We then compare the performance
of DLG and DHP [16] by performing experiments on
the generated datasets. Finally, we demonstrate the
scale-up properties of the DLG algorithm.

3.3.1 generation of synthetic data

The synthetic database of sales transactions is gener-
ated to evaluate the performance of the algorithms.
The method to generate synthetic transactions is sim-
ilar to the one used in [4]. The parameters used in our
experiments are shown in Table 2.

|D| Number of transactions
|| Average size of the potentially large itemsets
|MI| | Maximum size of the potentially large itemsets
|L| Number of large itemsets
|7 Average size of the transactions
|MT| Maximum size of the transactions
N Number of items

Table 2: The parameters

We first generate a set L of the potentially large
itemsets, and then assign a large itemset picked up
from L to a transaction. The size of each potentially
large itemset is between 1 and |MI|. The probabil-
ities for sizes 1, 2, ... and |MI| are obtained by a
Possion distribution with mean equal to |I|. These
probabilities are normalized such that the sum of these
probabilities is 1. For example, suppose average size
|I] of the large itemsets is 3 and maximum size |M |
of the large itemsets is 5. According to the Possion
distribution with mean |/|, the probabilities for sizes
1, 2, 3, 4 and 5 are 0.17, 0.26, 0.26, 0.19 and 0.12,
respectively, after the normalization process. These
probabilities are then accumulated such that each size
falls in a range, which is shown in Table 3. For each
potentially large itemset, we generate a random real
number which s between 0 and 1 to determine the size
of the potentially large itemset.

Size Range

0~0.17

ST o b0 L

Table 3: The probabilities for the sizes of itemsets

The number of the potentially large itemsets in L
is set to |L|. Ttems in the first large itemset are cho-
sen randomly. Some fraction of items in subsequent

large itemsets are chosen from the previously gener-
ated large itemset. For each item in the previous large
1temset, we flip a coin to decide whether the item will
be retained in the current large itemset. The remain-
ing items in the large itemset are picked at random.
After generating the set L of large itemsets, we then
generate transactions in the database. The size of each
transaction is picked from a Poisson distribution with
mean equal to |7}, and the size is between 1 and |MT|.
The method to determine the size of a transaction is
the same as the method to determine the size of a
large itemset. For a transaction, we randomly choose
a large itemset from L to fit in the transaction and
assign 1t to the transaction. The remaining items of
the first transaction are chosen randomly. The frac-
tion of the remaining items of the subsequent transac-
tion are chosen from the previously generated trans-
action. For each item in the previous transaction, we
also flip a coin to decide whether the item is retained
in the transaction. After choosing the items from a
large itemset and from the previous transaction, the
remaining items in the transaction are picked at ran-
dom. The same as [4], we also use a corruption level
during the transaction generation to model the phe-
nomenon that all the items in a large itemset are not
always bought together. Each transaction is stored in
a file system with the form of <transaction identifier,
the number of items, items>.

We generate datasets by setting N = 1000 and
|L| = 2000. We choose three values for |T|: 5,
10 and 20, and the corresponding |MT| = 10, 20
and 40, respectively. We choose two values for
{I]: 3 and 5, and the corresponding |MI| = 5
and 10, respectively. The number |D| of transac-
tions is set to 100,000. We use Ta.MTz.Ib.MIy
to mean that « = |T|, ¢ = |MT|, b = |I] and
y = |MI|. We generate the following datasets for the
experiments: T'5.MT10.13.M 15, T10.MT20.13.M I5,
710.M720.15.M 110 and T20.MT40.13. M I5.

3.3.2 comparison of DLG and DHP

Figure 2 shows the relative execution time for DHP
[16] and DLG, using the four synthetic datasets de-
scribed in Section 3.3.1. In these experiments, the
hash table size |Hs| used in DHP is set to x C¥,
which was found to have better overall performance in
[16], where N is the number of items. Suppose there
are [D| transactions in database DB and m items in
each transaction on the average. In the kth pass, the
large k-itemsets L is generated. For the first pass,
DLG and DHP both need to scan each transaction in
DB to count support for each item. By the way, DLG
records the bit vectors for each item. However, DHP
needs to take extra overhead to combine every two
items to form a 2-itemset in each transaction. Totally,
there are |D| x CP" combinations needed. For each
combination, DHP uses the hash function to locate
the 2-itemset in the hash table. Hence, DHP takes
much more time than DLG in the first pass.

Suppose there are |Lg| large itemsets generated in
the kth pass. In the second pass, DLG performs

12

lﬂiﬂ%_l'_ll logical AND operations on bit vectors

to construct association graph and generate large 2-
itemnsets. DHP needs to generate candidate 2-itemsets
and prune these candidate 2-itemsets using the hash
table created in the first pass. Besides, DHP needs
to scan database to count support for candidate 2-
itemsets and trim the database DB to generate a re-
duced database. These jobs needed by DHP are more
costly than these logical operations performed by DLG
in the second pass.

In the kth (k > 2) pass, DLG extends each large
k — l-itemset into k-itemsets according to the asso-
ciation graph and performs logical AND operations.
Suppose on the average, each node (item) has ¢ out-
degrees in the association graph. DLG performs
(k—1) x |Lg—1} x ¢ logical AND operations to find
all large k-itemsets. Hence, as the minimum support
decreases, the number of logical AND operations per-
formed increases because the two values |Ly_1| and ¢
increase. In the kth pass, DHP generates candidate
k-itemsets Cj from large k — l-itemsets Ljp_,. Af-
ter generating Cy, DHP scans each transaction in the
database DB}, to count supports for these candidate
k-itemsets and trim the database DBj to generate an-
other reduced database DBpyi. Hence, the execution
time of DHP depends on the number of generated can-
didate itemsets and the amount of data that has to be
scanned.

DLG DHP

pass | [Ly| | Lkl [ICkl [DBl | My | ms
1 288 288 1000 | 4.265MB 100,000 | 9.76
2 687 687 974 4.265MB 100,000 | 9.76
3 497 497 2964 | 2.014MB 90,747 5.04
4 295 295 832 1.270MB 45,649 5.12
5 118 118 302 502KB 20,258 5.54
6 30 30 84 305KB 10,076 6.33
7 4 4 23 98KB 2,480 6.89

Table 4: Comparisons of DLG and DHP
We perform an exper-

iment on dataset T10.MT20.15.MI10 with minimum
support 0.75%. The experimental results are shown
in Table 4, where M} denotes the number of transac-
tions in DBy, and my denotes the number of items in
each transaction on the average.

In this experiment, there are 238 nodes and 687
edges in the association graph. Hence, on the average,
the out-degrees of each node is 3. Table 4 shows that in
each pass, the number of logical AND operations per-
formed by DLG is much less than the size of database
scanned and the number of candidate itemsets gen-
erated by DHP. Hence, DHP takes much more time
than DLG for large itemset generation. Figure 2 shows
that the DLG algorithm outperforms the DHP algo-
rithm significantly, and the performance gap increases
as the minimum support decreases because the num-
ber of candidate itemsets and the number of database
scans increases for DHP.

9 T T T T T

. T5.MP10.I3.MI5 o—
"\x T10.MT20.13.MIS ~+-

-, T10.MT20.15.M110 -B--
T20.MT40.13 . MI5 X

Relative Execution Time (DHP/DLG)
«
T

1 1) ! 1 s

1.5

2 3.5
Minimum Support (%}

Figure 2: Relative Execution Time

T5.MT10.13.MI5 o—
T10.MT20,13.MI5 -+
T10.MT20.I5.MI10 8-

Relative Execution Time
o
«n
‘

1 1 L L 1 1 1 t

200 300 400 500 600 700 800 900
Number of Transactions {in ‘000s)

1000

Figure 3: Scale-up: Number of Transactions

3.3.3 discussions for DLG

The memory space needed for performing DLG 1s
dominated by the bit vectors. Since the length of
each bit vector is the number of transactions |D| in
DB, there are N x |D| bits needed, where N is the
number of items. In our experiments, N = 103 and
|D| = 10°. Hence, 103 x 10° bits (12.5MB) are needed
to store all bit vectors.

Figure 3 shows how DLG scales up as the number of
transactions is increased from 10,000 to 100,000 trans-
actions. We use the three datasets 75.MT10.13. M Ib,
T10.M7T20.13.MI5and T10.MT20.15.M [10, and set
the minimum support to 1%. As shown, the execu-
tion times of DLG increase linearly as the database
sizes increase, because the number of large itemsets
increases.

Next, we examine how DLG scales up as the num-

13

1@ T T T T T T T T

5, MT10.13.MI5 -o—
T10.MT20.13.MI5 -+
B T710.M720.15.KI10 -8~

Relative Execution Time

0.2

0.1 L o
1000 2000 3000

4000 5000 6000 10000

Number of Itemsets

7000 8000 9000

Figure 4: Scale-up: Number of Items

ber of items increases from 100,000 to 1,000,000 for the
three datasets 75.MT10.13.M 15, T10.MT20.13.M I5
and T10.MT20.15.MI10. The minimum support is
set to 1% for this experiment, and the results are
shown in Figure 4. The execution times decrease
slightly, because the number of large itemsets de-
creases as we increase the number of items.

4 Sequential Pattern Discovery

In this section, we present the algorithm DSG for ef-
ficient sequential pattern generation. In [5], the prob-
lem of mining sequential patterns is splitted into the
following phases: 1. Sort phase, 2. Large itemset
phase, 3. Transformation phase, 4. Sequence phase
and 5. Maximal phase. The Sort phase is to con-
vert the original transaction database into a database
of customer-sequences. The customer-sequence is
a list of itemsets which are ordered by increasing
transaction-times. The Large itemset phase is to find
all large itemsets (or large 1-sequences). The Transfor-
mation phase is to transform each original customer-
sequence into a transformed customer-sequence which
is an ordered list of large itemsets.

The Sequence phase and the Maximal phase are
the main portions for mining sequential patterns. In
these two phases, we propose an algorithm DSG to
generate sequential patterns, which needs only one
database scan. The DSG algorithm is also splitted into
two phases: The first phase is the graph construction
phase which constructs an association graph to indi-
cate the associations between large itemsets (or large
1-sequences) and records related information. In this
phase, large 2-sequences can also be generated. The
second phase is the sequential pattern generation phase
which generates large k-sequences (k > 2) based on
the constructed association graph and finds maximal
large sequences (or sequential patterns).

4.1 Association graph construction

After completing the Transformation phase, we are
given a database of transformed customer-sequences.
In the graph construction phase, DSG algorithm scans
each customer-sequence in the database to combine
every two large itemsets to generate a 2-sequence and
count support for the 2-sequence. For each 2-sequence,
the set of identifiers of the customer-sequences where
the 2-sequence appears is recorded. When the sup-
port for a 2-sequence achieves the minimum support
threshold, the DSG algorithm creates a directed edge
from the first itemset to the second itemset in the 2-
sequence.

In the following, ¥, denotes the set of customer
identifiers of the customer-sequences where sequence s
appears. The cardinality of Sy is equal to the number
of customer-sequences which support the sequence s,
that is, the support for the sequence s.

Csequence
ABCD
CBE
ACB
AED
CBDE

Uw:-wwr—sg
w

Table 5: A database of customer-sequences

For example, Table 5 is a database of customer-
sequences after completing the Transformation phase.
Each record is a <CID, Csequence> pair, where CID is
the customer identifier of the corresponding customer-
sequence, and Csequence is the customer-sequence.
Csequence is a list of large 1itemsets which are ordered
by increasing transaction-times. A large itemset is de-
noted by an alphabet.

Assume the minimum support is 2 customer-
sequences. After scanning the database of customer-
sequences in Table 5, the association graph and the
recorded information are shown in Figure 5, where the

set of numbers on each edge XY is the set of customer
identifiers of the customer-sequences where the large
2-sequence < X,Y > appears. After completing the
graph construction phase, the large 2-sequences are
<A B>, <A,C>, <A, D>, <B,D>, <B E>, <C,B>,
<C,D> and <C,E>, and the set Sea B> of cus
tomer identifiers of the customer- sequences where the
2-sequence <A ,B> appears is {1, 3}, and so on.

4.2 Sequential pattern generation

In this section, we describe how to generate large
k-sequence (k > 2) based on the association graph
and the recorded information, and further to find se-
quential patterns. The large 2-sequences L.S; is found
in the graph construction phase. In the sequential
pattern generation phase, the DSG algorithm gener-
ates large k-sequences LSy (k > 2). For each large
k-sequence in LSy (k > 2), the last itemset of the
k-sequence is used to extend the sequence into k + 1-
sequences.

{1,3}

{2.5}

{1.5}

{2.3,5} -

(1,5)/

o

Figure 5: The association graph and the set of iden-
tifiers of the customer-sequences where each large 2-
sequence appears for Table b

Property 2. The support for the k-sequence <
§1,82, ..., 8k > is the cardinality of the set S¢s, 5,5 N
S\"<32,$3>"»\m N E\y<3k—1;3k>'

y

Suppose < s1, 82, ..., 8§ > is a large k-sequence. If
there is a directed edge from itemset si to itemset v,
the sequence < si, Sa, ..., 5p > 1s extended into k + 1-
sequence < i, 83,..., 8k, v >. The k + l-sequence <
$1,82,.., 8, v >1sa large k+1-sequence if the support
for the k + l-sequence is no less than the minimum
support. If no large k-sequence can be generated, the
DSG algorithm terminates.

After finding all large sequences LS, the large se-
quences which are subsequences of the other large se-
quences are deleted from LS. The remaining large
sequences are maximal large sequences, that is, se-
quential patterns.

For example, consider the database in Table 5 and
the association graph in Figure 5. For large 2-sequence
<C,B>, there is a directed edge from the last itemset
B of the sequence <C,B> to itemset E. Hence, the
2-sequence <C,B> can be extended into 3-sequence
<C,B,E>, and the set V«¢ p,e> can be obtained
by performing set intersection on sets S«c¢ p> and
\r<B E>. Because the set \s<c B> 1s {2 3,5} and the
set S<p B> is {2,5}, the set Scc B p> is {2, 5}. The 3~
sequence <C,B E> is a large 3-sequence, since the car-
dinality of set S<e,B,E> 18 no less than the minimum
support. After completmg the DSG algorithm on Ta-
ble 5, the sequential patterns are <A B>, <A C>,
<A,D>, <B,D>, <C,D> and <C}B,E>. The DSG
algorithm for each phase is shown as follows:

* Graph construction phase *\
LS; = { large 1-sequences }
\# result of the Large itemset phase \
if LS1 # ¢ then begin
forall large 1-sequences [€ LS do
allocate a node for Itemset[l] and
Itemset[l]link=NULL
forall permutation l;{;, where [, and [, are
selected from LS; do
N <l dy> = =¢
* St ,> records the set of identifiers of
the customer- sequences where I;l, appears *\

LSy =¢
for (i =1;i < N;i+ +) do begin * N is the
number of customer-sequences in database D *\
scan the ith customer-sequence ¢
I. = the set of all itemsets in ¢
forall combination [,l; do begin
* [, and [, are selected from I *\
Scta o> = Imar, > Ui}
* record related information %\
if < Iy, lp > .count < minsup then
<y, ly > .count + +
if < l;,{; > .count = minsup then begin
LSy = LS, U {< o,y >}
* generate large 2-sequences *\
CreateEdge(l,, ;)
* create an edge from I, to [
in the association graph *\
end
end
end
end
CreateEdge(l,, ;)
allocate a node p
plink = Item][l,].link
p.Item =1,
Item[l,).link = p

* Sequential pattern generation phase %\
k=2
while LSy # ¢ do begin
LSi41=¢
forall sequences < s1,$9, ..., 5t >€ LSy do begin
pointer = Itemset[sy].link
while pointer # NULL do begin
v = potnter.Itemset
if (the cardinality of set Sy, 555N
Sess,ean Mo NTFesys,>) = minsup then
LSpy1 = LSkp41 U {< s1,82,...; 8, ¥ >}
pointer = pointer.link
end
end
k=k+1
end
Answer = Maximal sequences in Uy LSk

4.3 Experimental results

. To evaluate the performance of the DSG algorithm

for sequential pattern generation, we also perform sev-
eral experiments on Sun SPARC/10 workstation. The
experiments show that the DSG algorithm is very ef-
ficlent for sequential pattern generation, because it
takes one database scan to construct an association
graph and the large sequences are generated based
on the association graph directly. We first generate
datasets for the experiments, and then compare the
performance between DSG and AprioriAll by perform-
ing experiments on the generated datasets. The scale-
up properties of the DSG algorithm are also demon-
strated.

15

4.3.1 generation of synthetic data

The method to generate synthetic datasets is sim-
ilar to the one used in DLG algorithm. The dif-
ference between the two methods is described be-
low. For the generated dataset used in DLG algo-
rithm, the items in each transaction are generated in
their lexicographic order. However, for the generated
dataset used in DSG algorithm, the itemsets in each
customer-sequence are generated in an arbitrary or-
der. Each transaction is stored in a file system with
the form of <customer-sequence identifier, the num-
ber of itemsets, itemsets>. The parameters used in
the experiments are as shown in Table 2 with some
modifications. In Table 2, the term ”transactions”
is changed to ”customer-sequences,” the term ”item-
sets” is changed to ”sequences,” the term ”items” is
changed to ”itemsets,” and the notation ”L”,”T” and
”MT” are changed to ”LS,” ”C” and " MC,” respec-
tively. The number |D| of customer-sequences is set
to 100,000. We also set N =1000 and |LS| =2000
for the generated datasets, and generate the four
datasets: C5.MC10.13.M15, C10.MC20.13.MI5,
C10.MC20.I5.M 110 and C20.MC40.13.MI5 in the

experiments.

4.3.2 comparison of AprioriAll and DSG

Figure 6 shows the relative execution time for Aprio-
riAll algorithm [5] and DSG algorithm over various
minimum supports, ranging from 0.5% to 3.5%.

Suppose there are M customer-sequences in the -
database and m itemsets in each customer-sequence
on the average. In the kth pass, the set of large k-
sequences LS} is generated.

In the second pass, AprioriAll uses LS; to gen-

erate 2 X C"zLSII candidate 2-sequences C'S3. More-
over, AprioriAll scans the database to combine every
two sequences to form a 2-sequence in each customer-
sequence. Totally, there are M x C%* combinations
needed. For each combination, AprioriAll searches
for the candidate 2-sequences in CS3 to determine

whether the combination is in C'S; for large 2-sequence

generation. However, when |LS;| is large, 2 x CIQLSII

becomes an extremely large number. It is very costly
to determine large 2-sequences from a large number of
candidate 2-sequences. In this pass, DSG scans each
customer-sequence in the database to combine every
two sequences to form a 2-sequence and count sup-
port for the 2-sequence to determine whether the 2-
sequence is large. Because AprioriAll needs to search
for a large amount of candidate 2-sequences, DSG out-
performs AprioriAll in this pass.

In the kth pass (k > 2), AprioriAll generates candi-
date k-sequences based on large k— 1-sequences LSg_1
and scans the database to count supports for the can-
didate k-sequences for large k-sequence generation.
AprioriAll needs to combine every k sequences to form
a k-sequence in each customer-sequence, and totally,
M x C}* combinations are needed. For each combina-
tion, AprioriAll searches for candidate k-sequences in
C S to determine whether the k-sequence is in C'Sy, for

C5.MC10.13.MI5 -o—

€10.MC20 .13 . MIS -+~ -
.. C10.MC20.I5.M110 -B-
C20.MC40 .13 .MI5 ¥~

Relative Execution Time (AprioriAll/DSG)

.5 2 2.
Minimum Support (%)

Figure 6: Relative Execution Times

large k-sequence generation. Hence, as the minimum
support decreases, the execution time of AprioriAll in-
creases because the candidate sequence generated in-
creases.and the number of database scans increases.

For DSG algorithm, the large k-sequences (k > 2)
can be generated by extending large k — 1-sequences
into k-sequences based on the association graph and
performing set intersections on the related informa-
tion. Suppose on the average, the number of out-
degrees of each node (itemset) in the association

raph is ¢. In the kth (¢ > 2) pass, DSG performs
%k— 1) x g x |LSk_1] set intersections to find all large k-
sequences. Hence, as the minimum support decreases,
the number of set intersections performed increases,
because the values ¢ and |LSy_1| increases. However,
DSG need not generate candidate k-sequences (k > 1)
?Or scan the database for large k-sequence generation
k>2).

Since the number of set intersections performed for
DSG is much less than the size of database scanned
and the number of candidate itemsets generated for
AprioriAll; DSG outperforms the AprioriAll for var-
lous minimum supports. Figure 6 shows that the
performance gap increases as the minimum support
decreases because the number of candidate itemsets
generated by AprioriAll increases and the number of
database scans also increases.

4.3.3 discussions for DSG

The main memory space needed for performing DSG
is to store customer identifiers on each edge 1n the
association graph. Suppose there are ! edges in the
association graph and on the average, the cardinality
of the set of customer identifiers on each edge is k.
I X k customer identifiers need to be stored.

Figure 7 shows how DSG scales up as the num-
ber of customer-sequences increases from 10,000 to
100,000 customer-sequences. We use the three
datasets C5.MC10.13.M 15, C10.MC20.I3.M I5 and

16

C5.MC10.13.MI5 <—
C10.MC20.13.MI5 ~+-
C10.MC20.15.MI10 -B-

Relative Execution Time

0
100

200 300 400 500 600 700

Number of Customers {in '000s)

800 900 1000

Figure 7: Scale-up: Number of Customers

1 B T T T T T T T

C5.MC10.13.MI5 -o—
B C10.MC20.13 ,MI5 -+~ 7
T €10.M€20.15.MI10 -B-

0.5 ¢

ok T

Relative Execution Time

0.3 L L 1 1 1 . L 1

1000 2000 3000 4000 5000 €000

Number of Itemsets

7000 8000 9000 10000

Figure 8: Scale-up: Number of Itemsets

C10.MC?20.15.M 110, and set the minimum support
to 1.5%. As shown, the execution time of DSG in-
creases linearly as the database size increases, because
the number of large sequences increases.

Next, we investigate the scale up as we increase the
number of itemsets from 1,000 to 10,000 for the three
datasets C5.MC10.I3.M I5, C10.M C20.13. M I5 and
C10.MC20.15.M I10. The minimum support is set to
1.5% for this experiment. Figure 8 shows the results.
When the number of itemsets increases, the execution
time decreases slightly, because the number of large
sequences decreases.

5 Conclusion and Future Work

We study two problems: mining association rules
and mining sequential patterns in a large database of
customer transactions. The problems of mining asso-
ciation rules and mining sequential patterns focuses

on discovering large itemsets and discovering large se-
quences, respectively.

We present two algorithms, DLG and DSG which
need only one database scan, for efficient large itemset
generation and efficient sequential pattern generation,
respectively. These two algorithms construct an as-
sociation graph to indicate the associations between
items and then traverse the graph to generate large
itemsets and large sequences, respectively.

We compare DLG and DSG algorithms to the pre-
viously known algorithms, DHP [16] and AprioriAll
[8], respectively. The experimental results show that
DLG and DSG outperform DHP and AprioriAll, re-
spectively. When the minimum support decreases,
the performance gap increases because the number
of candidate itemsets (candidate sequences) generated
by DHP (AprioriAll) increases and the number of
database scans also increases.

We demonstrate that the execution time of these
two algorithms increases linearly as the database size
increases, and the execution time decreases slightly as
the number of items (itemsets) increases.

For our graph-based approach, the related informa-
tion may not fit in the main memory when the size of
the database is very large. In the future, we shall de-
velop a mining algorithm based on our graph-based
approach, such that in a very large database environ-
ment, the mining algorithm can also be run in the
main memory. We shall consider mining various dif-
ferent relationships among data in a large database of
customer transactions, such as is-a relationships and
part-of relationships. We shall also apply our graph-
based approach on different applications, such as doc-
ument retrieval and resource discovery.

References
[1] R. Agrawal and et al. Database Mining: A Per-
formance Perspective. In IEEFE Transactions on
Knowledge and Data Engineering, pages 914-925,
1993.

R. Agrawal and et al. Mining Association Rules
Between Sets of Items in Large Databases. In
Proceedings of ACM SIGMOQOD, pages 207-216,
1993.

R. Agrawal and et al. An Interval Classifier
for Database Mining Applications. In Proceed-
ings of International Conference on Very Large
Data Bases, pages 560-573, Vancouver, British
Columbia, 1992.

R. Agrawal and R. Srikant. Fast Algorithm
for Mining Association Rules. In Proceedings
of International Conference on Very Large Data
Bases, pages 487-499, 1994.

[4]

R. Agrawal and R. Srikant. Mining Sequential
Patterns. In Proceedings of International Confer-
ence on Data Engineering, pages 3-14, 1995.

Y. Cai, N. Cercone, and J. Han. An Attribute-
Oriented Approach for Learning Classification
Rules from Relational Databases. In Proceedings

17

of International Conference on Data Engineering,

Los Angeles, pages 281288, Feb 1990.

W. Chu and et al. Using Type Inference and
Induced Rules to Provide Intensional Answers. In
Proceedings of International Conference on Data
Engineering, pages 396-403, 1991.

M. Hammer and S.B. Zdondik. Knowledge-based
query processing. In Proceedings of International
Conference on Very Large Data Bases, pages
137-146, 1980.

J. Han and et al. Knowledge Discovery in
Databases: An Attribute-Oriented Approach. In
Proceedings of International Conference on Very
Large Data Bases, pages b47-559, 1992.

J. Han and et al. Data-Driven Discovery of Quan-
titative Rules in Relational Databases. In IEEE
Transactions on Knowledge and Data Engineer-
ing, pages 29-40, 1993.

M. Houtsma and A. Swami. Set-Oriented Mining
for Association Rules in Relational Databases. In
Proceedings of International Conference on Data
FEngineering, pages 256—33, 1995.

C. Malley and S. Zdonik. A Knowledge-Based
Approach to Query Optimization. In Proceedings
of the First Ezpert Database System Conference,
pages 243-257, 1986.

H. Mannila, H. Toivonen, and A.I. Verkamo.
Efficient Algorithm for Discovering Association
Rules. ‘In Proceedings of AAAI Workshop on
Knowledge Discovery in Databases, pages 181-
192, 1994.

A. Motro. Using Integrity Contraints to Provide
Intensional Answers to Relational Queries. In
Proceedings of International Conference on Very

Large Data Bases, 1989.

G. Oosthuizen. Lattice-Based Knowledge Dis-
covery. In Proceedings of AAAI Workshop on
Knowledge Discovery in Databases, pages 221-
235, 1991.

J.S. Park, M.S. Chen, and P.S. Yu. An Effec-
tive Hash-Based Algorithm for Mining Associa-
tion Rules. In Proceedings of ACM SIGMOD,
24(2):175-186, 1995.

M.S.E. Sciore and et al. A Method for Automatic
Rule Derivation to Support Semantic Query Op-
timization. In ACM Transactions on Database
Systems, pages 563-600, 1992.

M. Siegel. Automatic Rule Derivation for Se-
mantic Query Optimization. In Proceedings of
the Second International Conference on Ezpert
Database Systems, pages 371-385, 1988.

[19]

[20]

U.Chakravarthy, D. Fishman, and J. Minker.
Semantic Query Optimization in Expert Sys-
tems and Database Systems. In Proceedings
of the First International Conference on Ezpert
Database Systems, pages 326-340, 1984.

S.J. Yen and A.L.P. Chen. Neighbor-
hood/Conceptual Query Answering with Impre-
cise/Incomplete Data. In Proceedings of Inter-
national Conference on Fntity-Relationship Ap-
proach, pages 151-162, 1993.

S.J. Yen and A.L.P. Chen. The Analysis of Re-
lationships in Databases for Rule Derivation. In
Journal of Intelligent Information Systems, Vol.
7, pages 1-24, 1996.

S5.J. Yen and A.L.P. Chen. An Efficient Algorithm
for Deriving Compact Rules from Databases.
In Proceedings of International Conference on

Database Systems for Advanced Applications,
pages 364-371, 1995.

C. Yu and W. Sun. Automatic Knowledge Acqui-

. sitton and Maintenance for Semantic Query Op-

timization. In IEFE Transactions on Knowledge
and Data Engineering, pages 362-375, 1989.

W. Ziarko. The Discovery, Analysis, and Rep-
resentation of Data Dependencies in Databases.
In Proceedings of AAAI Workshop on Knowledge
Discovery in Databases, pages 195-209, 1991.

18

