390 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

Distributed Query Processing in a Multiple
Database System

ARBEE L. P. CHEN, MEMBER, IEEE, DAVID BRILL, MARJORIE TEMPLETON, anp CLEMENT T. YU

Abstract—Mermaid is a testbed system which provides integrated
access to multiple databases. We have developed two query optimiza-
tion algorithms for Mermaid. The semijoin algorithm tends to reduce

the data transmission cost while the replicate algorithm reduces the .

processing cost. In this paper, we present an algorithm which inte-
grates the features of these two algorithms to optimize the processing
cost as well as the transmission cost. Particularly, we consider a dy-
namic network environment where processing speeds at each site and
transmission speeds at each link can be variable. Moreover, distrib-
uted processing of aggregates is considered based on the functional de-
pendency among the fragment attribute, the aggregate attribute, and
the group-by attribute. We also apply semantic information for effi-
cient query processing.

1. INTRODUCTION

ERMAID is a testbed system which runs on top of

multiple databases stored in different data manage-
ment systems (DBMS’s) in network computer sites [20].
Although many of the DBMS functions are actually pro-
vided by the underlying DBMS’s, Mermaid appears to the
users to be an extended DBMS which allows them to ac-
cess data from multiple databases. The goal of Mermaid
is to provide integrated access to these databases using a
common language, either ARIEL [18] or SQL.

Database users may need not only their own data, but
also data in other databases to solve a specific problem.
Data may reside in different databases for many reasons
such as ownership, security classification, performance,
or size. Data may be stored redundantly in different com-
puters for reliability or survivability. In addition, hard-
ware or software upgrades may create a need for inte-
grated access to both old and new databases or for a tool
to aid data migration from an old to a new system.

Distributed query processing has been considered
strongly related to the performance efficiency of a system
with the databases distributed in a network. Many distrib-
uted query processing algorithms {11, 31, [4], [6]-[12],
[16], [22], [23], [25], [28] have been proposed. Most of
these algorithms assume that the data communication cost
is dominant and make use of semijoins [2] to reduce the

Manuscript received November 20, 1987; revised September 6, 1988.

A. L. P. Chen is with Bell Communications Research, Piscataway, NJ
08854.

D. Brill is with Information Sciences Institute, Marina del Rey, CA
90292.

M. Templeton is with UNISYS, Santa Monica, CA 90406.

C. T. Yu is with the University of Illinois at Chicago, Chicago, IL
60680.

IEEE Log Number 8826078.

amount of data transfer. While such an assumption is rea-
sonable for long-haul networks where data communica-
tion costs are high, it may not be valid for fast local net-
works. In contrast, the fragment and replicate query
processing strategy was used in distributed INGRES [12].
Its main goal is to achieve a high degree of parallelism by
partitioning one relation among the processing sites and
replicating all other needed relations at each processing
site. However, for many queries, substantial data transfer
is required before parallel processing can take place un-
less many relations are duplicated in many sites.

Two algorithms have been developed for Mermaid. The
first algorithm, the semijoin algorithm [24], [25], is an
extension to the SDD-1 algorithm [3] which assumes that
the most important cost is the number of bytes transmitted
between network sites. The algorithm was extended to
support fragmented and replicated relations. This algo-
rithm is one of the most complete algorithms in the cur-
rent literature [14], [17] and one of the few that have been
implemented and tested. The other algorithm, the repli-
cate algorithm [5], [27] is derived from distributed
INGRES. It assumes that CPU overhead dominates net-
work costs and uses fragmented relations to maximize the
amount of parallelism in operations.

A performance analysis has been done for these two
algorithms in the Mermaid testbed environment [51, [19].
It was found that the replicate algorithm outperforms the
semijoin algorithm in this environment which is based on
a local area network. In this paper, an improved version
of the replicate algorithm, named the integrated algo-
rithm will be presented. The integrated algorithm consid-
ers minimizing the processing cost as well as the network
cost, provides distributed processing of aggregates, and
combines the features used in the semijoin and replicate
algorithms. Query response time is the optimization cri-
terion of the integrated algorithm.

An outline of this paper is as follows. In Section II, the
integrated algorithm is presented. The major parts of this
algorithm, i.e., the heuristic for minimizing processing
cost as well as network cost, semijoin applications, and
distributed aggregate processing are further addressed in
Sections III, IV, and V, respectively. We conclude in
Section VI.

II. THE INTEGRATED ALGORITHM

The integrated algorithm consists of the following seven
steps:

0733-8716/89/0400-0390%$01.00 © 1989 IEEE

CHEN et al.: DISTRIBUTED QUERY PROCESSING

1) execution of selection clauses

2) choice of the fragmented relation and processing
sites

3) semijoin application

4) data transmission

5) parallel query processing

6) result assembly

7) final processing.

The integrated algorithm works as follows. The selec-
tion clauses in the query are executed in Step 1) at each
site which contains relations/fragments referenced in the
selection clauses. Then, in Step 2), a heuristic is applied
to choose a fragmented relation to remain fragmented and
also to choose the processing sites. Profitable semijoins
are identified and executed in Step 3). These reduce the
size of the relations/fragments which need to be moved
according to the results in Step 2). The data movement is
done in Step 4). In Step 5), the query is executed in par-
allel at each processing site. This includes the execution
of join clauses, the retrieval of target attributes, and pos-
sibly the preprocessing of aggregates. The results at each
processing site are transmitted to the result site (which is
the site where the query originated) in Step 6). Finally, in
Step 7), the final processing is done, which includes final
processing of aggregates, elimination of duplicate tuples
in the answer relation, and formatting of the answer re-
lation for output printing.

We briefly discuss the possible advantages of the initial
execution of selection clauses in the following.

1) The selection clauses, especially the ‘="’ selec-
tions, tend to select just a small number of tuples from a
relation, thus greatly reducing the size of a relation and
reducing the cost to transmit this relation if it has to be
transmitted.

2) When one selection attribute is the fragment attri-
bute (defined as the attribute(s) by which a relation is
fragmented) of a fragmented relation, we can discover this
semantic information by initial execution of the selection
clause. This may save some unnecessary transmission and
processing cost.

Example: Consider the following query:

’

retrieve PORT.Name
where SHIP.Fleet = ““2”’ and
SHIP.Base = PORT.Id.

If the relation SHIP is fragmented by the attribute Fleet,
and the relation PORT resides in its entirety at the same
site as the fragment of SHIP that has ‘2"’ as the value of
the Fleet attribute, then this query can be processed lo-
cally. If this semantic information is not used, some trans-
mission and processing time will be wasted because we
have to choose the processing sites, replicate PORT at
each processing site, process the query at each processing
site, and combine the results from the processing sites to
generate the answer. We call this semantic information a
select-fragment dependency, i.e., from the selection
clause, the single useful fragment can be determined.

3) Another kind of select-fragment dependency is pos-

sible. Consider the following query:

retrieve PORT.Name
where SHIP.Id = ‘2001’ and
SHIP.Base = PORT.Id.

If SHIP.Id functionally determines [21] SHIP. Fleet (e.g.,
Id is a key in SHIP) and SHIP is fragmented by the at-
tribute Fleet, then SHIP is also fragmented by the attri-
bute Id. Moreover, if PORT resides in its entirety at the
same site as the fragment of SHIP which contains a tuple
of SHIP with the Id attribute *“2001,”” then again this
query can be processed locally. For the same reason as
above, we can save some unnecessary transmission and
processing time if we do the initial execution of the se-
lection clause and discover this semantic information.

III. CHOOSING THE FRAGMENTED RELATION AND THE
PROCESSING SITES

In this section, we develop two heuristics for selecting
a fragmented relation to remain fragmented and the as-
sociated processing sites. The first heuristic simplifies the
problem by ignoring possibly different processing and
transmission speeds in a network, while the second takes
these speeds into account. We assume that there exists at
least one fragmented relation, and that two fragments of
the same fragmented relation, once placed at the same site,
are unioned to form a single fragment. When there is no
fragmented relation, we can apply the relation partition-
ing techniques as described in [26] to create one.

A. A Simplified Heuristic

We define some functions and notations for the first
heuristic before proceeding. (In Section III-B., these def-
initions will be adopted with possible modifications for
the second heuristic which allows variable processing/
transmission speeds.) '

7(J): A function of time for processing joins with the
Joining relations/fragments in set J; we assume that 7 is
proportional to the total size of the data in J.

t(M): A function of time for transmitting M units of
data from a site to another site; we assume that t(M) =
Lit(M;) where M = T, M,.

F: A fragment of the relation R,, which resides at site
J> when R, resides in its entirety at site j, it is denoted R;..

| Fic|: Size of F,; | R,|: size of R,.

S,(f): A set of processing sites, with R, the chosen
fragmented relation; Sp0(f) is the optimal one among all
possible S,(f). '

R(Q): The set of relations referenced by the query Q.

S(Q): The set of sites which contain a relation/frag-
ment referenced by Q.

R(j): The set of relations/fragments contained in site
Jj.

§(x): The set of sites which contain a fragment of the
fragmented relation R,. The notations S (Q), R(j), and
S(x) are all defined under the initial distribution of the
data referenced in Q.

Given a S,(f), the response time for processing joins

392 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

inQis T(S,(f)) =sumof the transmission time TT and
the processing time, PT.

TT consists of the time to transmit those fragments of
Ry, which do not reside at a site in S,(f) to a site in
S,(f), and the time to replicate at each site in S,(f) all
relations in R(Q) except Ry.

PT = MAXcs,() 7 (Ty U { Fj}) where Ty = R(Q) —
{R;}. Note that the parallel effect among all processing
sites is considered by the function MAX.

In the following, we present the heuristic to decide the
fragmented relation Ry to remain fragmented, the set of
processing sites S,0(f), and the way to move the frag-
ments of Ry which do not reside at a site in S,0(f) to
minimize T(S,(f)).

Since the local processing function w depends on many
factors such as the type, number and structure of the join
clauses in Q, the database content and structure, the local
query optimizer, and the system load and memory utili-
zation of the computer system, it is extremely difficult to
estimate. We try to derive a simplified heuristic which
avoids calculating the function m while achieving reason-
able performance. Also, our testbed results [5], [19] in-
dicate that local processing time dominates data transmis-
sion time in Mermaid’s environment. Our strategy of
query optimization is, therefore, to optimize processing
time first and then transmission time. (The transmission
time can be further reduced by semijoin applications, as
will be discussed in the next section.)

1) Deciding the Fragmented Relation: We discuss
choosing Ry based on the minimization of the local pro-
cessing time as follows. Let R, be a fragmented relation,
and F,, the largest fragment of R, among those residing
at a site in S(g). From the formula for PT, we have the
minimal PT, which is (T, U {F,,}) among all possible
S,(g). Suppose FR is the set of all fragmented relations.
Then the fragmented relation R, with the minimum = (T,
U {F,,}) where R, € FR, will be selected as R;. Note
that minimum =« (T, U {F,, }) implies minimum total size
of the data in T, U {F,,}, and also T, = R(Q) — {R,}.

Denote | T, | as the total size of the relations in 7.

|7

8

2 |R,] (when |R,| is fragmented, |R,|
x#gxeR(Q)

2 | F)-

jeS(x)

The fragmented relation which satisfies the following
condition will be selected as Ry:

MIN ((T, MAX | F;
MIN (|, + MAX |,)

2) Deciding the Processing Sites and Fragment Move-
ments: In this section, we decide S,,(f) given the frag-
mented relation R, and the movement of the fragments of
R;to minimize T(S,(f)). Let §,0(f)be S(f) initially.
We derive a greedy algorithm to adjust S,,(f) to improve
T(S,(f)) as follows.

Based on the fact that the minimum PT = = (7T, U

{F,s}), we require that the size of any unioned fragment
not exceed | F,,;|. We want to move fragments of R;around
such that no unioned fragments are greater in size than
F, (therefore, F,,;can only be moved to a site which does
not contain a fragment of R;), and such that the data trans-
mission time is minimized. The data transmission time
includes fragment movement and the associated relation
replication for query processing. S,,(f) can be decided
accordingly.

We define some functions for the discussion.

W,= 2. |P,| where P, = F,orR,, i €5(Q)

x#f,xeR(i)
M; = |T;| — W, ieS(Q)
B, =M, — |Fy|,ieS(f).

W, is the weight of each site, defined on the total size of
the data except R; contained in site i. | 7|, as defined in
the previous subsection, is the total size of the data in
R(Q) — {R;}. Therefore, t(M;) is the cost needed for
the replication at site i, and #(B;) is the benefit of moving
Frout of site i (no replication cost is needed at site i when
Fyris moved). Initially, TT = L;c5.p) t(M;). When B; <
0, it is obviously unprofitable to move Fsout of site i [and
site i will be designated one of the sites in the final
S,6(f)]. When B; > 0, we try to move Fis out of site i.
Denote the set of sites with the associated B > 0 as Q.
We can move fragments from sites in @ to other sites, in
the following two ways.

1) Fyis moved to a site j in the current Sy, (f). B; units
of transmission time are reduced from the current TT, and,
therefore, this movement is profitable.

2) Fyis moved to a site j in $(Q) — S,,(f). In this
case, an extra replication cost at site j need be paid for
query processing. The cost for this replication is #(M;).
Therefore, only when B; > M; can this movement be prof-
itable. The profit of this movement is t(B; — M;).

The complete heuristic works as follows.

Select-and-Move:

1) Calculate | T, | for each R, in FR and select R, which
satisfies the condition stated in Section I1I-A1),

2) Calculate W;, M; for each i in S(Q), and B; for each
iinSCf),

3) Designate the set of i with B; > 0 as {2 (it is the set
of sites from which we try to move the fragments) and
designate S,,(f) as S(f),

4) Choose j from Q where B; is the largest; with F,,
denoting the largest fragment of Ry, try to select a k from
Sy (f) — {j} suchthat |Fy| + |Fi| < |Fyl; if such
a site is found, move Fjs to k, then update By, update Q
(when By changes from > 0to < 0), and update S,,(f)
to Spo(f) - { .] }3 else lfB] > Mlo k € S(Q) - Spo(f)!
move F to site k [with M, the smallest among all possible
kin S(Q) — S,,(f)] then calculate By, update & (when
B, > 0) and update S,,(f) to S,,(f) — {j} U {k},
and

5) Delete j from ; if @ is not empty then go to 4), else
stop.

CHEN et al.: DISTRIBUTED QUERY PROCESSING

Proposition 1: When Fisis moved from site i to site Js
Bj < B; where Bj is the resultant B at site J

Proof: We prove this proposition by considering the
following two cases.

1) Site j is in §,,(f). By the definition of B;, B, = M;
— | Fj|. When F; is moved into site j, Fiyand F; will be
unioned together and form a larger Fir. However, M, re-
mains the same. Therefore, B < B;. Moreover, by the
heuristic, B; < B;. We conclude that B/ < B,.

2) Site jisin S(Q) — S,0(f). By the heuristic, B, >
M;. If B/ < 0, then obviously Bj < B;. If Bf > 0 then
by the definition of B, M; > B; . Therefore, B/ < B;.

Q.E.D.

Proposition 2: Once Fy;is moved out of site i, it is im-
possible to move some Fjs into site i.

Proof: Assume that after F, ir is moved out, Fjs can be
moved from site j to site /. That is, B; > M,. By the def-
inition of B;, M; > B;. Moreover, by the heuristic and the
Proposition 1, B; = B;. Therefore, M; > B;, which con-
tradicts the assumption. Q.E.D.

Proposition 3: If there exists an F which cannot be
moved by the heuristic, then for the subsequent F’s, it is
not necessary to check the sites in S(Q) — Sy, (f) for
possible places to move them in.

Proof: Since Fs cannot be moved, B; < M; for each
Jjin $(Q) = S,,(f). The subsequent F’s have B’s < B;,
therefore <M;. Site j cannot be a site to accept the sub-
sequent F’s. Q.E.D.

Proposition 4: A site in the network which is not in
§(Q) cannot be a site to accept any fragment.

Proof: 1f a site j is in the network, but not in S(Q),
then M; = |T;|. For a fragment Fyatsite i, B, = M, —
| Fy|, and B, < M;. Since M, < M; (by the definition of
M) B; < M, i.e., Fy cannot be moved to site j. Q.E.D.

3) An Example: Let Table I represent the initial data
distribution for processing joins in query Q. The size of
each relation/fragment is specified accordingly.

1) The fragmented relation is chosen as follows:

[T = [Re| + [Rs] + |Ry]
=170 + 50 + 210 = 430
T2l = [Ri| + |Ra| + [Ri]
= 140 + 50 + 210 = 400
[Ty + |Fy| = 430 + 80 = 510

T3] + |Feo| =400 + 100 = 500 < |7,| + |F].

Therefore, R, is selected as the fragmented relation.

2) The processing sites are selected as follows. First of
all, we calculate W;, M; for each i in S(Q) ({1,2,3,4,
5, 6}) and B; for each i in §(2) ({2, 3, 5, 6}). The
results are listed in Table II. From the above two tables,
we can see that initially @ = S,0(2) = {2, 3,5, 6}.

* Since B is the greatest, we try to move Fg, first. Fy,
is the largest fragment of R,. Therefore, we cannot move
it to any other site containing a fragment of R,, i.e., S,,
S3, or S5 because the resulting union would increase the

393
TABLE I

R, R, R, R, |
8| Fy, 40 R;, 50 R, 210
Sy Fx, 10 R,, 210
S3 | F3,20 Fa, 20 Ry, 50 R, 210
Sy | Fyy, 80 Ry, 50
S Fs,40 Ry, 50 Ry, 210
S Fgo, 100

TABLE I1

[S S S S, 5 S, |

W 300 210 280 130 260 0
M| 100 190 120 270 140 400

B 180 100 100 300

size of the largest fragment. This leaves S, and S, as can-
didates to accept Fg,. We choose S | because the replica-
tion cost M is smaller there.

¢ Calculate B,, which is equal to 0. Update S,0(2) to
{1,2,3,5}and Q to {2,3,5}.

* Now, F;, is the fragment to move. S, cannot be cho-
sen from the candidate sites in S,0(2) because it contains
the largest fragment, F),. This leaves S3 and Ss, from
which Ss is arbitrarily chosen.

¢ Update Bs t0 90, Q to {3, 5}, and S,0(2)t0 {1, 3,
5}.

* Move Fiy, to site 5. Update Bs to 70, Q to {5}, and
S,0(2)to {1,5}.

¢ Fs5; cannot be moved to S, since Fy, is the largest
fragment. This exhausts the candidate processing sites in
§,0(2). Therefore, we compare the costs and benefits at
the other sites. Fs, cannot be moved to $,, 83, or Sg by
Proposition 2, and it cannot be moved to S, because Bs
< M,. Thus, we stop here.

The fragmented relation is R,. The processing sites are
Sy and Ss. The data transmissions for the replication at S,
are move F3; and Fy; to §;; for the replication at S are
move Fy,, Fy;, and Fy, to Ss. The other data transmissions
for moving fragments of R, are move Fg, to §;, move F,,
to S5, and move Fj, to Ss.

B. Considering Variable Processing/Transmission
Speeds

Since Mermaid could be applied to an environment in
which heterogeneous computer systems are connected
through different links in a network, we have to consider
variable processing speeds and variable transmission
speeds in the heuristic. In this subsection, we derive an-
other heuristic for select-and-move, which assumes that
processing speeds at each site and transmission speeds at
each link are variable.

Denote m;(J) as the processing time at site i, for pro-
cessing joins with the joining relations/fragments in set J,
£;;(M) as the minimum transmission time for transmitting
M units of data from site i to site Jj, and ¢t(M;) as the
minimum transmission time needed to replicate at a pro-
cessing site / all relations referenced by a query Q except
the fragmented relation. (We must consider minimum
times here because for any replication, there may be mul-

394

tiple copies of relations at different sites and multiple paths
through the network.) The definitions of Fy, | Fil, $,(f)s
Sp(f): SC), and T(S,(f)) fora fragmented relation
Ryare the same as before. However, the definitions of TT,
the transmission time, and PT, the processing time have
to be modified, namely, the replication time in TT should
be the minimum one [i.e., ics, () 1(M;)] and the 7 in
PT should be replaced by m; to reflect the consideration
of variable processing and transmission speeds.

Whereas the previous heuristic selected a relation to re-
main fragmented and then tried moving fragments, the
new heuristic tries moving fragments to decide which re-
lation and associated processing sites to select. The new
heuristic works as follows.

For each fragmented relation R, in FR (the set of frag-
mented relations), we decide S,,(g) and calculate
T(S,,(g))- The relation with the minimum 7(S,,(g)),
say Ry, is the relation to remain fragmented; and S,,(f)
is the set of processing sites. The procedures for deciding
S,0(g) are the following.

1) Let Sp,(g) be S(g) initially.

2) Calculate T(S,,(g)), which is equal to Ljcg,,,
t(l\g,-lg ; MAX e Ti(Ty U {Fig} where T, = R(Q)
3) €Ve try to move F;; around to reduce T(S,,(8)):

a) For each F,, calculate P;; for each site j where i €
S,0(8), j € N, the set of all sites in the network, j # i
and P;; is the profit of the move of Fj, from site i to site j
(as discussed below).

b) Let P,, be the largest among all such P’s.

¢) If P,;, > Othen go to a) assuming that F,, has been
moved into site y; otherwise an optimal sequence of moves
(which could be empty) has been obtained and the final
S,0(g) has been decided.

We discuss the profit of a move for F;, from site i to
site j by considering the following four cases (note that
profit = benfit — cost). The maximum processing time
for processing joins in Q among all processing sites is
denoted TIMEL1, and the next to the minimum one is de-
noted TIME2 for the discussion.

e Site i generates TIME1, and site j is in S,,(g)-

The benefit = t(M;) + [TIMEl — MAX (7;(T, U
{F,} U {F,}), TIME 2)] where m;(- - *) is the new
processing time at site j.

The cost = #;(| F; |).

e Site i generates TIME1, and site j is not in §,,(g).

The benefit = 1(M;) + [TIME1l — MAX (=;(7T, U
{Fy}), TIME2)].

The cost = t;(|Fi,|) + t(M;).

e Site i does not generate TIMEIL, and site j is in
Spo(8)-

The benefit = t(M;) + [TIME1 — MAX (=7;(T, U

The cost = 7;(| Fig|).

o Site i does not generate TIMEL, and site j is not in
Spo(8)-

The benefit = t(M;) + [TIMEl — MAX (7;(T, U
{F,}), TIME1)].

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

The cost = 1;(| Fig|) + t(M;).

The benefit is the saving of the replication time at site
i plus possible reduction of the processing time. (Ac-
tually, it is impossible to reduce the processing time if
site i does not generate TIMEL.) The cost is the trans-
mission time for F;, plus possible replication time at site
J-

IV. SEMIJOIN APPLICATION

Once we have selected the fragmented relation and the
processing sites, we have also selected all the necessary
transmissions, which include the fragment movement of
the fragmented relation and the relation replication at each
processing site. For those relations/fragments which have
to be moved, we try to apply semijoins to reduce their
size before their move. For easy discussion, again we ig-
nore the fact that there may be different processing/trans-
mission speeds in a network. The procedure for applying
semijoins is as follows.

Reduce-before-Move:

1) List all the possible semijoins incurred in query Q
(Note that for a join R, « R,, if R, is fragmented then
each fragment of it will be treated individually and asso-
ciated with a semijoin R, = F,).

2) Cross out those semijoins which are applied to some
relations/fragments not to be moved according to the se-
lect-and-move heuristic.

3) Select the most profitable semijoins one by one ac-
cording to the following cost functions until no profitable
semijoin exists.

The profit of a semijoin S = the benefit of § — the cost
of S. "

For a semijoin R, = R, (where a denotes the joining
attribute between R, and R,) we discuss its profitability
based on the fragmentation of R, as follows.

1) R, is an unfragmented relation. Denote S(y) as the
set of sites which contain a copy of R,. If R, has not yet
been reduced by some semijoin, then we choose a site j
in S(y) to be the site to process this semijoin where j
contains either a copy of the unfragmented relation R, or
the largest fragment of R, among those in S(y) if R, is
fragmented. If we cannot find such j, then let j be any site
in S(y). If R, has been reduced, then let j be the site
which contains the reduced copy of R, (which is desig-
nated the primary copy of R,).

The benefit of the semijoin = n X t(|R,| — |R}|)
where n = 1, representing the number of transmissions
needed for Ry, |R;| is the resultant size of R, after this
semijoin is applied (| R} | can be derived using a formula
in [25]).

We denote 7 (A) as the processing time needed for pro-
cessing the operation A here.

The cost of this semijoin =

* 7 (projection of attribute a from R,) + t(|R..al) +
w(R,.a < R,) when R, is unfragmented and does not re-
side at site j;

* 7 (R, — R,) when R, is unfragmented and resides at

CHEN et al.: DISTRIBUTED QUERY PROCESSING

site j; (notice that if R, has been reduced, only the primary
copy of R, applies in the above two cases).

® MAXes(xy w(projection of attribute a from F,.) +
Liesay.i#j t(|Fieal) + m(R.a < R,) when R, is frag-
mented. Note that the projection can be done in parallel,
which has been considered by the function MAX.

2) R, is a fragmented relation. In this case, we have
|S(y)| semijoins incurred where |S(y)| denotes the
number of the sites which contain a fragment of R,. We
treat each semijoin independently for reducing the size of
each fragment of R,. The same analysis as in case 1) holds
here except that there is only one site which contains a
fragment of R,. No selection of the semijoin processing
site is needed.

The improvement techniques for semijoin applications
as described in [10], [25] may be further used to reduce
the cost for query processing.

Example: For the example in Section III-A3), we as-
sume that the query Q contains the following three join
clauses:

R, © Ry, R, © Ry, and R; © R,.
All possible semijoins are listed as follows:
Ry = Ry, Ry = Fy, Ry = F3;, Ry = Fy,
R, = Ry, Ry = Fy, Ry = Fy, Ry — Fs,,
Ry = Fg, Ry & Ry, Ry, — R,.

Among them, R, = R;, R, > Ry, R, = Fs5,, Ry > R,,
and Ry = R; will be crossed out since R;, R;, and Fs, are
not to be moved according to the heuristic select-and-
move.

For the semijoin R; — Fj,, the semijoin processing site
is §3, the benefit = 2 X 1(|Fy;| — |F},|) [F5, needs to
be moved to S, and Ss] and the cost = 7 (R; — Fj)).

V. DISTRIBUTED AGGREGATE PROCESSING

In this section, we consider aggregate processing based
on the following assumptions:

¢ aggregates appear in the target of a query only,

¢ aggregates are of three forms: agg(R,.a), agg(R,.a
by b) and agg,(agg,(R,.a by b)),

* when there is more than one aggregate in the target,
the aggregates have to operate on the same relation,

® agg(R,.a by b) can be in the target with some attri-
bute, say R,.o, under the restriction that the values in R.b
and R,.o have a one-to-one correspondence, and

¢ the operators supported for the aggregation are MAX,
MIN, SUM, AVERAGE, and COUNT:; the last three op-
erators can be specified with the operator UNIQUE.

Recalling that parallel query processing is performed in
Step 5) of the integrated algorithm and final processing is
done in Step 7), aggregates may be processed in three
ways: a) preprocessing locally at each processing site both
before and after joins are executed in Step 5), and final
processing globally at the result site in Step 7), b) prepro-
cessing locally after joins are executed in Step 5), and

395

final processing globally in Step 7), and c) global pro-
cessing in Step 7) only. Preprocessing of aggregates has
two advantages, i.e., it can reduce the size of relations
and reduce the response time for aggregate processing by
parallelism. However, to process aggregates at too many
places (as in method a), we process aggregates before join
execution, after join execution, and at the final process-
ing) complicates the problem and may not be cost bene-
ficial. Our policy on aggregate processing is, therefore,
to apply method b) when possible, or ¢) when b) is not
applicable.

To process aggregates by method b), the aggregate op-
erators have to be modified for local and global process-
ing. Table HI specifies the operation to be performed at
the local sites L(agg) and the operation to be performed
globally at the result site G(agg).

For example, if the aggregate operator is AVERAGE,
at each local site we compute two quantities, namely, the
SUM and the COUNT. Then, at the result site, we obtain
the SUM of the sums computed at the local sites divided
by the SUM of the counts.

In an agg contains a UNIQUE operator which can be
processed by method b), then L (agg) contains UNIQUE,
but G(agg) does not. We shall illustrate this by an ex-
ample later.

After joins are processed in Step 5) of the integrated
algorithm, the joined relation is actually fragmented at
each processing site by the fragment attribute of the frag-
mented relation we chose before. Denote the joined rela-
tion R;, and the fragment attribute R;.f. For an aggregate
agg(R,.aby b), R,.a is called an aggregate attribute, and
R,.b a group-by attribute.

A. Processing of Aggregates Yielding a Scalar

Agg(R,.c) and agg, (agg, (R,.a by b)) are the two ag-
gregates which yield a scalar. If the following two con-
ditions [one for agg(R,.c) and one for agg (agg,(R..a
by b))] are satisfied, then we can process these aggre-
gates by method b).

1) agg does not contain UNIQUE, or R,.c = R, f, and

2) agg, does not contain UNIQUE, and R.b = R.f.

This is because when R,.k = R;.f, R, .k is also a frag-
ment attribute of R; such that distributed aggregate pro-
cessing is possible.

The query has to be decomposed as follows. The target
of the local queries contains L(agg(R..c)) and
L(agg,(agg,(R,.a by b))), and the target of the global
query contains G(agg(R;.c)) and G(agg, (R;.a)). There
is a qualification (which is the same as the one in the orig-
inal query) associated with the target in the local queries
while no qualification is in the global query since all se-
lection and join clauses have already been processed when
the global query is about to be executed.

We can check if R,.k = R;.f by checking if a) R, .k is
R; f, i.e., R, is the fragmented relation and R,.k is the
fragment attribute, b) R, is R;, R..k is a key, or ¢) R, is
not R;, R, .k is a foreign key of R;.

396 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7, NO. 3, APRIL 1989

TABLE 111
agg L(agg) G(agg)
MAX MAX MAX
MIN MIN MIN
COUNT COUNT SUM
SUM 'SUM SUM
AVERAGE | SUM,COUNT | SUM(sums)/SUM(counts)

Example: The content of the joined relation over rela-
tions EMP(E#, D#, Rank, Sal) and DEPT(D#, Dname,
College) is as follows. It is fragmented by the attribute
D# at site 1 and site 2.

E# D# Rank Sal D# Dname College
1 1 P 50K 1 EECS ENG
2 1 AP 45K 1 EECS ENG
3 1 P 40K 1 EECS ENG
4 1 AsP 35K 1 EECS ENG
5 2 P 40K 2 ME ENG
6 2 AsP 35K 2 ME ENG
7 3 P 35K 3 CHE ENG
8 3 AsP 34K 3 CHE ENG
9 4 P 32K 4 CIE ENG

10 4 AP 30K 4 CIE ENG

SITE 1

E# D# Rank Sal D# Dname College

11 5 P 35K 5 ISE ENG

12 5 AsP 34K 5 ISE ENG

13 6 P 32K 6 BIOE ENG

14 6 AP 30K 6 BIOE ENG

SITE 2

0 = { MAX (EMP.Sal), MIN(MAX(EMP.Sal by

D#))| DEPT.D# = EMP.D# and DEPT.College =

3 6'ENG’ 9 } .

This query can be processed by method b). It is decom-
posed into two local queries that are of the same form as
the original query. At site 1, we generate { (50K, 32K)}
as the result, while at site 2 it is { (35K, 32K)}. These
results are transmitted to the resuit site and the global
query { MAX (Sal), MIN(Sal) } is performed to generate
the answer, which is { (50K, 32K)}.

When the conditions above are satisfied, we say that the
aggregates (or the query) can be completely processed.
There is another situation where although the aggregate
agg (R,.c) can be completely processed, the aggregate
agg, (agg, (R,.a by b)) cannot. We can partially process
these aggregates by using a group-by operator. Partial
processing of aggregates has to satisfy the following two
conditions:

1) agg does not contain UNIQUE, or (R,.c = R;.fand
R,.c = R..b), and

2) agg, does not contain UNIQUE, or R,.a = R, f, or
R.b = R, f.

The target of each local query contains L(agg(R;.c by
b)), L(agg,(R,.a by b)), and R.b which will be used
for references in the final processing (when R,.b = R;.f,
R,.b need not be included). The target of the global query
contains G(agg(R;.c)) and agg, (G(agg,(R;.a by b))),
(G(agg(R;.c)) and agg, (R;.a) when R.b = R.f).

Example:

0, = {MAX(EMP Sal),
MIN (MAX (EMP.Sal by Rank)) | (- - 9}

Since Rank does not functionally determine D#, this
query cannot be completely processed. However, it can
be partially processed as follows.

We decompose this query into two local queries, which
are of the same form {MAX(EMP.Sal by Rank),
MAX (EMP.Sal by Rank), Rank | (- -) }. These two lo-
cal queries will generate { (50K, 50K, P), (45K, 45K,
AP), (35K, 35K, AsP)} at site 1 and { (35K, 35K, P),
(30K, 30K, AP), (34K, 34K, AsP)} at site 2. The global
query is {MAX(Sal), MIN(MAX(Sal by Rank)) },
which will generate the answer { (50K, 35K) }-

0, = { AVERAGE UNIQUE(EMP.Sal)|(- - *)}.

This query cannot be processed by method b) since at-
tribute Sal does not functionally determine attribute D#.
It has to be globally processed at the result site.

B. Processing of Aggregates Yielding a Relation

Agg(R..a by b) is the aggregate which yields a rela-
tion. When R..b = R;.f, we say that the aggregate can be
completely processed. If this is not the case, then if agg
does not contain UNIQUE, or R..a = R,.f, then the ag-
gregate can be partially processed. In both situations, we
can preprocess aggregates locally.

For the aggregates which can be completely processed,
the local queries will be of the same form as the original
query. There is no associated global query. The answer
of the query is just the union of the results produced by
the execution of the local queries. For the aggregates
which can be partially processed, the target of the local
queries contains L(agg(R,.a by b)), R..b, and possibly
attribute R,.o0 which is in the target of the original query.
The target of the global query contains (G (agg(R;.a by
b)) and possibly attribute R;.0.

Example:

Q, = {SUM(EMP.Sal by D#), DEPT. Dname|(" - 9}

Since D# = D#, this query can be completely processed.
The local queries will generate {(170K, EECS), (75K,
ME), (69K, CHE), and (62K, CIE)} and { (69K, ISE),
(62K, BIOE)} at site 1 and site 2, respectively. The an-
swer of this query is the union of these two sets.

Qs = {SUM(EMP.Sal by Rank), EMP.Rank|[(- - ")}

CHEN et al.: DISTRIBUTED QUERY PROCESSING

This query can be partially processed. The local queries
are of the same form {SUM(EMP.Sal by Rank),
EMP.Rank, EMP.Rank|(- - -)}, which will generate
{(197K, P, P), (75K, AP, AP), (104K, AsP, AsP)} at
site 1 and {(67K, P, P), (30K, AP, AP), (34K, AsP,
AsP)} at site 2. The global query will generate the an-
swer { (264K, P), (105K, AP), (138K, AsP)}.

Qs = { COUNT UNIQUE (EMP.D# by Sal),
EMP.Sal | (- - -)}.

Since D# = D#, this query can be partially processed.
The local queries are of the form {COUNT
UNIQUE(EMP.D# by Sal), EMP.Sal, EMP.
Sal|(- -)}, and will generate { (1, 50K, 50K), (1, 45K,
45K), (2, 40K, 40K), (3, 35K, 35K), (1, 34K, 34K),
(1, 32K, 32K), (1, 30K, 30K)} at site 1 and {(1, 35K,
35K), (1, 34K, 34K), (1, 32K, 32K), (1, 30K, 30K)}
at site 2. The global query is { SUM (EMP.D# by Sal),
Sal} which produces the answer {(1, 50K), (1, 45K),
(2, 40K), (4, 35K), (2, 34K), (2, 32K), (2, 30K) }.

Note that for processing Qg, the global aggregate SUM
does not contain UNIQUE. This is because D# is the frag-
ment attribute. Once its value is unique locally, it must
also be unique globally. Also, in the local queries of Qs
and Q, there are redundant attributes in the target. We
may keep only one of these attributes in these cases.

VI. CONCLUSIONS

In this paper, we present a distributed query optimiza-
tion algorithm which integrates the features of semijoin
and replicate query processing strategies.

The major component of this algorithm is the select-
and-move heuristics which choose a fragmented relation
to remain fragmented and the associated processing sites.
One policy for choosing them is based on optimizing the
processing cost first and then the transmission cost. The
other policy considers a dynamic network environment
where processing and transmission speeds can be vari-
able. This policy is especially valuable if query process-
ing is done by adaptive techniques [29] which detect the
current status of sites/links and adjust the processing/
transmission speeds accordingly. Distributed aggregate
processing is based on the fact that after the join clauses
are processed at each processing site, we have a joined
relation which is fragmented by the fragment attribute of
the fragmented relation we chose by select-and-move. We
can, therefore, check the functional dependency among
the fragment attribute, the aggregate attribute, and the
group-by attribute to possibly preprocess aggregates in
parallel.

Semantic information can be used for efficient query
processing. The semantic query optimization approach,
as proposed in [13], [15], could be adopted as an enhance-
ment to the integrated algorithm.

397

REFERENCES

[1] P. Apers, A. Hevner, and S. B. Yao, ‘‘Optimization algorithm for
distributed queries,”” IEEE Trans. Software Eng., vol. SE-9, Jan.
1983.

[2] P. Bernstein and D. M. Chiu, *‘Using semi-joins to solve relational
queries,”” JACM, Jan. 1981.

[3] P. Bemstein, N. Goodman, E. Wong, C. Reeve, and J. Rothnie,
“*Query processing in a system for distributed databases (SDD-1),”’
ACM Trans. Database Syst., Dec. 1981.

[4] P. Black and W. Luk, ‘“A new heuristic for generating semi-join pro-
grams for distributed query processing,”” presented at IEEE COMP-
SAC, 1982.

[5]1 D. Brill, M. Templeton, and C. T. Yu, *‘Distributed query process-
ing strategies in Mermaid, a frontend to data management systems,”’
presented at IEEE Data Eng. Conf., 1984.

[6] D. M. Chiu, P. Bernstein, and Y. C. Ho, *‘Optimizing chain queries
in a distributed database system,’” SIAM J. Comput., Feb. 1984,

[7] D. M. Chiu and Y. C. Ho, ‘‘A method for interpreting tree queries
into optimal semi-join expressions,”” presented at ACM SIGMOD,
1980.

[8) J. M. Chang, **A heuristic approach to distributed query process-
ing,”” Proc. VLDB, 1982.

[9] A. L. P. Chen and V. O. K. Li, “‘Optimizing star queries in a dis-
tributed database system,”’ Proc. VLDB, 1984.

[10] —, ““Improvement algorithms for semijoin query processing pro-
grams in distributed database systems,’’ JEEE Trans. Comput., Nov.
1984.

[11] —, *“An optimal algorithm for processing distributed star queries,”’
IEEE Trans. Software Eng., vol. SE-11, Oct. 1985.

[12] R. Epstein, M. Stonebraker, and E. Wong, ‘“‘Distributed query pro-
cessing in a relational database system,”’ presented at ACM SIG-
MOD, 1978.

[13] M. Hammer and S. Zdonik, ‘‘Knowledge-based query processing,”’
Proc. VLDB, 1980.

[14] M. Jarke and J. Koch, ‘‘Query optimization in database systems,’’
ACM Comput. Surveys, June 1984.

[15) J. King, Query Optimization by Semantic Reasoning. UMI Research
Press, 1984.

[16] W. Luk and L. Luk, ‘‘Optimizing semi-join programs for distributed
query processing,’” presented at Int. Conf. Databases, 1983.

[17] G. Lohman, C. Mohan, L. Hass, B. Lindsay, P. Selinger and P.
Wilms, *‘Query processing in R*,”” IBM Intern. Rep., 1984.

[18} R. MacGregor, ‘‘ARIEL—A semantic frontend to relational
DBMS’s,”” Proc. VLDB, 1985.

[19] M. Templeton, D. Brill, A. L. P. Chen, S. Dao, and E. Lund, *‘Mer-
maid—Experiences with network operation,’* presented at IEEE Data
Eng. Conf., 1986.

[20] M. Templeton, D. Brill, A. L. P. Chen, S. Dao, E. Lund, R.
MacGregor, and P. Ward, ‘“Mermaid—A front-end to distributed het-
erogeneous databases,’’ Proc. IEEE, May 1987.

[21] J. D. Ullman, Principles of Database Systems.
Computer Science, 1982.

[22] R. Williams, et al., “R*: An overview of the architecture,”’ pre-
sented at Int. Conf. Databases, 1982.

[23] E. Wong, ‘“‘Retrieving dispersed data from SDD-1: A system for dis-
tributed databases,’” presented at Berkeley Workshop Distrib. Data
Manage. Comput. Networks, 1977.

[24] C. T. Yu, C. C. Chang, M. Templeton, D. Brill, and E. Lund, *‘On
the design of a query processing strategy in a distributed database
environment,”’ presented at ACM SIGMOD, 1983.

[25] —, **Query processing in a fragmented relational distributed sys-
tem: MERMAID,”’ IEEE Trans. Software Eng., vol. SE-11, Aug.
1985.

[26] C.T. Yu, K. Guh, D. Brill, and A. L. P. Chen, *‘Partitioning relation
for parallel processing in fast local networks,”’ presented at IEEE Int.
Conf. Parallel Process., 1986.

[27] C. T. Yu, K. Guh, C. C. Chang, C. H. Chen, M. Templeton, and
D. Brill, **An algorithm to process queries in a fast distributed net-
work,’” presented at IEEE Real-Time Syst. Symp., 1984.

[28] C. T. Yu, K. Lam, C. C. Chang, and S. K. Chang, ‘‘A promising
approach to distributed query processing,” presented at Berkeley
Workshop Distrib. Data Manage. Comput. Networks, 1982.

[29] C. T. Yu, L. Lilien, K. Guh, M. Templeton, D. Brill, and A. L. P.
Chen, ‘‘Adaptive techniques for distributed query optimization,”’
presented at IEEE Data Eng. Conf., 1986.

Rockville, MD:

398 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 7. NO. 3, APRIL 1989

Arbee L. P. Chen (S’80-M'84) received the B.S.
degree from National Chiao Tung University,
Taiwan, Republic of China, in 1977, the M.S. de-
gree from Stevens Institute of Technology, Ho-
boken, NJ, in 1981, both in computer science, and
the Ph.D. degree in computer engineering from
the University of Southern California, Los An-
geles, CA, in 1984.

He is currently a Member of Technical Staff at
Bell Communications Research, Piscataway, NJ,
and an Adjunct Assistant Professor in the Depart-
ment of Electrical Engineering and Computer Science, Polytechnic Uni-
versity, Brooklyn, NY, where he teaches a course on compiler and formal
languages. Prior to joining Bellcore, he was a Research Scientist at System
Development Corporation (now, UNISYS Corporation), Santa Monica,
CA. His research interests include distributed databases, data models,
computer networks, and network operations simulation modeling.

Dr. Chen is a Member of the Association for Computing Machinery and
the IEEE Computer Society. He was also a member of the ANSI/X3/
SPARC/Database Systems Study Group.

David Brill received the B.A. degree from City
University of New York in 1968, and the M.A.
degree in communication research from Stanford
University, Stanford, CA, in 1969. He did addi-
tional graduate work at the Stanford Artificial In-
telligence Project.

He worked on the ARPA Speech Project at
Speech Communications Research Laboratory,
Santa Barbara, CA. From 1977 to 1987, he was
with System Development Corporation in Santa
Monica, CA (now Unisys), where he specialized
in distributed query optimization and natural language interfaces to data
management systems. He is currently doing knowledge representation re-
search at USC Information Sciences Institute, Marina del Rey, CA.

Marjorie Templeton received the B.A. degree in
economics from Carleton College, Northfield,
MN, in 1963.

She was the principal designer of the Mermaid
system. Currently, she is Manager of the Knowl-
edge and Data Systems Branch of the UNISYS
West Coast Research Center and is Technical Area
Manager for data management for the System De-
velopment Group of UNISYS. She has been with
UNISYS (formerly SDC) since 1972 and has spent
most of that time working on some aspect of het-
erogeneous access to existing databases. The Mermaid project began in
1982 with the goal of providing a common structured query language to
access multiple existing databases as though they were one. She worked
on a contract with the Defense Intelligence Agency to design a standard
query language with translation to one of several DBMS’s. Previously, she
was Project Manager for EUFID which developed an English language
interface to existing databases stored under either Ingres or WWDMS. She
joined SDC to work on DS/3, a commercial DBMS. She was formerly
employed by Planning Research, IBM, and the Federal Reserve Bank.

Clement T. Yu received the B.Sc. degree in ap-
plied mathematics from Columbia University,
New York, NY, in 1970, and the Ph.D. degree in
computer science from Cornell University, Ith-
aca, NY, in 1973.

He is currently a Professor in the Department
of Electrical Engineering and Computer Science
at the University of Illinois at Chicago. He has
published in various journals and conference pro-
ceedings, including Journal of the ACM, Com-
munication of the ACM, ACM Transactions on
Data Base Systems, ACM Computing Survey, Journal of Theoretical Com-
puter Science, Journal of Computer & System Science, Information Pro-
cessing & Management, Information Processing Letters, IEEE TRANSAC-
TIONS ON SOFTWARE ENGINEERING, IEEE TRANSACTION ON PATTERN ANAL-
ySIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON COMPUTERS, IN-
FORMATION TECHNOLOGY, Canadian Journal of Operation Research & In-
formation Processing, ACM SIGMOD, VLDB, ACM SIGIR, IFIP, IEEE
COMPSAC, IEEE, DATA ENGINEERING, and ASIS. He has been serving as
a consultant for various corporations. His research interests are database
management and information retrieval.

