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An Exploration of Relationships

Among Exclusive Disjunctive Data

Jui-Shang Chiu and Arbee L.P. Chen, Member, IEEE Computer Society

Abstract—In this paper, we elaborate on how to interpret the
query answer on exclusive disjunctive databases and how to re-
duce the query answer into a more concise form. Exclusive dis-
junctive data are represented as a pair of value set and variable
set in Pv-fable which is an extension of the relational model. A
value set corresponds to a finite set of possible values in which
exactly one value is the frue value. By variable sets, tuples may be
related with certain relationships, namely disjunctive relationship
and join relationship. Three kinds of tuple sets are classified ac-
cording to these relationships, each possesses an important prop-
erty, namely co-exist, co-nonempty, or co-instance. Based on these
properties, the interpretation of Pv-tables can be formalized in a
semantically meaningful way. Also, the redundant and mergeable
tuples can be identified. After removing and merging tuples ac-
cordingly, a more concise Pv-table can thus provide a better un-

* derstanding of the query result.

Index Terms—Incomplete information, disjuncfive informa-
tion, partial values, query language semantics, tuple relationships,
relational databases.

I. INTRODUCTION

INCOMPLETE information in relational databases has been
extensively studied. Different kinds of incomplete informa-
tion that have been studied include null values [2], {4], [9],
[10],-[11], [20], [39], [43], [48], partial values [12], [16], [17],
[40], [41], indefinite information [18], [22], [23], [32], [46],
and maybe information [28], [29], [30], [33], [34], [35]. A null
value represents a value unknown at present. A partial value
represents a finite set of possible values in which exactly one
value is the true value. More generally, disjunctive information
corresponds to a finite disjunction of formulas, which can be a
disjunction of attribute values or a disjunction of tuples. Dis-
junctive information is indefinite if at least one of the formulas
must be true in the real world, and maybe otherwise. Disjunc-
tive information is exclusive if only one of the formulas can be
true, and inclusive if more than one of the formulas can be
true. In this paper, we focus our attention on exclusive dis-
Jjunctive information (which can be indefinite or maybe).

In the following we demonstrate two of the common ap-
proaches in representing and manipulating disjunctive. infor-
mation. Some of their limitations will be noted. The two ap-

proaches are tables with marked partial values [12], [35] and ’

C-tables [20]. For illustration, the same relation “Student” with
disjunctive information is represented by these two approaches
as shown in Table I. The partial values are marked by vari-
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ables to identify shared incomplete information, e.g., students
Mary and Susan (or Susanna) have the same major. An extra
attribute is used to indicate the status of a tuple, which can be
“true” (representing either definite or indefinite information),
or “maybe” (representing maybe information). C-table extends
the relational model by adding a “Condition” attribute which
contains a formula for each tuple. If the formula is other than
“true,” the information is assumed maybe. Notice that indefi-
nite information cannot be clearly distinguished from maybe
information in C-table. : : ,

TABLE1

AN EXAMPLE OF RELATION “STUDENT” WITH DISJUNCIVE INFORMATION
Student: Name Major Status
John cs true
Mary {CS, EE}, true
Paul {Math, EE}, true
{Susan, Susanna}, {CS,EE}, true
Name | Major | Condition
John CS true
Mary x (x=CSvx=EE)
Paul - y (y = Math v y = EE)
u -\ x {u= Susan v i = Susanna) A (x=CS v x=FEE)

The information in a table (i.e., éxtended relation) is inter-
preted by mapping variables to values [38]. For example, stu-
dent Mary majors in CS if variable x is mapped to CS, and EE
if x is mapped to EE. Each interpretation of a table results in
one possible relation. A table with disjunctive information
represents a set of possible relations edach comes from a unique
interpretation. : :

TABLE I
THE RESULT OF SELECTION ON STUDENT RELATION
Stadent: Name Major Status
John cS true
‘Mary i {CS}: maybe
{Susan, Susanna}, {CS}y maybe
Name | Major Condition
John CS " true
Mary x x=CS)
u X (# = Susan v u = Susanna) A (x = CS)

Now consider the query: find all the students who major in
CS. John qualifies as a definite answer while Mary and Susan
(or Susanna) qualify as maybe answers. The query results rep-
resented by marked partial values and formulas in C-table are
shown in Table II. In the former, each unqualified major is
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removed and the status is changed into “maybe.” Since the
status is of tuple-level, there is no way to identify which at-
tribute contributes to the maybe information. In the latter, the
formula (x = CS v x = EE) is subsumed (and replaced) by the
formula (x = CS). In both cases, the information about the
possibility that Mary majors in EE is lost.

Moreover, consider another query: find all pairs of students
who have the same major. The join result of students Mary and
Paul is represented by marked partial values as <Mary, Paul,
{EE}>. In order to correctly interpret the query resuit, if vari-
able z is mapped to EE, x and y must be mapped to EE too.
However, the relationship between x, y, and z is not specified.
This may result in incorrect interpretations of answers.

In [8], we proposed an extended relational model called
Pv-table to represent exclusive disjunctive information by a
pair of variable set and value set. Pv-table is different from
other existing extended models with partial values in the fol-
lowing two aspects (to be detailed in Section IIT):

1) The values which do not satisfy the predicates are re-
tained and signed as unqualified. For example, the value
of Major for Mary in thqﬁesult of the first query will be
represented by ({x}, {CSEE}). By this representation, the
information about both the data and the query can be pre-
served. Also, the attribute which contributes to maybe in-
formation can be identified.

2) Each value set is coupled with a variable set instead of a
single variable. In evaluating a join operation, all variables
in the two variable sets are copied to the resultant variable
set. For example, joining the tuples of students Mary and
Paul on Major will result in ({x, y}, {EE&W}) as the
value of Major. Hence, the relationship between the join
result and the original values is kept.

By (1) and (2) together, we have shown in [8] that queries on
Pv-tables can be evaluated in a semantically correct manner.

In this paper, we elaborate on how to interpret the query an-
swer on exclusive disjunctive databases (more specifically, Pv-
tables) and how to reduce the query answer into a more con-
cise form. A query result may be separated into definite, in-
definite and maybe answers. It is not difficult to identify
definite and maybe answers from the query result. However, it
is not easy to identify indefinite answers. An indefinite answer
may be represented by either a single tuple (with disjunctive
information) or a disjunction of tuples. These tuples are related
with certain relationships by variables. The difficulty of identi-
fying indefinite answers stems from complicate relationships
among tuples. Hence, it is crucial to explore the relationships
among tuples first before we can correctly and efficiently in-
terpret query answers from disjunctive databases.

Users may also be concerned about which type of answers a
candidate tuple represents. For example, in the above selec-
tion, <John, CS> is a definite answer while <Mary, CS> is a
maybe answer. A definite answer appears in every possible
relation while a maybe answer appears only in some of the
possible relations. An indefinite (exclusive) answer is a dis-
junction of tuples in which exactly one tuple is in each possi-
ble relation. By examining how the candidate tuples appear in

the set of possible relations, the type of answers they represent
can be determined. However, since the number of possible
relations can be enormous, it would be very inefficient to ex-
amine all the possible relations. Instead, the efficiency will be
much improved if we only examine their corresponding tuples
in Pv-table. The problem then becomes to find out such corre-
sponding tuples and to know the relationships among these
tuples.

There are two kinds of relationships among tuples, namely
disjunctive relationship and join relationship. Due to its power
to express these relationships in a Pv-table, good properties are
preserved in this model [8]. We classify three kinds of tuple sets
based on these relationships, each possesses an important prop-
erty, namely co-exist, co-nonempty, or co-instance. We shall
show that the types of information a set of tuples represent can
be determined efficiently according to the properties they pos-
sess. Moreover, we shall show that the interpretation of Pv-
tables can be formalized in-a semantically meaningful way.

Query answers may contain redundancies. The major
sources of redundancies come from projection and union op-
erations. Also, under certain circumstances, some of the tuples
in query answers can be merged. A Pv-table would be more
concise if the redundant tuples are identified and removed and
the mergeable tuples are merged. We shall show how the re-
dundant and mergeable tuples can be identified by examining
the relationships among tuples and show how they are merged.
Two kinds of the reduction process will be discussed sepa-
rately according to whether they are commutative with rela-
tional operations.

The rest of this paper is organized as follows: Section IT
presents related work. In Section III, we introduce the basic
concept of Pv-tables. In Section IV, we show how to interpret
information from Pv-tables. Three kinds of properties for tuple
sets are classified according to the relationships among tuples.
The interpretation of Pv-tables can then be formalized based
on these properties. Section V discusses how to reduce a Pv-
table in a more concise form by removing redundant tuples and
by merging tuples. Section VI concludes our work. In order to
make this paper more readable, we present the proofs to all
theorems and lemmas in the Appendix.

II. RELATED WORK

This section reviews related approaches to the problem of
representing and manipulating incomplete information.

The work on incomplete information is pioneered by Codd
[91, [10] on extending relational algebra to manipulate null
values. Lipski [28] provides two different interpretations of
queries, the internal and the external. The internal interpreta-
tion ignores all incomplete information, referring only to what
is known to the system. In contrast, the external interpretation
refers to the real world modeled by the system with incomplete
information. The external interpretation has two bounds: The
lower bound lIQll; corresponds to the definite information; and
the upper bound liQll, corresponds to the union of definite and
maybe information. Indefinite information was not distin-
guished from maybe information in this interpretation.
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Imielinski and Lipski [20] examine the expressive power of
three extended relational models with null values based on a
semantic correctness criterion (also see [31]). Let rep(7) de-
note the set of possible relations represented by table 7. The
correctness criterion states that for each operator f, the ex-
tended operator fr on 7 should be defined to satisfy the follow-
ing conditions:

1) rep(f(T)) = fy(rep(T)) for unary f and

2) rep(f(Th, T2)) = J;(rep(T1), rep(T3)) for binary f
where fi(rep(T)) is defined as {A{R) | R € rep(T)} and fi(rep(T}),
rep(T»)) as {fAR;, Ry) | Ry € rep(Ty) and R, € rep(T7)}.

The three models examined are Codd-table, a table with the
usual Codd’s null values, V-fable, a table with marked null
values, and C-table, a table with marked null vaiues and logi-
cal formulas. The result indicates that only C-table can be
evaluated in a semantically correct manner with respect to the
primitive relational operators (namely, selection, projection,
Cartesian product, intersection, join, union, and difference).
However, C-tables do not distinguish between indefinite and
maybe information.

Grant [16], [17] extends null value to partial value.
DeMichiel [12] extends the relational model with partial val-
ues to resolve the domain mismatch problem in heterogeneous
database systems. Tseng et al. [40] further extend partial val-
ues with probabilities for answering heterogeneous database
queries. Ola and Ozsoyoglu [35] use marked partial values to
identify shared incomplete information. Liu and Sunderraman
[29], [30] consider inclusive disjunctions instead of exclusive
disjunctions. Under all these models, maybe answers for some
types of queries may actually be indefinite answers.

Grant and Minker [18], [32] consider query answering for
indefinite (disjunctive) databases that contain disjunctive for-
mulas in first-order logic. A disjunctive formula corresponds
to a set of possible tuples under the relational model. An al-
gorithm to find definite and indefinite answers to a query was
developed. Yuan and Chiang [46] develop a sound and com-
plete query evaluation algorithm for relational databases with
disjunctive information. Their algorithm proceeds by recur-
sively decomposing complex queries in a normal form into
extended relational operations on simpler queries. The algo-
rithm returns all definite and indefinite answers to a given
query. However, how to represent and manipulate maybe an-
swers in the intermediate steps of the evaluation process was
not discussed. Ignoring maybe answers is one of the sources of
the incompleteness of subsequent query evaluations.

In [8], we propose Pv-table to represent definite, indefinite
as well as maybe information. We showed that query evalua-
tion on Pv-tables is sound and complete for queries consisting
of extended selection, union, intersection, Cartesian product
and join. The query evaluation on Pv-tables is based on set
operations instead of logic operations. The complexity of the
evaluation is Jower than on C-tables, but higher than other ex-
tended models with partial values.

A classification of extended relational models with incom-
plete information is given in Fig. 1.

Further related work is described in the following. Levesque
[25] concentrates on the formal aspects on incomplete infor-
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mation in knowledge-based systems. His approach considers
not only the issues of handling incomplete information about
data, but also how to access the knowledge about the incom-
pleteness. Levene and Loizou [24] define the semantics of
nested relations with null values in terms of integrity con-
straints. Imielinski et al. [21] were motivated by the applica-
tions within design, planning and scheduling areas. The object-
oriented data model was extended with an OR-type whose
instances are OR-objects. OR-objects are, in fact, marked par-
tial values with variables representing object identifiers. In
[22], Imielinski and Vadaparty give a complete syntacti¢ char-
acterization of CoNP-Complete [14] conjunctive queries -for
databases with OR-objects. Libkin and Wong [26] investigate
the relationship between query languages and normalization.
Losslessness of normalization was established for a large class
of queries.

Incomplete Information

Codd 79

Null Valucs
Codd-table

du and Sunderramaj1 50, 91
Jnclusive-Or

Exclugive-Or
i masndsozsoM%glu ‘Tseng et al. 93 Imiclinski and Lipski 84
Marked partiel values) Probabilistic partial vatue: Marked null values
OR-objects V-table

Chiu and Chen 94 Imicliosk: and Lipski 34
Varisble p:?;aind Conditions

Signed Sat values] %

Petable Crtable

Fig. 1. A classification of extended relational models with incomplete information.

In addition to the work on query processing, the issues of
dependency satisfaction and updating of incomplete informa-
tion have also been studied. The former work includes [15)],
[19], [27], [42], [44] and the latter includes [1], [45].

Incomplete information can be classified into two aspects,
i.e., imprecise information and uncertain information. Dubois
and Prade [13] distinguish between imprecise and uncertain
information by stating that the concept of imprecision is rele-
vant to the content of an attribute value, while the concept of
uncertainty is relevant to the degree of truth of its attribute
value. In this paper, we focus our attention on the imprecise
aspect. To the uncertain aspect, two major approaches are the
possibility approach and the probability approach. The former
approach is based on the fuzzy set theory which was first in-
troduced by Zadeh [47]. Various kinds of fuzzy relational da-
tabases were proposed, such as, Buckles and Petry [5], Prade
and Testemale [36], and Zemankova [49]. The work with the
latter approach includes Barbard et al. [3], Cavallo and Pit-
tarelli [6], and Tseng et al. [40].

II1. EXTENDED RELATIONS FOR
EXCLUSIVE DISJUNCTIVE DATA

In this section, we give the definition of Pv-table in two
steps. In the first step, we assume that a Pv-table contains only
definite and indefinite information. In the second step, we
consider a Pv-table with maybe information also.
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NOTATION. Throughout this paper, we use U to denote a fixed,
finite set of attributes. Attribute is denoted by A, set of at-
tributes by X, tuple by ¢ and relation by R with possible sub-

scripts. Associated with each A € U is a value domain D(A)

and a variable domain V(A).

DEFINITION 3.1. A Pv-tuple t on X is a mapping that associates
with every A € X a set couple, i.e., t(A) = (v, p) where the
variable set v C V(A), and the value set p < D(A), p # <.
Such-a set couple t(A) is called a Pv-value. A Pv-table Tv
on X is a finite set of Pv-tuples on X. ’

NOTATION. For clarification, the Pv-value #(A), its variable set
and value set are denoted as z.A, t.A.v and 7.A.p, respec-
tively. A Pv-tuple ¢ is denoted as <(t.A;.v, t.Ay.p), -,
(t.A,v, t.A,.p)} where A; € X for 1 <i < n. A set of vari-
ables {u, v, -+, y, z} is abbreviated as u v --- y z, and values
{a,b,--,e,flasab--ef

The value set corresponds to a set of possible values in
which exactly one value is the true value. Let Ipl denote the
cardinality of a value set p. A value set is definite if its cardi-
nality equals to 1. When a Pv-table is created, each value set is
associated with a variable set. The variable set is empty if the
value set is definite, otherwise it contains a single variable.
Moreover, we assume that the information contained in Pv-
tables is consistent. That is, if two Pv-values contain the same
nonempty variable set, their initial value sets must be the same
and they represent the same true value. All operations defined
on Pv-tables should result in consistent Pv-tables.

EXAMPLE. A Pv-table representing the relation “Student” is
shown in Table III. Since #,,Major and #.Major are the
same, by consistent assumption, we can tell that the two
students are of the same major. Conversely, if a Pv-table
contains, say, both (x, CS EE) and (x, CS Math), it is not
consistent.

TABLE Il
AN EXAMPLE OF PV-TABLE
Student: Name Major
t: (<, John) (9, CS)
ty: (D, Mary) (x, CS EE)
t3: (3, Paul) (y, Math EE)
ts: | (u, Susan Susanna) (x, CS EE)

Value sets may be restricted by predicates specified in rela-
tional operators such as selection, join, etc. Consequently,
some of the values in value sets may become unsatisfiable. In
the following, two ways to represent the unsatisfiable values
are introduced. They are

1) to sign the value with a bar and
2) to replace the value by the symbol y.

We illustrate with several examples the query evaluation on
Pv-tables which will result in maybe information. The defini-
tion of Pv-table will be extended with these two kinds of sym-
bols to represent maybe information.

EXAMPLE. Consider a selection with predicate (Name = Susan or
Major = CS) on Pv-table Student shogvﬂ in Table 1. For #,,
as EE is unsatisfiable, we have (x, CSEE) in the result. From

this result, we can tell that the major is either CS or EE but
EE is unsatisfiable in the query. Hence, both semantics of the
data and the query are preserved. As for #;, since both Math
and EE are unsatisfiable, the Pv-tuple itself is unsatisfiable
and cannot be included in the result. The selection on #; will
result in two Pv-tuples < (u, Susan Susanna), (x, CSEE) >
and < (u, Susan Susanna), (x, CSﬁE_) > corresponding to
subpredicates (Name = Susan) and (Major = CS), respec-
tively. Note that the two resulting Pv-tuples are regarded as
consistent. Their initial value sets are the same though cer-
tain values are signed unsatisfiable for the corresponding
subpredicate. The result of the selection on Pv-table Student
is shown in Table IV.

TABLE IV '
AN ILLUSTRATION OF SELECTION ON THE PV-TABLE
CS-Student: Name Major
i (<, John) (@,CS)
(2, Mary) (x, CSEE)
(u, Susan Susanna) | (x, CS EE)
(u, Susan Susanna) | (x, CS E)

After applying certain relational operations, some unsatis-
fiable values may be signed with bars or be replaced by y. Two
partial values which contain the same nonempty variable set are
regarded as consistent if one of the following two cases holds:

1) the value sets are the same while ignoring the bar signs;
2) one value set is a subset of the other value set and both
value sets contain .

The logical formula corresponding to a Pv-value, say,
(x, CSEE) is (x = CS v x = EB) A (x # EE). The formula is
logically equivalent to (x = CS). However, the semantics of the
former is richer. The formula corresponding to a Pv-tuple is a

conjunction of formulas corresponding to its Pv-values. Let ¢
be the resultant Pv-tuple by applying query predicates on a Pv-
tuple z. All operations should be defined such that the evalua-

tion of formula corresponding to ¢’ is false iff the evaluation of
predicates on ¢ is false.

EXAMPLE. Consider the equi-join of two Pv-values, (x, CS EE)

and (D, CS). It is easy to see that the join will succeed if x = CS
and fail otherwise. As in the case of selection, EE is then
replaced by EE. The result of this join is represented as
(x, CSEE).

EXAMPLE. Consider another equi-join, (x, CS EE) with
(z, CS Math). Clearly, (x = z) will be false whenever x # CS
or z # CS. That is, both EE and Math are unsatisfiable. The
result of this join is represented as (xz, CS ) where y can
be regarded as a set of values (e.g., EE and Math) which are
unsatisfiable. Note that the two variable sets are unioned in
the resultant Pv-value. The relationship between the resul-
tant Pv-value and others are therefore retained. For a Pv-
value to be satisfiable, the true value of all variables in the
set must be identical.

In the case where neither Pv-value to be joined is definite,
the unsatisfiable values are removed and v is included in the
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result. Moreover, once Y is included in, say £.A.p, from then
on, values in t.A.p which are unsatisfiable will be removed.

ExaMPLE. Consider Pv-tables Tvy, Tvy, and Tv¥; on {A} as
shown in Table V. Ty is the join result of Tv; and Tv,. We
shall show later that Tv; can be reduced to a more concise
Pv-table. Tv; will be frequently referred throughout the rest
of this paper.

TABLEV
AN ILLUSTRATION OF JOIN
Tvs: A
Tvy: A | Cow, ay)
Tvy: A (w, ac) | Ow, cy)
(x, ab) (D, a) B (x, ab)
(v, cd) (I, b) te | (x, ab)
(z, 59 5| (@ by
5 | .49

According to the above discussion, the definition of Pv-
tuple is extended as follows.

DEFINITION 3.2. Let D(A) be the set of @ for every a € D(A),
D(AND(A) = & forall A e U. A Pyv-tuple t on X is a map-
ping that associates with every A € X a set couple, i.e., Ay =
(v, p) where the variable set v < V(A), and the value set

pc DIAUDAUy}, pNDA) =D, acp=aenp,
vep=pNDA) =T, andlpl=1=v=0.

DEFINITION 3.3. A Pv-value t(A) = (v, p) is definite if ipl = 1,
indefinite if Ipl > 1 and p < D(A), and maybe if p\D(A) # &
where \ denotes set difference. A Pv-tuple t is definite if all
its Pv-values are definite. t is indefinite if at least one of its
Pv-values.is indefinite and none is maybe. t is maybe if at
least one of its Pv-values is maybe. A Pv-table Ty can be
partitioned into three subsets TvP, TV' and Tv™ according to
whether their tuple types are definite, indefinite and maybe,
respectively.

EXAMPLE. Pv-value (&J, John) is definite and (z, Susan Susanna)
is indefinite. Both (x, CSEE)and (xy, CS ) are maybe.

Originally, a Pv-table contains only definite and indefinite
Pv-tuples. To represent the query result in a Pv-table, Pv-
tuples that possibly (but not surely) satisfy a query will be
turned into maybe Pv-tuples. In the next section, we shall show
that a set of maybe Pv-tuples which actually represent indefi-
nite information can be identified. For the formal definitions of
the extended relational operations, refer to [7].

IV. RELATIONSHIPS AND SEMANTIC INTERPRETATIONS

In this section, we show how to interpret information from Pv-
tables in a semantically meaningful way. To interpret information
from a Pv-table is to map it to relations. The information content
of a Pv-table 7v, denoted by rep(7v), is the set of all possible rela-
tions represented by 7v. Exactly one possible relation (which can
be an empty set) in rep(7v) is true in the real world. The relations
not included in rep(7v) is assumed to be false.
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A. The Set of Possible Relations

Recall from Section III that variable sets are coupled' with
value sets in Pv-tables. In addition, a Pv-value corrésponds to
a logical formula and a Pv-tuple to a conjunction of logical
formulas. Thus, the mapping from a Py-table to a relation can
be defined as a mapping from variables to values. by which
tuples whose formulas are satisfied are included in the relation.

In the following, we define the mapping of variables, logical
formulas, Pv-tuples and Pv-tables. Then we give the definition
of rep(Tv).

DEFINITION 4.1. Let V = Usey V(A) and D = Uygey DAY U {7},
A valuation is a mapping 8 : V — D such that x € V(A) im-
plies 6{xye D(A) U {y}.

EXAMPLE. Consider Pv-table Student shown in Table III again.
One of the mappings is to map # into Susan, x into CS, and
y into Math. It is easy to see that there are totally eight
meaningful mappings for Pv-table Student.

DEFINITION 4.2. The logical formula of a Pv-tuple t is denoted
by A(8). A valuation & of A(t), XA®)), is a logical formula in
which each variable x in A(t) is replaced by &x).

There are two cases which cause a formula to be false. One
is that some of the variables are mapped into values which are-
unsafisfiable in a selection predicate. The other is that vari-
ables in the variable set are mapped into differest values or
which are unsatisfiable in an equi-join. If neither case exists,
the formula is true. Thus, we have the following lemma.

LEMMA 4.1. Let t be a Py-tuple in a Pv-table Tv on X. &A(z))
is true iff for every A in X there exists a value a € t.A.p N
D) A (Vx e tAV)(Hx) = a).

ExAMPLE. Consider (xz, CS ), which is the result of joining
(x, CS EE) and (z, CS Math). For the.logical formula of
{(xz, CS y) to be true, both x and z must be mapped into-CS.

DEFINITION 4.3. A valuation 6 of t, &), is a relational tuple if
&A(D) is true, and undefined otherwise. The values of &t)
is defined as 81).A = tA.p if tAv = &, and 5(1).A = &(x),
x € LA.V otherwise.

Let ¢, be a relational tuple and ¢ be a definite Pv-tuple. We
said that 1, is value equivalent to t, denoted as ¢, = 1, if 1, = &¢).
DEFINITION 4.4. A valuation 8 of a Pv-table Tv maps Tv into

a relation and is defined as d(Tv) = {8() | §A(2)) = true

Ate Tv). &Tv) is an empty relation (i.e., an empty set) de-

noted R, if Vt € Tv, &1) is undefined.

DEFINITION 4.5. Assume that A; # A; = V(A;) N V(A) = <.
A valuation & of a Pv-table Tv on X is bounded if for
each x € t.Av, t; € Tv, A € X, the following conditions
hold: ’

1) 8(x) # y = 6(x) € 1, A. pND(A)U{a| @ € 1,.A. pND(A)},
2) §(x) =y =(y €1,.A.p)
Al eTv)(xe 1 AVAY g1 AP),

Throughout the rest of this paper, when we mention a
valuation, we mean a bounded valuation.
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DEEFINITION 4.6. rep(1v), the information content of Tv, is de-
fined as rep(Tv) = {R 1 (AO)}(XTv) = R)}.

EXAMPLE. Consider Pv-table Tv; shown in Table V again. Let
6 be defined as &w) = &x) = a, 8(y) = d, and &z) = b. We
have &7Tvs;) = {<a>}. Consider another & with &(w) = c,
J(x)=b, and §(y) = 8(z) = d. We have & (Tv;) = {<b>, <d>}.
The rest of mappings for Tv; can be derived similarly.
rep(Tvs) is shown in Table VL

TABLE VI
THE SET OF ALL POSSIBLE RELATIONS

rep(T'vs) -

Al [4] [4] [4] [4] [4]
3 h | @ b
TR

It is worthwhile to emphasize here that indefinite informa-
tion are distinguishable from maybe information in a Pv-table.
Indefinite information is represented by either indefinite Pv-
tuples or a disjunction of maybe Pv-tuples. If a Pv-table Tv
contains such a disjunction Tvy; C v, R, & rep(Tv;). The in-
clusion of empty relation in the definition of rep makes it se-
mantically clearer.

B. Relationships Among Pv-Tuples

There are two kinds of relationships among Pv-tuples. One
is called disjunctive relationship (OR-ship, for short), and the
other join relationship (joinship, for short). According to these
relationships, three kinds of tuple sets each possesses an im-
portant property will be classified in the next subsection.

DEFINITION 4.7. Let Tv be a Pv-table on X. The condition of
OR-ship is defined as

OR-shipn(t, t) =ti€ Tvat;e Tva (VA e X) (1.Av =1.AV).

If t; and t; are related with an OR-ship, it can be logically
interpreted as t; v ;.

Recall that a selection with disjunctive predicates on a Pv-
tuple will result in a set of Pv-tuples, each corresponds to a
subpredicate. These Pv-tuples are related with an OR-ship.
The union and projection operations may also result in Pv-
tuples related with an OR-ship. Since they represent the same
data, it is possible to unite them into one. We -shall discuss
how Pv-tuples can be united in Section V.A.

DEFINITION 4.8. Let Tv be a Pv-table on X. The condition of
Jjoinship is defined as

joinshipn(t, ) =€ TvAtye Tv A @A € X)tAY N AV ED).

EXAMPLE, Let #, = <(x, ab)>, t; = t, ><" <(w, ac)> = <(xw, ay)>,
and t, = £, ><" <(z, bd)> = <(xz, by)>. t; and 1, are related
with a joinship as they are joined by the same Pv-tuple ¢,
Since joined variables are collected in variable sets, #; and #,
share with variables in £ (i.e., x). And, the truth of the formula
of #; implies x = w = a and that of ¢, implies x = z = b. Hence,
t, and ¢, cannot both be true.
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C. Co-exist, Co-nonempty, and Co-instance Sets

DEFINITION 4.9. A set of Pv-tuples is co-exist if there exists a
valuation which maps each Pv-tuple in the set to a rela-
tional tuple. The set is co-nonempty if there does not exist a
valuation by which all the mappings of tuples in the set are
undefined. It is co-instance if all valuations map it to at
most one tuple. A set is maximal co-exist if it is co-exist and
none of its proper superset is co-exist. It is minimal co-
nonempty if it is co-nonempty and none of its proper subset
is co-nonempty. Similarly, it is maximal co-instance if it is
co-instance and none of its proper superset is co-instance.

ExXAMPLE. Consider Tv; in Table V again. Either #; or ¢, will be
mapped into a tuple in any valuation. Thus, {#;, #} is not
co-exist but co-nonempty. In contrast, it is not difficult to
verify that {#,, 3} is co-exist but not co-nonempty. The for-
mer is co-instance, but the latter is not. ‘

Before discussing these three kinds of Pv-tuple sets, let us
define some new notations.

Notation. Let Vr(A) = Uer, tA.v and DpfA) = Uen tA.p N D(A).
Let Tn(A, x) denote the set of Pv-tuples in 7v where the
variable set of A contains variable x, i.e.,

Tr(A,x)={tlxe tAv ate Tv}.
Note that Pv-tuples in Tr(A, x) are related with a joinship
on A by x.

EXAMPLE (cont’d). Vg, (A)={w,x,y,z}, D, (A)={a,b,c.d},

and Ty, (A, x) ={t;, 13,14, 15}

C.1. The co-exist set
DEFINITION 4.10. A valuation § is a concordant valuation of
Pv-table Tv if &) is defined (i.e., A1) is true), ¥V t € Tv.

Note that a Pv-table Tv is co-exist iff there exists a concordant
valuation for it. In the following, a set called concordant closure
will be defined. We shall show that a concordant valuation will
map all variables in a concordant closure into an identical value.
DEFINITION 4.11. A concordant closure of x over A of Tv, de-

noted by V;v (A, x), is a maximal subset of Vr(A) holding the

condition: x € VT*V(A, x) and for every pair of variables in

the set, say x, and x.,, there exists a set of variables x,, ..., x;,
Xisls -+vy Xm SUch that x; € t,Av Nty Ay, for 1 < i< m.
Tr,(A, x)denotes a maximal subset of Tv where the vari-

. able set of A contains some variable(s) in VT*V(A, x), L.e.,
Tr (A, x) = {f| . AVNV5,(A, ) = DAt € Tv).

Let {t1, ..., t;, tisy, --., tm} De the set T;:,(A, x) where x; €
AV N 1 Ay, If S(At,)) is true, we have &(x) = 8xi) = a
where a € t.A.p N t,.A.p N D(A). If 6 is concordant on Tv,
we have &(x)) = -+ = &x) = &xiyy) = - = &x,) = a where
ae ﬂt,-eT;‘, A t,.A.p(1D(A). That is, a concordant valuation
will map all variables in a concordant closure into an identical

value. Conversely, if a valuation d maps all variables in a clo-
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sure into an identical value for each concordant closure over
Tv, by Lemma 4.1, ¢ is concordant. Therefore, the following
lemma holds.
LEMMA 4.2. Let Tv be a nonempty set of Pv-tuples on X. The
condition of a co-exist set Tv is:
co—exist(Tv) =

(VA € X)(Vx € Vi (A)) ﬂz A. pﬂD(A} %

1€y, (A,x)
V{’z‘fsvfzz}(A’ )= {x} ' Titz’la’%} (4, %)= {Z‘3,l4}

Since t;.A.p N 14.A.p N D(A) = D, {f,, 13, 14} is not co-exist.
However, {t,, t;} is co-exist. Note that £,.A.v N KAy = .
Thus, their variables are in different closures and can be
mapped into different values. The maximal co-exist sets in 7, are
{11, 83, 16}, {1, 13}, {3, B4, 15}, and {4, B}

EXAMPLE (cont’d).

C.2. The co-nonempty set

DEFINITION 4.12. A valuation § is a nonempty valuation of Tv
if (Iv) # R,

Note that Tv is co-nonempty if any valuation of 7v is
nonempty. That is, R, & rep(Tv). It is clear that R, & rep(TvD)
and R, ¢ rep(Tv"). Also, it is possible that Tv" is co-nonempty.
In the following, the nonempty valuation of a Pv-table with
single attribute will be discussed first. The extension to the
whole set of attributes then follows.

DEFINITION 4.13. Let Tv[A] denote the projection of Tv on A.
Given thar Tv, < TV, Tv|A] is co-indefinite on x, if
Tv, = Tm (A, x) and rep(Tv]A]) = rep({<(x, p)>}) where p
is a nonempty subset of D(A) (which implies R, & rep(Tvj[A])).

EXAMPLE (cont’d). Consider t; and #; in Tvs,.

rep({< (x, ab) >, < (x, ab) >}) = rep({< (x, ab) >}).

Hence, {1, #;} is co-indefinite on x. It means that the dis-

junction of #; and 1, is indefinite.

Suppose that Tv[A] is co-indefinite on x. The folowing
conditions must hold:

D (BreTv[AD)(y € t.A.p). Suppose otherwise, we r.A.p

for some r € Tv{A]. Let &x) = w. We have TvA]) =R,
a contradiction. Hence, A t € TVS[A]' such that we r.A.p.

Also note that ¢ t.A.p = [t Avl= 1. Hence, r.A.v = {x}
for 1 € Ty, 14;(4, x).

2) DN, - AP =D
aeﬂreTv_\.[A]t'A'pﬂﬁ(A)' Let &x) = a. We bhave

Suppose otherwise,

KTv,[A]) = R, a contradiction too.
Based on the above discussion, we have the following lemma.

LEMMA 4.3. Let Ty, = V¥, Ty, # @, and A € X. The condition
of a co-indefinite set Tv,[A] is:
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co- indefinite(7v,[A], x) = (1v,[A] = Ty, (A, ¥))

A (E te Tv[A)y e t.A.p)
A D(A)N ﬂt.A.p =0.

reTv,[A]

LEMMA 4.4. Let TV* = {t la € tAp N D@A) Ate Tv). Let Ty,
T Tv,# D and A e X. TV is co-nonempty iff it con-
tains a subset Ty, satisfying the condition:

co- nonempty(7v,)
= (34 € X){co-indefinite(Tv,[4], x)
a(Vae Dy, (A T\ AP UTV[X\ 4] = &
= {31v,, = v [X\ 4] }(co - nonempty(T,,)))

ATy, = U
v, T X\ATY
co-nonempty(7V,, )

ae Dy, (4)

Ty, UTvi[X\ A]P UTvi[X \ A]').

For the proof see the Appendix.

ExXAMPLE (cont’d). The set {3, 4} is the only co-nonempty set k
in 7vs.

C.3. The co-instance set

Suppose that all valuations map Pv-values #.A4 and 7.4 to at
most one value. There are two distinct cases as follows:
1) #Av N . Av = . Since there exists no relationship be-
tween #; and £, it must be that I(,.A.p U t.A.p) N D(A) = 1.
DAy N GAY # D, Let x € ,Av N Ay, Since any
valuation & maps x to exactly one value, it must be either
&t.A) = &1t,.A) or at most one of them is defined.

Thus, the following lemma holds.

LEMMA 4.5. Let Tv be a nonempty set of Pv-tuples on X. The
condition of a co-instance set Tv, is:

co-instance(7v) = (V A e X)(| Jr. A pND(A) =1
. tely
v (3x e V(A))(Tv = T, (4, x))).
EXAMPLE (cont’d). The sets {t;, #;, &y, 5} and {f, fs} are
maximal co-instance sets in Tvs.

REMARK. Note that —co—exist({#, }) = co-instance({z; #}),
for 1, ; in Tv. Also note that co—indefinite(Tv[ATY) = co~in-
stance(Tv[AT").

D. The Formalization of Interpretation

D.1. rep(Tv)

Based on the properties of the Pv-tuple sets discussed above,
rep(Tv) can be formalized in a semantically meaningful way. -

THEOREM 4.1. Let V¥ denote the union of all sets in Tv" satis-
Jfying the condition in Lemma 4.4.
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rep(Tv) =
{rep(TvD ) U rep(Tvl umhU Tv,x)

‘(H Tv,, c TvY )(max— co—exist, y (Tver ))}

min—co~existTvM (Tv,,) is true iff Tv,, is a maximal co-
exist set in TV,

For the proof, see the Appendix. )

According to Theorem 4.1, to determine whether a rela-
tion R is in rep(7v) is equivalent to determining whether
there exists a maximal co-exist set Tv,, < Tv" such that R =
&TvP)y U &Tv' U TV U Tv,,). Similarly, to determine whether
R, & rep(TVv) is equivalent to determining whether there exists
any definite, indefinite, or co-nonempty set of Pv-tuples in 7v.

D.2. The bound of interpretation

As noted by Lipski [28], the external interpretation has two
bounds:

1) A lower bound {iQll: the set of (extended) tuples for
which we can conclude that they surely satisfy Q and

2) An upper bound IQll,: the set of (extended) tuples for
which we cannot rule out that they possibly satisfy Q.

It has been noted that
Qs v Ol # 1041 U Q51| and

WOy A Qy Il # 1o, N 1Ol
In [8], we showed that

Qv Qoll=11 Qi N U @, Il and
MO; A Qoll=11Q NN IO, NI

where IQIll corresponds to the query result represented by Pv-
table.

If a query Q is formulated on a disjunctive database, we can
conclude from the information content that not only definite
tuples but also disjunctions of tuples satisfy Q. Moreover, we
can also conclude that some conjunctions of tuples cannot sat-
isfy Q simultaneously.

EXAMPLE. Consider Pv-table Tv, as the result of query Q shown
in Table VIL. The lower bound of Q is an empty set while the
upper bound is the whole set of tuples. However, from the
relationships in Tv,, we can conclude that either #; or #, satis-
fies Q while #; and ¢, cannot satisfy Q simultaneously.

TABLE VII
AN ILLUSTRATION OF INTERPRETATION BOUND
Tvy: Ay A,
fy: (x, al?) (D, ¢)
t (x, ab) (D, d)
bl wyay | @,
bl wz,by) | (@,9)

Alternatively, liQl can be defined as the set of relational
tuples for which we can conclude that they exist and satisfy O,
and IQll, as the set of relational tuples for which we cannot

rule out the possibility that they exist and satisfy Q. A tighter
bounds of interpretation can be defined as:
1) IQllp«: the set of nonempty relations for which we cannot
rule out the possibility that one of them exists and satis-
fies Q; and ,
2) liQlip«: the set of minimal relations for which we can con-
clude that exactly one of them exists and satisfies O

where a minimal relation is a possible relation which does not
contain another possible relation.

THEOREM 4.2. Let Tv represent the result of query Q. We have
1) QM = Nrereparvy R = rep(Tv);
2) |0l = {RI(R € rep(Tv)) A (B R, € rep(Tv))(R, < R)}
c repMPUTY U,
3) 1@ = rep(TV\{ R, }; and
4) "Q"h = URErep(Tv) R.
For the proof, see the Appendix.

REMARK. Let R; = IQl; and Ry, = lIQIl;. It is clear that R; © Ry
for each Ry € lQll+; and Ry« < Ry, for each Ry« € Qs
Moreover, for each Ry« € lIQll«, there exists Ry« € IQ\lx« such
that Rl* c R},*.

D.3. The bound of cardinalities of relations in rep(Tv)

Users may be interested in the bound of cardinalities (i.e.,
the number of tuples) of relations in rep(7Tv). The aggregate
operation, count, is used for this purpose. The bound can be
formulated as the following theorem.

THEOREM 4.3. Let Tv be a Pv-table. Assume that t; # t; = &1;)
# &) for any valuation 8 and t, t; in Tv. The cardinalities
of relations in rep(Tv) range from V21 + DA + [Ty, to
ITVP) + TV'| + [TV Where TV gy is @ minimum subset-of TV
such that

(\7’ I, c TvM)(min —CO—nonempty .y (Tvy) = Ty, Ty, # QS)
and TV g, is a maximum subset of TVY such that
[V Ty, c TvM )(max ~co—instance . u (T,) =TV, NTv,| = 1).

min—co~ NOREMPLY.. (Tv,) is true iff Tv, is a minimal co-
nonempty set in WM max-co- instanceTvM (Tv,) is true iff
Tv, is a maximal co-instance set in Tv™.

For the proof, see the Appendix.

EXAMPLE. Consider Tv; shown in Table V. There are one co-
nonempty set, i.e., {#3, &4} and two co-instance sets, i.e.,
{t), t3, t4, t5} and {t,, t}. Neither definite nor indefinite Pv-
tuples is in Tv;. Hence, the cardinalities of relations in
rep(Tv*) range from 1 to 2.

V. CONCISE REPRESENTATIONS

In this section, we show how to reduce a Pv-table into a
more concise form as the query result. By examining the rela-
tionships among Pv-tuples, redundant Pv-tuples can be identi-
fied easily. In addition, it can be determined whether two Pv-
tuples represent the same data and uniteable. Therefore, a Pv-
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table can be reduced by removing redundant Pv-tuples and
uniting Pv-tuples. The same information content is preserved
after the reduction. Moreover, the reduction is commutative
with relational operations.

Furthermore, it is possible to further condense a Pv-table
while preserving the same information centent. For example,
since rep({<(uv, ay)>, <@w, ay)> <(xz, by)>}) =
rep({<(uv, ay)>, <(xz, by)>}), <(xw, ay)> can be eliminated.
However, as the information about some variables (e.g., W)
will be pruned off, this condensation is not commutative with
relational operations. It is only suitable to condense Pv-tables
as the results of queries when there are no subsequent opera-
tions on these results.

ExAaMPLE. Consider Pv-table Tv; shown in Table V and Pv-
tables Tv; and Tv; shown in Table VIIL It can be verified
that rep(Tv;) = rep(Tvg) = rep(7v3). Tv; is the reduction of
Tv while 7v; is the condensation of Tv_:,. The difference

between Tv; and Tv; is that the information about w and z
are pruned off after the condensation.

TABLE VIII
AN ILLUSTRATION OF REDUCTION AND CONDENSATION
Tv; : A
(wy,cy) | Tv;: A
(x, ab) (x, ab)
@y, dy) @, cdy)

A. Reduction

A query on Pv-tables may produce redundancies. The major
sources of redundancies come from projection and union op-
erations. If Pv-tuples #; and ¢ represent the same data in a Pv-
table and the set of possible tuples represented by ¢; is a subset
of 45, 1; is redundant and can be removed. Also, if there exists
a value equivalent Pv-tuple in the same Pv-table for each pos-
sible tuple that #; represents, #; is redundant and can be re-
moved. Besides, as Pv-tuples may be related with an OR-ship,
it is possible to unite these Pv-tuples into one. The reduction
process is to eliminate redundant Pv-tuples -and to unite Pyv-
taples.

DEFINITION 5.1. Let £; and # be Pv-tuples in a Pv-table Tv on X.

1, is said to be redundant

(Etj € Tv)((‘v’A € X)(ti.A.v o1 Av
A 1. A.pND(A)s ;. A.p(1D(4)))
v (v, e rep(tl.))((ﬂtj € Tv)(t, = zj))‘.

EXAMPLE. In the same Pv-table, <(x, ab )> is redundant if

<(x, ab)> also exists. Further, <(ux, aw)> is redundant if
either <(u, ac)> or <(x, ab)> also exists.

DEFINITION 5.2. Let t;, t; be Pv-tuples in Tv. t; and t; are unite-
able if

OR‘ShipTv (ti7 fj) A (3 A€ X)(VA € XM[J(Z’,AP = fjAP)
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Let 1, be the united tuple of t; and t, which can defined as
(VA e X)((tu.A.v =1,.A.v)

A (zu.A.p = (zi.A.pUzj.A.p)ﬂD(A)

Ut A.pNt;.A.p)N(D(A) U{y/})))

THEOREM 5.1. rep(Tv) = rep(1v°) where Tv° denote the re-
duction of a Pv-table Tv.

For the proof, see the Appendix.

ExampLE. Consider Pv-table Tv; shown in Table V. After the
reduction, Pv-tuples (ux, ay) and (xz, by) are eliminated
and (x, eb) and (x, ab) are united. The result of reduction
Tv; is shown in Table VIII.

B. Farther Condensation of Pv-table

There are two cases that a reduced Pv-table 7v° can be con-
densed to a more concise Pv-table 7" such that rep(7V) =
rep(7v°) and 1TV < [7v°|. The first case to condense Tv° is to
eliminate superfluous Pv-tuples.

DEFINITION 5.3. Let Tv° be the reduced Pv-table of Tv and t €
Tv°. We say t is superfluous if rep(Tv°) = rep(TvoV).

EXAMPLE. Since rep({<(x, ab)>, <(y, ab)>, <(z, ab)>}) =
rep({<(x, ab)>, <(y, ab)>}), <(z, ab)> can be eliminated.

For a set of Pv-tuples which are not related with any join-
ship, as the above example, an efficient algorithm has been
proposed to identify and eliminate the superfluous tuples [41].

If Pv-tuples are related with joinship, some superfluous Pv-
tuples can be identified as the following lemma states.

LEMMA 5.1. Let Tv°® be the reduced Pv-table of Tv and t; € Tv°.
#; is superfluous if there exists t; € Tv® with the condition:

co—instanqe({z,-, tj})
A (VA e X) 5. AN Av # D = 1. A p\D(A) € zj.A‘pﬂD‘(A))
AV e\ g, l‘j})(VA € X)(l,-.A,vﬂl,‘AA.VQt/.A.vﬂtk.A.v)).

For the proof see the Appendix.
The other case to condense 7v° is to merge several Py-
tuples into one.

DEFINITION 5.4, Let TV° be the reduced Pv-table of Tv. Two
Pv-tuples t; and t; in Tv° are mergeable if rep(TvO\{t;, 5y U
{tn}) = 1ep(TV°) where t,,, the mergence of 1 and t;, is de-

fined as: :
(Vaex)(sAvNt Av=C=r.Av= L AVALLAP=t.Ap)
A (li.A.vﬂtj.A.v¢@=>tk.A.V:Z,».A.vﬂtj,A.v
At A p=(5.4.pUt;. A.p) N D(A)
oA 0154 )B4 U ).

The following lemma states that two Pv-tuples #; and 5 in
TV° are mergeable if the conditions hold:

1) {#, ;} is co-instance.



CHIU AND CHEN: AN EXPLORATION OF RELATIONSHIPS AMONG EXCLUSIVE DISJUNCTIVE DATA 937

TABLE IX
A TRANSFORMATION FROM A PV-TABLE TO A C-TABLE
TVS: Al AL A3
| (x), aby) (%, as07) (%3, asbs)
| Guab) | (x,, aby) | (x5, asby)
| @ab) | Goab) | (xy, agby)
Ly o, ay | 0y fzdz) (u3ws, c39)
s | v, ey (WZ’ &) | (vowy, dy)
Tcs: AL Az Ay con

ho| x X X3
. X1 Xo X3
3. X1 Xy

Wl w | ws
ts: Uy Wy £)

(xy=a)A(x, =a,Vx, =b))A(x3 =a; VX3 =b,)
(xp =a v =b)A(x, =a) A(x3=a3Vx3 = by)
X (x =a; vz =b)A(x; =a, VX, =b)) A (x; = ay)
= Ay =2)A (W, =) A (Ws =c3 Aw; =1y)
(g =cy Ay =v) AW, =d)) AWy =d3 Aw; =vy)

2) t; and ¢, differ from each other in only one Pv-value.
3) The relationships among Pv-tuples should not be changed
after the merging process.

Condition 1) follows directly. We illustrate by the following
two examples the reason that conditions 2) and 3) must hold.
EXAMPLE. Consider a Pv-table {f:<(x, ab), (w, cd)>,

t,:<(x, ab), (w, ¢d)>}. Suppose that # and ¢, are merge-

able, and the mergence of them is t,, = <(x, ab), (w, cd)>. As

t; and t, differ from each other in more than one Pv-value,

by choosing & such that &x) = a and &w) = d, a relation

{<a, d>} which is incorrect will be produced.

EXAMPLE. Further, consider the Pv-table {¢; : <(xy, ay)>,
T B <(xz, by)>, 31 <(vz, cy)>}. Suppose that #; and ¢, are

mergeable, and the mergence of them is ¢, = <x, aby)>. {1,

13} is co-exist, however, {#, #3} is not co-exist. Conse-

quently, {t,, 3} will cause the producing of {<b>, <c>}

which is incorrect.

LEMMA 5.2. Let Tv° be the reduced Pv-table of Tv and t; and t;
in TV°. t; and t; are mergeable if the following conditions
hold:

co~ instance({t,-, t]})
A (34 € X)(t; A pO\D(A;) # t;. A pN D(A,)

A (Y 4y € X\ A)(15.4.pND(4,) = 1. A, pN D(4,)))
A (Vtk e\{s, tj})(tk.A.vﬂ(t,..A.vUtj.A_v) = tm.A.v)

where t,, is the mergence of t; and t;.
For the proof, see the Appendix.

EXAMPLE. Consider Tv; shown in Table VIII again. Pv-tuples
t; and t; in Tv," are mergeable. The result of condensing Tv;
is also shown in Table VIII.

C. Transformation

In this subsection, we show how to transform a Pv-table to a
C-table [20]. We have shown that the redundant and superflu-
ous Pv-tuples can be identified and removed from a Pv-table.

Additionally, the uniteable and mergeable Pv-tuples can be
also identified and merged. Yet, a Pv-table may contain Pv-
tuples which are co-instance but neither uniteable nor merge-
able. Co-instance Pv-tuples can be merged into one after they
were transformed to a C-table. A more condensed C-table can
therefore be obtained. In considering the transformed C-table
as an alternative query result, users should notice that it is not
really “‘equivalent” to the original Pv-table. This is because
that indefinite data are no longer distinguishable from maybe
data in the C-table.

In the following, we discuss the transformation process. Let
A be a mapping from a Py-value .4 to its corresponding logi-
cal formula in a C-table, defined as

At A)=
true if tAv={
(\/aE +ApND(4) (x= a)) A (/\yet. anxl®= y)) x €t A.v otherwise.

Note that unsatisfiable values are ignored in the mapping. The
transformation from a Pv-tuple ¢ to its corresponding C-tuple ¢,
is defined as

x ift.Av+d
and t..con= /\ AMt.A
. ¢ D AMeA)
a otherwise

where x € tA.vand {a} =tA.p.

EXAMPLE. Table IX depicts a tuple-by-tuple transformation
from a Pv-table Tvs to a C-table Tcs.

In order to obtain a more condensed C-table, the redundant
and superfluous Pv-tuples should be identified and removed
before the transformation. The transformation is then applied
to the maximal co-instance sets corresponding to Tv,,,. Recall
from Section IV.D that Tv,,, is a maximum subset of 7" such
that (V Tv, C Tv) (co—instance(Tvs) = [TVe N T4l = 1). For
each maximal co-instance set Tv;, Pv-tuples in the set are
merged into one C-tuple #.. The merging process is defined as
follows.

x if x €yepy ti- AV
(P {a} = N ep, 1i-A. p D(A) otherwise,
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TABLE X
A REDUCED C-TABLE
A | A | Ay con
X1 n | B | GmEa V=)A=V, =b)A (X =0 Vi =b)
Ax = a Vx,=a, Vi, =a,)
e | wp | w3 (O =crayy =z) A (wy =)Wy =3 AW, = 1))
V(g = Ay =v) AW, =dy) A(wy =dy Awy =Vy))

for each A € X; and

t,.con= \/ t..com.
€T

Furthermore, if these Pv-tuples are related with an OR-ship,
they can be merged in a more readable logical formula.

= = A = N A*(t.. )
1,.con {AQ\X[HED,\\,/‘(A)X a)/\(yam‘v\xx y])/\[rie\r/“(“xl {t A)J

where

A (s,4) = (Vaeyapnio * = a) if [5.A.pND(A) < |Dr, (4) /2
(/\aeti.A.pﬂﬁ(A) x# a) otherwise;

andx € f.A.v.

It can be shown that the transformation is logically equiva-
lent.

ExXAMPLE (cont’d). A reduced C-table which is transformed
from Pv-table Tvs with a merging process is given in Table X.

V1. CONCLUSION

The relationships among Pv-tuples, namely disjunctive re-
lationship and join relationship, have been explored. Three
kinds of Pv-tuple sets were classified according to these rela-
tionships. Each set possesses an important property, namely
co-exist, co-nonempty or co-instance. Based on these proper-
ties, we have shown that the interpretation of Pv-tables can be
formalized in a semantically meaningful way. In addition, the
lower and upper bounds of interpretation and the range of
cardinalities of possible relations can also be characterized.

Moreover, we have shown how to reduce a Pv-table as the
query result into a more concise form. The reduction process
preserves the same information, and thus is commutative with
relational operations. The condensation process can further
reduce more Pv-tuples. However, it may lose some relation-
ships among Pv-tuples, and thus is not commutative with rela-
tional operations. By examining relationships among Pv-
tuples, redundant and superfluous Pv-tuples can be identified
and removed. The conditions for determining uniteable and
mergeable Pv-tuples, and the process for uniting and merging
Pv-tuples were also given. )

We also showed how a Pv-table can be transformed to a C-
table with a merging process in order to obtain a more con-
densed query result. The transformation is logically equivalent.
However, due to the limitation of C-table, indefinite informa-
tion will no longer be distinguishable from maybe information.

APPENDIX

PROOF OF LEMMA 4.4. Let Tv, be the set satisfying the condi-
tion. Ry ¢ rep(7v,) can be proved by induction with the
ground R ¢ rep(Tv{A]).

‘We then show that each minimal co-nonempty set 7V, satisfies
the condition by induction. As the ground, if Tv,{A] is mini-
mal co-nonempty, it must be co-indefinite on certain variable.

Assume that 7v{X\A] is co-nonempty iff it satisfies the condi-
tion. We want to show that 7v; is co-nonempty iff it satisfies
the condition. Suppose otherwise, 7v; is minimal co-

nonempty but does not satisfy the condition. It implies Tv,[A]
is co-indefinite on x, Tv[X\ATPUTv![X\AY =& and
TviIX\ A]M is not co-nonempty for some a € DTVA (A).
Hence, there exists 0 such that (Tv; [X \ A]) = Ry Letting
&t.A) = a, we have &Tv;) = R, a contradiction. O
PROOF OF THEOREM 4.1.  part. Let R = &(Tv) € rep(7v) and .
Tv, be the maximal subset of 7v such that R = &Tv,). It'is
clear that (W’ UD ) Tv, and Tv NTY™M is co-exist.
Thus,

Tv, c VP U U UTy,, < Tv

where Tv, NTv¥ < Tv,, . Consequently,

(v =8P U Unvy UTv,,)=6(Tv)=R.
That is, R € rep(Tv2)YUrep(Tv! UTvY UTv,,).

D part. We claim that

there exists & such that
s(mv?Un' Ut UTv,,) = 8°(Tv). Suppose, otherwise, it
must be that §"(7v \ (VP Uy Uy UTv, ) # R for any
& subject to

SnPUn UV Ut =@ Un' Unv¥ UTv,).

It implies that there exist Tv, < Tv \ (Iv® UTv' UTvY UTv,,)
and Tv,, ¢ TV such that co—nonempty(Tv,UTv,,) is true.
It causes a contradiction to the definition of TV
]

PROOF OF THEOREM 4.2. (1), (3), and (4) follow directly from their
definitions. We only show that [|Q] . < rep(7v” U Tv{ U,

That is, for each R = &7Tv) € lIQlls, there exists & such that
R=8TmPUn UTY). Suppose otherwise, it, must be that

ST\ (PUD UDY)) # Ry for any & subject to
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FmPUD UDY) = (P UV UTVY). Tt implies that
there exist 7Tv, € Tv\(TvDUTV’UTvNUTvex) and Tv,, C
TV such that co—nonempty(Tv,UTv,,) is true. It causes a
contradiction to the definition of Tv". ]

PROOF OF THEOREM 4.3. Min part. We first claim that the
minimum number of tuples > ITYPl + 1TV + {TVminl. Suppose
otherwise, there exists 7v,, < Tv” such that TVl < 1TV
and &Tv,,) = &Tv") for some 8. By the definition of TV,
there must exist Tv; = Tv" such that Tv, is co-nonempty and
v,NTv,, =J. Since 6(Tv,UTv,) = 6(Tv,,), we have
&Tvy) = R, or &Tv,) < &Tvy), a contradiction. We then
claim that there exists & such that I&Tv")l = [TV, Suppose
otherwise, for any 9, there exists a minimal co-nonempty set
Tv, such that I§Tvl > 1. Let Tv,, = {tlt € Tvs At & Tvpy A
(3O(&Tv,)l > 1)}. We have &Tv,,) # R,, for any 9, i.e., Tvy,
is a co-nonempty set. Since Tv, > Tv,, = &, it causes a
contradiction to the definition of 7v,,;,. Therefore, there ex-
ists R & rep(Tv) such that IRl = [TV IHTVIH TV .

Max part. Since any valuation maps a maximal co-instance set
to at most one tuple, the maximum number of tuples < i7v°l
+ [TV + 1TV,ngd. We then claim that Tv,,, is co-exist, which
implies (K TVimg)l = (TVyel for some 6. Suppose otherwise, #;
and ¥ in TV, are not co-exist. It implies #; and # are in the
same co-instance set, a conftradiction to the definition of
TV Therefore, there exists R € rep(Tv) such that IRl =
ITVP) 4+ 1TV + 1TV . |

PROOF OF THEOREM 5.1. There are three kinds of reduction
processes:

1)t is redundant with #; and has been removed. By
Definition 5.1 and Lemma 4.1, we have 8(A(#)) is true
=> 8(A(t)) is true for any valuation 6. And, by Defini-
tion 4.3, we have &) = &). Hence, we have rep(Tv) =
rep(Tv\r;).

2) t; is redundant with a set of definite Pv-tuples and can be
removed. It is clear that rep(Tv) = rep(TV\f;).

3)t; and ¢ are uniteable and have been united as t,. By
Definition 5.2 and Lemma 4.1, we have (A(t)) v A1)
is true = &(A(t,)) is true for any valuation 6. In addition,
by Definition 4.3, we have &t) = &t,) if &t)) is defined.
Symmetrically, &) = &t,) if &t is defined. Hence, we
have rep(Tv) = rep(TW\{t;, ;} LU 1,). |

PROOF OF LEMMA 5.1. To show rep(Tv°) = rep(Tv°\) it is
sufficient to show 1) rep({#;, ;}) = rep({#;}) and 2) rep({#, 4,
%)) = rep({t;, t}) for all # in Tv°\{z, }. According to
Lemma 4.1 and Definition 4.3, the first two conditions en-
sure that if &¢) is defined, there exists & such that &) =
&(t). Hence, 1) holds. To prove 2), we note that the last two
conditions ensure that co-exist({t;, t%}) = co-exist({t;, t}).
That is, if there exists a valuation & such that both &t;) and
&t;) are defined, there must exist another valuation & such
that both &(2) and &(zo) are defined. Let & be subject to
() = &t and F(x) = &x) for x € ;. A.vt;. A.v. We
have &t;) = &(t). Hence, 2) holds. i}

PROOF OF LEMMA 5.2. To prove

rep(Tv®) = rep(Tv° \ {1, tj}Utm)

it is sufficient to show 1) rep({#, 4}) = rep({t»}) and 2)
rep({t;, &, &}) = rep({fm, &}) for all & in Tv°\{£;, 4;}. Accord-
ing to Lemma 4.1 and Definition 4.3, if either &(;) or &%) is
defined, the first condition ensures that there exists & such
that either &t) = 8(t.) or &) = J(t,,). Conversely, if §(z,)
is defined, the first two conditions ensure that there exists &
subject to &(x) = §(x), x € 1. Av, A € X. &) = (1) if
d'(x) € t;. A. pND(A), &1) = §(t,) otherwise. Hence, 1)
holds. To prove 2), we note that the last condition ensures
that co-exist({t,, t}) < co-exist({t;, t;}) A co-exist({t;, tx})).
Moreover, there exists a valuation & such that both &r;) and
&ty are defined, for a similar reason in proving 1), iff there
exists another valuation & such that both &'(#,,) and &'(#;) are
defined, and &t) = & (t,) and &t) = &(f). Symmetrically,
so do ¢; and #. Hence, (2) holds. O
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