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Abstract

We propose a new semi-join execution strategy which
allows parallelism and processes multiple semi-joins si-
multaneously. The query optimization problem based
on this new strategy is NP-Hard. Nevertheless, in
practice most of the parameters needed for query opti-
mization, such as relation cardinality and selectivity,
are of fixed-precision. Imposing this fixed-precision
constraint, we develop an efficient distributed query
processing algorithm. For situations where the fixed-
precision constraint does not apply, we propose a
method to truncate the parameters and use the same
algorithm to find near-optimal solutions. By analyz-
ing the truncation errors, we provide a quantitative
comparison between the near-optimal solutions and
the optimal ones.

1 INTRODUCTION

Query processing in distributed relational databases
[6] often requires shipping relations between different
sites. To reduce the data transmission cost, semi-
Jjoins were introduced [2,3]. A semi-join from rela-
tion R, to relation Rj, denoted by Ri—»Rj, is defined
as HRj(Ri‘_’Rj)’ where Rj—R; is the join of R; and
R;, and I1A(B) the projection of relation B on the
attributes of relation A. In a distributed database sys-
tem, it is implemented as follows: Project R; on the
Join attributes (of the join between R; and Rj), then
ship this projection (called a semi-join projection) to
the site of Rj and perform the join with R;.

It has been proposed that a distributed query be
processed as follows [1,4]:
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1. Initial local processing: all local operations in-
cluding selections and projections are processed.

. Semi-join processing: the only operations left
after initial local processing are joins between re-
lations at different sites. A semi-join program is
derived from the remaining join operations and
executed to reduce the size of the relations.

. Final Processing: all relations which are needed
to calculate the answer of the query are transmit-
ted to a final site where joins are performed and
the answer to the query obtained.

Numerous algorithms [1,7,8,9,10,11,15,16,17] have
been developed to determine a semi-join program for
optimal distributed query processing. Most semi-
Join algorithms favor executing semi-joins sequentially
such that the reduction effect of a semi-join can be
propagated to reduce the cost of later semi-joins. For
example, the cost of R; —R: may be lowered if an-
other semi-join R} —R; is executed first. However,
performance studies [5,12] show that such semi-join
processing strategies are sometimes inefficient for the
following reasons:

1. Loss of parallelism: The sequential execution
of semi-joins excludes the possibility of parallel
semi-join execution in a distributed system.

. Processing overhead: Before Rj —R; is exe-
cuted, R; has to be scanned in order to generate
the semi-join projection. If Rj —Ry also appears
in the sequential semi-join program, Rj has to
be scanned again, which increases the processing
overhead.

. Loss of global semi-join optimization: The
sequential execution of semi-joins excludes the
possibility of performing multiple semi-joins to
the same relation simultaneously, for which global
optimization techniques [14] may be applied.



4. Inaccurate semi-join reduction estimation:
In order to find a good processing strategy, it is
needed to accurately estimate the cost and reduc-
tion benefit of semi-joins. If such estimation is
done each time after a semi-join is executed, too
much processing cost may be incurred. If all such
estimates are done before the semi-join process-
ing, the accuracy may be low because estimation
errors may propagate and be magnified through
the sequential execution of semi-joins. This inac-
curacy affects the semi-join algorithm’s ability to
determine an optimal strategy.

To alleviate the above problems, we propose a new
semi-join processing procedure, named one-shot semi-
join ezecution. This method executes all applicable
semi-joins to the relations at a time. That is, each
relation will be reduced by a set of semi-joins at a
time, and the semi-join processing at all sites can be
performed simultaneously. As a result, each relation
needs to be scanned only once to process all applicable
semi-joins. These semi-joins can be processed employ-
ing a global optimization algorithm. Moreover, since
all applicable semi-joins are executed at one shot, no
inaccurate estimation of the semi-join cost and bene-
fit will be propagated. The query optimizer therefore
decides a semi-join program which is a set instead of
a sequence of semi-joins.

In this paper, we consider using one-shot semi-join
execution to optimize the transmission cost of dis-
tributed query processing. This problem has been
shown to be NP-Hard [13], which suggests that some
restrictions have to be imposed before an efficient algo-
rithm can be developed. We observe that in most sit-
uations, the cardinality of relations, selectivities, and
other parameters relevant to the semi-join processing
are collected by the system through statistics or es-
timates. As a result, these parameters are usually of
fixed precision. With the fixed-precision constraint,
we develop a polynomial-time algorithm to solve the
fixed-precision one-shot semi-join optimization prob-
lem. We analyze this algorithm and study how good
a heuristic it will be if the fixed-precision constraint is
relaxed.

The rest of the paper is organized as follows. In
section 2, we describe one-shot semi-join execution.
In section 3, we consider applying one-shot semi-join
execution on a single relation and formulate it into a
mathematical programming problem. A polynomial-
time fixed-precision algorithm is developed in section
4. In section 5, we extend our results to general
queries. In section 6, we propose to truncate parame-
ters and apply our algorithm as a heuristic when the
fixed-precision assumption does not apply. We show
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that by carefully choosing the truncation and hence
the precision, the semi-join programs derived by this
heuristic can be arbitrarily close to the optimal one.
We conclude this paper in section 7.

2 ONE-SHOT SEMI-JOIN EXECU-
TION

As described in the last section, the goal of one-shot
semi-join execution is to remedy the inefficiency of
traditional semi-join processing algorithms, which fa-
vor sequential execution of semi-joins. Under this new
method, the initial local processing and final join pro-
cessing of a distributed query remain the same. How-
ever, the query optimizer has to decide a set of semi-
joins to be executed first and the semi-join processing
step is further partitioned into three phases, namely,
the projection phase, the transmission phase, and the
reduction phase. They are explained in the following:

THE PROJECTION PHASE During the pro-
Jection phase, a relation R, is scanned once to generate
all the necessary semi-join projections. That is, if R;
-—»le, R; "'Rjz’ - By _'Rjk’ are to be executed,
R; is scanned once to generate Hr,-,Ri- Hthi, cely
[1,,, R, where rj, is the join attributes between R;,
and Rj. On the other hand, a traditional semi-join
algorithm may decide to perform a sequence of semi-
Joins, e.g., R; —>le, followed by le —R;, followed
by R; _'"’Rjz' H,hRi cannot be generated at the
same time as H":’x R; is generated because R; has to
be reduced by le —R; first.

THE TRANSMISSION PHASE All the semi-
Jjoin projections are then transmitted in parallel to the
corresponding sites to perform semi-joins.

THE REDUCTION PHASE After the transmis-
sion phase, for each semi-join to a relation R;, its semi-
Join projection is available at the site where R, re-
sides. Therefore, global semi-join optimization is pos-
sible. One possible strategy is to hash each semi-join
projection first, then scan R; once to process these
semi-joins. Each tuple in R; is checked against the
semi-join projections by using hashing. A tuple of
R; appears in the result only if it finds a matching
value from each semi-join projection on the join at-
tributes. Global semi-join optimization is impossible
if semi-joins are executed sequentially as in many ex-
isting semi-join algorithms.



3 REDUCING SIN-
GLE RELATION BY ONE-SHOT
SEMI-JOINS

In this section, we study the problem of using one-
shot semi-join execution to reduce a single relation.
Our results will be extended to the optimization of
general queries.

Suppose a relation Rg has to be sent to the final
processing site to join with other relations. To reduce
the transmission cost of sending Ry, we may apply a
one-shot semi-join execution on Ry first. A one-shot
semi-join execution consists of a number of semi-joins
which can be executed without waiting for the com-
pletion of other semi-joins. All semi-joins of the form
R;—Rg are candidates to be included in the execu-
tion. Each of these semi-joins reduces the size of Ro
but also incurs extra transmission cost. The problem
is to decide which semi-joins should be included in the
one-shot semi-join execution in order to minimize the
overall transmission cost of sending Ry.

We will next describe the semi-join reduction model
and the transmission cost model. They will be used
to formulate the single-relation one-shot semi-join op-
timization problem.

3.1 THE
MODEL

SEMI-JOIN REDUCTION

A selectivity model [3] has been developed to predict
the reduction effect of semi-joins. Under this model,
we may assume that associated with each semi-join R;
—R; is a rational number pf, ranging from 0 to 1. pf
is called the selectivity of R; —»Rj. After R; ——»Rj is
executed, the size of R; becomes i+ | R; |, where | R; |
denotes the original size of Rj. We further assume that
after the one-shot execution of a set of semi-joins { R;
—R;| i € S}, the size of R; becomes ([];¢s )R |
We use p; to denote pf.

3.2 THE TRANSMISSION COST MODEL

The transmission cost of R; -—>Rj is denoted by uf We
use u; to denote u?. We assume the transmission cost
of sending Rj to the final processing site is C; -X+Dj,
where C;, Dj, are positive constants and X is the size
of Rj after the one-shot semi-join execution.

3.3 FORMULATION

Suppose U = { Rj— Rg|l < i < n} is the set of
semi-joins which can be applied to reduce the size of
Ry. Consider the one-shot execution of a subset of
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U, ie, { Rj— Rgli € B} where BC {1, 2, ---, n}.
Our goal is to find B such that the total transmis-
sion cost is minimized. The transmission cost in-
curred by the semi-joins is Zie g ui. The transmis-
sion cost of sending Ry after the semi-join reduction
is Co - ([]; ¢p Pi)- | Ro | +Do. The total transmission
cost is therefore (3=, p ui)+(Co-I]; ¢p pi- | Ro |)+Do.
If we define s; = uf‘ho , optimizing the above objec-
tive function is equivalent to minimizing the following:

ZS;'+HP:' (1)

i€EB i€eB

SP(B) =

Notice Dy is dropped from our objective function be-
cause it is constant with respect to B.

The total transmission cost corresponding to B,
TS(B), can be expressed as a function of SP(B) in
the following:
Notice that TS(0) = Cy- | Ry | -SP(8) + Do, which
corresponds to the one-shot execution strategy where
no semi-joins are performed and Ry is not reduced.
Therefore, SP(0) = 1.

We use SUM(B) to denote 3, si, and PROD(B)
to denote [[;cp pi- We say a set B is optimal if it
minimizes the objective function SP(B).

Next we study the constraints on s; and p;. S; -
Co- | Ry | represents the transmission cost. Therefore,
si > 0. Since p; is a selectivity, 0'< p; < 1. Fur-
thermore, any optimal set B cannot have an element i
with s; > 1; else SP(B)> SP(0) and B is not optimal.
Consequently, only those i’s with 0 < p;, s; < 1 can be
included in the optimal set.

To summarize the discussion above, we define
a mathematical programming problem, called Sum
Product Optimization (SPO) as follows:

Definition 1 (SPO)

Given F = { (SI! p])’ (82} p2)) ] (Snz Pn)};
where s;, p; € QY (rational in (0,1]), find B C
{1, 2,---, n} such that SP(B) is minimum.

One can determine the minimum of SP(B) by exam-
ining all possible B’s. However, this is inefficient be-
cause there are 2" possible B’s. Actually, SPO has
been shown to be NP-Hard [13].

4 A POLYNOMIAL-TIME
ALGORITHM FOR THE FIXED-
PRECISION SPO

Despite the fact that SPO is an inherently difficult
problem, a polynomial-time algorithm exists if each s



is represented in binary only to the Kth position after
the binary point. That is, the representation of s; is 0y
2-X where 0; is an integer between 0 and 25 . Here K
is called the precision of the problem. This constraint
limits the number of possible values Zie g Si can take.
Thus a recursive relation can be defined to minimize
SP(B). This recursive relation is then used to derive a
polynomial-time dynamic programming algorithm.

4.1 THE RECURSIVE RELATION

Consider an instance of SPO, namely F = { (sq, p1),
(s9; #2), -+, (sn, pn)}. Using A;(r) to represent the
minimum value of SP(B) over all possible B C {1, 2,
«++, 1} with the constraint that 2 ke Sk =T, we obtain

1 fi=r=0
Ai(r) =< oo ifi=0,r#0
min{A4;_1(r), TMP;(r)} otherwise
where
oo if Aioi(r —s;)
s ry =00
TMR(r) = r+pi - (Aila(r —s;)
—(r = s;)) otherwise

In the above definition, A;(r) = oo if there is no B C
{1,2,---,i} such that 3", . g sx =r. TMPi(r) can be
explained as follows: Let B be a subset of {1,2,.-.,i—
1} such that SUM(B) = r—s; and SP(B) = A;_(r—
si). Then A;_y(r — s;) — (r — s;) = PROD(B) and
TMPy(r) = SP(B{J{i}). Notice B(J{i} is a subset
of {1,2,--+,i} and SUM(B{i}) = r.

Aj(r) is definedover0 < i < mand 0 < r < 1 s;.
Clearly, A;() can be derived from A;_;(). For 0 <i <
n, let B be the set corresponding to A;(r), namely, B C
{1,2,---,i} and SP(B) = A;(r). There are two cases:
(1) i ¢ B, then Aj(r) = Aj_1(r); (2) i € B, then B - {i}
corresponds to A; j(r-s;) and A;j(r) = TMP;(r).

The minimum value of SP(B) over all B ¢ {1, 2,
-+, n} is miny, A, (r)

To derive an efficient dynamic programming algo-
rithm to compute miny, A,,(r), we may redefine Ai(r)
according to the following definition and theorem.

Definition 2 B C {1,2,---,n} is strict if and only
ifVBCB B#0= SP(B)< 1

Theorem 1 There ezists an optimal B which is
strict.

Proof:

It is enough to show that if B is optimal but not strict,
we can always find a proper subset of B, say B’, which
is also optimal.
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Suppose B is optimal and there exists non-empty
B” C B, SUM(B") + PROD(B") > 1. We claim B =
B - B” is also optimal.

SP(B) = (SUM(B') + SUM(B")) + ( PROD(B').
PROD(B")). Therefore,

SP(B) - SP(B')

SUM(B") - PROD(B') - (1 — PROD(B"))
SUM(B") - PROD(B') - SUM(B")
SUM(B") - (1- PROD(B"))

v

The last line is non-negative because Vi, 0 < p; < 1.

Q.E.D.

From Theorem 1, one can restrict the search for the

optimal B to strict sets, i.e., 0 < A;(r) < 1. Since

r < Ai(r), we can also restrict r to 0 < r < 1. We
redefine A;(r) as:

1 fi=r=0
00 ifi=0,7#0
Ai(r) = ¢ min{A;_1(r), TMP;(r)} >0 and
TMPi(r) < 1
Aiq(r) otherwise

We use C;(r) to record a subset of {1, 2, ---, i} such
that SP(Ci(r)) = Ai(r). If Ai(r) = Ai_1(r), then i
should not be included in Ci(r) and Ci(r) = Ci_1(r).
If Ai(r) = TM P,(r) # Ai_1(r), however, C;i(r) can be
constructed by including i in C;_;(r—s;). A recursive
relation on C;(r) follows:

0 i= 0 and r=0
Ci—1(r) i>0and Ai(r)
Ci(r) = = Aj(r)

Cici(r—s;)U{i} i> 0and A;(r)
= TMP;(r) # A, ; ()

unde fined otherwise

4.2 CORRECTNESS

We shall show that Mino<r<1An(r) is the minimum
SP() and SP(Ci(r)) = Ai(r).

LemmalVi, 0<i<n Vr,0<r<]l, if A;(r)
# 00, then Cy(r) C {1, 2, ---, i}, SP(C;y(r)) = Ai(r),
and SUM(C;(t)) = r.

Proof:
The proof is by induction on i. The hypothesis is true
when i = 0.

Suppose the hypothesis is true for i < k. Now con-
sider i < k+1. There are two cases:



1. Ak+1(r) = Ap(r) # oco. From induction
hypothesis, Cy(r) C {1, 2, ---, k}, SP(Cy(r))
= Ay(r), and SUM(Cy(r)) = 1. By definition
Cy4.1(r) = Cy(r). Therefore, Cy (r) C {1, 2,
-0y k+1}, SP(Ck41(r)) = SP(Cy(r)) = Ay(r) =
Ak+1(r), and SUM(Ck+1(X‘)) = SUM(Ck(l‘)) =
r. The hypothesis holds for i = k+1.

implies Ap(r - sg41) # o0o. From induc-
tion hypothesis, SP(Cy(r-sz41)) = Ap(r-sx41),
and SUM(Cj (r-sk41)) I - Sg41 Thus
TMPk+1(r) = SUM(Cr(r—sk+1))+Sk41 +Pr41-
(SP(Ce(r — sk41)) — SUM(Ce(r — sx41))) =
SP(Ci(r - sk+1)U{k + 1}) But Ck+1(l‘) =
Ci(r-si41) U{k + 1} by definition. Therefore,
SP(Ck+1(r)) = TMPk+1(r) = Ak+l(l‘), and
SUM(Cy41(r)) = SUM(Cy (r-sx+1) U{k + 1}) =
T - Sk41 + Sk41 =r. From induction hypothesis,
Cy(r-sk41) C {1, 2, .-+, k}. Therefore Cy 1(r)
= Ck(r'5k+l)U{k + 1} c{y,2 .. k+l}.

Q.E.D.
Lemma2 Vi, 0 < i < n, V strict set B C
{1,2,---,4}, SP(B) > A;(SUM(B)).
Proof:

Since B is strict, 0 < SUM(B) < 1. Therefore,
A;(SUM(B)) is defined. The hypothesis is true for
i = 0 because Ag(SUM(0)) = 1 = SP(@). Suppose the
hypothesis is true for all i < k. Let B C {1, 2, ---,
k+1} and B be strict.

There are two cases:

1. k+1 4 B. From  induction hy-
pothesis A} (SUM(B)) < SP(B). But Vi and Vr,
the definition of A 1(r) guarantees A;,(r) <
A;(r). Thus Ay, 1(SUM(B)) < SP(B).

2. k+1 € B. From the definition of strict set,
B’ = B - {k+1} is also strict. Therefore,
SUM(B’) = SUM(B) - s41 and Ay (SUM(B'))
< SP(B’) < 1 by induction hypothesis. Ac-
cordingly, TMPy_(SUM(B)) < SUM(B) +
prs1 - (SP(B') — SUM(B')) = SP(B). But
SP(B) < 1 because B is a non-empty
strict set. ~ This implies Ay, ;(SUM(B)) =
min{Ay (SUM(B)),TMPy, 1 (SUM(B))} <
SP(B).

Q.E.D.

Theorem 2 Let Ap(v') = minoc, <1 An(r). Cn(7)is
optimal and SP(Cn(v')) = An(").
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Proof:

It is clear Ap(0) = 1. Therefore, An(r’) < co. Then
from Lemma 1, SP(Cn(r')) = An(r'). From Theorem
1, there exists a strict optimal set B. From Lemma
2, An(l‘l) = minv,.An(r) S An(SUM(B)) S SP(B),
which implies Cp(r') must be optimal.

Q.E.D.

4.3 IMPLEMENTATION AND EXAMPLE

P-SPO, the dynamic programming algorithm comput-
ing the recursive relations for A;(r) and C;(r), is listed
in the following:

ALGORITHM P-SPO

0) 1 < i £ n,input( s;, p;)
1) VTE{TIA—,E%-,---’%E—] ,A(l')(——OO,C(I‘)<—_L
2) A(0) — 1;C(0) — 0@
3) fori—1,ton
4) forr 1 - 21‘,, downto s;, step - glg
5) begin
6) if A(r -s;) # oo, then
7) begin
8) TMP — r + pi- (A(r —55) - 7+ 55)
9) if TMP < min{A(r), 1} then
A(r) — TMP,
C(r)— C(r — ) U {i}
10) end{if}
11)  end{for}
12)  Find r such that A(r) is minimum.
13)  output (C(r), A(r))

In P-SPO, A;(r) and C;(r) are recorded in two ar-
rays, namely, A(r) and C(r), 0 < r < 1. The recursive
relations are evaluated in the double loops starting
on lines (3) and (4). During iterationi = ¢ and r =
7, Ai(7) and C,(v) are computed and stored in A(7)
and C(v). Note that the “for” loop in line (4) has
to iterate in the “downto” direction for the following
reason: In order to compute TMP,(v), A,_(v-s.) and
C,-1(7-s¢) have to be accessed. These values should
be kept in A(y - s,) and C(v-s,), respectively. The
“downto” direction guarantees that these two entries
will not be over-written by A,(v-s,) and C,(v-s;) until
a later iteration.

P-SPO takes F = { (s1, p1), (s2, p2), - -, (sn, pn)}
as its input. It outputs an optimal set C(r) together
with the corresponding minimum value of the objec-
tive function, A(r). In P-SPO we use a special symbol
1 to denote “undefined”.

Example 1 Let [Ry|, Co, Do be 5, 2, and 1, respec-
tively. There are four semi-joins, namely, R; — Ry,



i=1, 2, 8, 4, which can be used to reduce Ry. The
transmission cost of them are 5, 2.5, 1.25, and 1.25,
respectively. Their selectivities are 0.45, 0.6, 0.7, and
0.6.

From the above data, we can construct F = { (1/2,
0.45), (1/4, 0.6), (1/8, 0.7), (1/8, 0.6) }. Notice that
the precision is 3. We need to compute A;(r) for 1 <
i< 3andre {0, 1/8, 2/8, ---, 7/8}. Initially, Ag(0)=1
and Cq(0) = 0. All other Ag(r)’s equal co and all other
Cp(r)’s equal L. The computation of Ai(r) and C;(r)
is summarized in the following two tables:

N1 ]2 |3 1
0 1 1 1 1
3 o0 (o) 0.825 | 0.725
00 0.85 | 0.85 0.67
Ai(r) = oo |oo [0.795]0.735
0.95 | 095 | 0.95 0.752
e’} 0 0.94 0.895
3 00 00 00 0.939
£ 00 00 00 0
N1 ]2 |3 1
0 0 0 0 0
3 1 4 {3} {4}
L {2} | {2} 3, 4)
Ci(r) = L L {2,3} 2, 4)
{1 { 11{234}
L | L [{1,3) (14}
1 L 1 1, 3,4}
£ 1 L L L

We explain some entries in the above tables. First
consider (i,r) = (2, 6/8). TMP5(6/8) = § + 0.6 -
(A1(§-1)-£$+1) =1.02 > 1. Therefore, A5(§) = oo.
Next consider (i, r) = (4, 3/8). TMPy(3) = $+0.6-
(As(%) — 1) =0.735 < A3(2). Thus A4(3) = 0.735.

P-SPO outputs ({3, 4}, 0.67). The corresponding
total transmission cost TS({3, 4}) is Co- | Ro | -0.67+
Dy =17.17.

4.4 THE COMPLEXITY OF P-SPO

We assume it takes constant time to perform a rational
number addition, subtraction, or multiplication. It is
also assumed that it takes constant memory space to
store any rational number. The space complexity of
P-SPO is dominated by the storage requirement of the
array C(). Theindexr € {0, 3k, 5%, ", %E—l-}, where
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K is the precision. Each entry in C() requires n bits.
Therefore, the total space complexity is O(2¥ - n).

The time complexity is dominated by the execution
of the double loop at line (3) and (4). The execution
time for each iteration is constant. Therefore, the total
time complexity is O(2X - n).

5 ONE-SHOT SEMI-JOIN EXECU-
%%811:} FOR QUERY OPTIMIZA-

We shall consider using one-shot semi-join execution
for query optimization. In the following we first model
the queries. Then the one-shot semi-join query opti-
mization problem will be formulated into a mathe-
matical programming problem. Finally, we provide a
strategy to find the optimal solution.

5.1 THE MODEL OF QUERIES

A query, denoted (TL, Q), consists of two components:
the target list (TL), and the qualification (Q). The tar-
get list contains target attributes that are of interest
to the query, i.e., attributes that will appear in the
answer. The qualification is a conjunction of clauses
which describe the query. We assume that after initial
local processing, all clauses in a qualification are of the
form Ri.a.j = Ry .ay,.

The closure Q* of a qualification Q is defined as
the qualification with the minimum number of clauses
such that (1) all clauses in Q are in Q*, and (2) if
Rjam = Rj.an and Rj.an = Ry.ao are in Q, then
Rj.am = Ry.a0 is in Q*.

The undirected join graph G(V,E) of a query
(TL,Q) is defined as follows: V is the set of relations
involved in the query. E is the set of edges such that
(Rj, Ry) € E if for some a;j and ap, Rj.a; = Ry.ap is
in Q*.

Associated with each edge (R;, RJ) € E there are
two semi-joins, namely, R; —»Rj and Rj —R;. As de-
fined in section 3, u} and p',’ denote the transmission
cost and selectivity of R; —-»Rj, respectively.

5.2 FORMULATION

Given a query graph G(V,E) with k edges, There are
2k semi-joins, two corresponding to each edge. The
problem is to choose to execute a subset of these semi-
joins such that the overall transmission cost is mini-
mized.
Let XJ be the set of indices of these 2k semi-joins,
e, XI={((J) | K —R; is a semi-join }. Let
BJ denote the subset of XJ such that { R; —R; |



(iJ) € BJ} is the set of semi-joins chosen to be exe-
cuted. The total transmission cost for these semi-joins
is 3 ; j)eps Ul- After the execution of these semi-
Joins, the size of R; becomes (Ivii5yeBs A1) | R |.
Thus the transmission cost for sending R; to the fi-
nal processing site is C; - (ITvi i jyems P1)- | Ri | +D;.
Suppose there are n relations, Ry, Rg -+, Ry, in the
query graph. The overall transmission cost, includ-
ing the cost of executing all the chosen semi-joins and
sending all the relations to the final processing site, is
therefore

n
> W+ (G IR |-
(h,k)eBJ j=1
II A+b)

Vi (i,j)EBJ

TSJ(BJ)
(3)

To summarize the discussion above, the one-shot
semi-join query optimization problem can be formu-
lated into the following mathematical programming
problem, JSPO.

Definition 3 (JSPO)
Given FJ = { (ul,p}) | (i,j) € XJ}, and M = {
(C;, D, | R N |1 < j < n}, find B C XJ such that
TSJ(BJ) is minimized.

5.3 SOLVING JSPO

A Divide-and-Conquer algorithm based on SPO can
be developed to solve JSPO.
TSJ(BJ) can be written as

= Y (C;-SP{(BJ;)-| R; | +D;)

TSJ(BJ)
i=1
where
ul ;
SP;j(BJ;) = GE"t I1 7
(i.5)eBy; 7 ! (i.)€BJ;
BJ; = {(i,j) Vi, (i,5) € BJ}

Notice {BJ;} is a partition of BJ. TSJ(BJ) achieves
minimum iff all SP;(BJ;)’s are minimized simultane-
ously. Conversely, if one can find X1, X9, --+, Xp,
such that SPy(X1), SPy(X3), ---, SPy(Xy) are mini-
mum, J7_, X; is an optimal BJ. SP;() can be solved

by using P-SPO if we let s; = T“IJRT[ and p; p;’
Therefore, JSPO can be solved by applying P-SPO to
reduce each relation in the query.
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6 THE TRUNCATION ERRORS

In practice, we may not always be able to find a small
precision number K such that each parameter can be
precisely represented. One alternative is to choose a
reasonable K and to truncate all the parameters whose
precision is greater than ,?lr We can then use P-SPO
as a heuristic to solve the problem.

Choosing K is crucial to the precision of the fixed-
precision algorithm. In this section, we shall analyze
the relationship between K and the errors caused by
truncation.

We consider the single-relation one-shot semi-join
execution first. P-SPO requires all s;’s be of fixed pre-
cision. There are no precision constraints on pi’s. The
errors are therefore due to the truncation of si’s only.
Let F = {(sl,pl),(sz,pg),~-~,(s,,,p,.)} be the origi-
nal problem and F’ = {(sllr Pl), (5127 PZ), ) (s:npn)}
be the problem after the truncation. s! < s; < s} + x
because of the truncation. We use SP() and SP'() to
represent the objective functions corresponding to the
original problem and the problem after the truncation,
respectively. Let B be an optimal set for the original
problem and B’ be an optimal set derived by P-SPO
for the problem after the truncation. Clearly SP(B) <
SP(B) and SP/(B’) < SP/(B). Since s} < s; for all in-
dices i, SP'(B) < SP(B). Combining these inequalities,
we have

SP'(B') < SP'(B) < SP(B) < SP(B))  (4)

To compare the near-optimal set B’ (with respect to
the original problem) and the optimal set B, we define
the error of the truncation to be SP(B’) - SP(B). From
(4), we have SP(B') - SP(B) < SP(B') - SP'(B’) <
2iepi(si — st) < F&, where K is the precision chosen
for the truncation. In other words, if we use P-SPO
as a heuristic, the strategy derived will incur at most
Co- | Ry | 3% units more transmission cost than the
optimal strategy.

We now consider the one-shot semi-join query opti-
mization problem. As in section 5, a join graph with n
relations can be partitioned into n single-relation pro-
cessing problems. Let n; denote the number of candi-
date semi-joins for the ith single-relation subproblem.
The overall truncation error is bounded by the summa-
tion of the truncation errors of all the sub-problems.
Accordingly, the difference, in terms of transmission
cost, between the strategy derived and the optimal
strategy is no more than -7 | Ci- | R; | .



7 CONCLUSIONS AND FUTURE
RESEARCH

We introduced the one-shot semi-join execution strat-
egy for distributed query processing. This method
allows parallelism and processes multiple semi-joins
simultaneously. Specifically, the semi-join processing
contains three phases, namely, projection, transmis-
sion, and reduction. During the projection phase, all
semi-join projections from the same relations are gen-
erated at a time. These projections are then transmit-
ted over the communication channel during the trans-
mission phase. Finally, all semi-joins to the same re-
lations are executed in the reduction phase.

Based on one-shot semi-join execution, we studied
the distributed query optimization problem and tried
to minimize the overall transmission cost. This prob-
lem has been shown to be NP-Hard. Nevertheless,
we developed a polynomial-time algorithm, assuming
the costs of semi-joins are of fixed precision. For sit-
uations where the fixed-precision constraint does not
apply, we truncate the parameters and apply the al-
gorithm as a heuristic to find near-optimal solutions.
We analyzed the truncation errors and found that the
solutions derived are close to the optimal one.

Some related problems are under investigation. We
are using the fixed-precision constraint to solve other
intractable query processing problems. Also, we are
studying the global semi-join optimization problem.
We propose one possible processing method, namely,
hashing, in this paper. We intend to develop other
methods and compare them under different scenarios.
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