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Evaluating Aggregate Operations
Over Imprecise Data

Arbee L.P. Chen, Member, IEEE Computer Society, Jui-Shang Chiu,
and Frank S.C. Tseng, Member, IEEE Computer Society

Abstract—Imprecise data in databases were originally denoted as null values, which represent the meaning of “values unknown at
present.” More generally, a partial value corresponds to a finite set of possible values for an attribute in which exactly one of the
values is the “true” value. In this paper, we define a set of exiended aggregate operations, namely sum, average, count, maximum,
and minimum, which can be applied to an attribute containing partial values. Two types of aggregate operators are considered:
scalar aggregates and aggregate functions. We study the properties of the aggregate operations and develop efficient algorithms for
count, maximum and minimum. However, for sum and average, we point out that in general it takes exponential time complexity to

do the computations.

Index Terms—Relational databases, null values, partial values, scalar aggregates, aggregate functions, graph theory.

1 INTRODUCTION

NCOMPLETE information can be classified into two as-

pects, i.e., imprecise information and uncertain informa-
tion. Dubois and Prade [12] distinguish between imprecise
and uncertain information by stating that the concept of
imprecision is relevant to the content of an attribute value,
while the concept of uncertainty is relevant to the degree of
truth of its attribute value. In this paper, we focus our at-
tention on the imprecision aspect. To the uncertainty as-
pect, two major approaches are the possibility approach
based on the fuzzy set theory [33] and the probability ap-
proach based on the probability theory.

Imprecise data exist in the real world. Null values were
originally adopted to represent the meaning of “values un-
known at present” in database systems. Codd [6], [7] pio-
neered the work on extended relational algebra to ma-
nipulate null values. For a concise review of handling null
values by algebraic approaches, refer to [21].

The concept of null values has been generalized to the
concept of partial values by Grant [14]. Instead of being
treated as an atomic value, an attribute value in a table is
considered as a nonempty subset of the corresponding do-
main. A partial value is represented as an interval such that
exactly one of the values in the interval is the “true” value.
In our work, a partial value is considered as a finite set of
possible values in which exactly one of the values is the
“true” value [11]. Therefore, an applicable null value [8] is a
partial value which corresponds to the whole domain. Also,
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a definite value a is a partial value which corresponds to a
set containing 4 only.

Partial values have been considered by DeMichiel [11] for
resolving domain mismatch problems in multidatabase sys-
tems, in which an algebraic approach for operating on partial
values is proposed. Grant and Minker [15] consider query
answering for indefinite (disjunctive) databases that contain
disjunctive formulas in first-order logic in which each corre-
sponds to a finite set of possible tuples under the relational
model. Ola [23] presents an approach to processing relations
containing exclusive disjunctive data (such as partial values).
In [29], we discuss the elimination of redundant partial val-
ues. Moreover, in [32] we study the problem of incrementally
refining partial values into more informative ones or into
definite values by utilizing the knowledge of integrity con-
straints. Lipski [20] presents a general discussion on ma-
nipulating imprecise information including partial values.

To the uncertainty aspect, various kinds of fuzzy rela-
tional databases based on the possibility approach were
proposed, such as Bosc et al. [3], Buckles and Petry [4],
Prade and Testemale [25], and Zemankova and Kandel [34].
Moreover, the work with the probability approach includes
Barbara et al. [1], Cavallo and Pittarelli [5], Tsai and Chen
[28], and Tseng et al. [30]. In [28], [30], we generalize partial
values into probabilistic partial values to provide a probabil-
istic approach to query processing in heterogeneous data-
base systems.

In practice, relational algebra or calculus are inadequate
for many important applications involving statistical in-
formation or aggregations. Therefore, modern query lan-
guages, like SQL [9], are “more than” relational complete and
equipped with some useful aggregate operations. However,
most of the previous works on the manipulation of incom-
plete information usually discuss the extended relational
algebra and ignore the extended aggregate operators.

Aggregate operations can be applied to all the tuples in a
table, to a subset of the table (specified by a WHERE
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clause), or to one or more groups of tuples in the table
(specified by a GROUP BY clause). For each set of tuples to
which an aggregate operation is applied, a single value is
generated. Aggregate operations are often used with the
GROUP BY clause for a more powerful functionality. Op-
tionally, the keyword DISTINCT can be used with count to
eliminate duplicate values before the aggregate operation is
applied.

In this paper, we define a set of extended aggregate op-
erations, namely sum, average, count, maximum, and mini-
mum, which can be applied to attributes containing partial
values. These aggregate operators are divided into the fol-
lowing two types (depending on whether the GROUP BY

clause is used).

1) Scalar aggregates—They take a set of partial values as
input and produce a single partial value as a result.

2) Aggregate functions—They compute an aggregation on
attribute A, of a relation T[..., 4,, A, ...] containing
partial values based on the distinct scalar values a, of
attribute A,, and return <a,, 7,>, where n, is the ag-
gregation of A, based on 4,. For databases containing
partial values, the extended aggregate functions pro-
duce 7, as a partial value.

In [10], DeMichiel provides an approximation of aggre-
gate operators over partial values. However, from the defi-
nitions in [10], only the boundary possible values (ie., the
maximum and minimum possible values) are returned for
some aggregate operators. In comparison, our work gener-
ates all possible values for each aggregate operator instead of
boundary possible values.

Ozsoyoglu et al. [24] study some aggregate operations
over set-valued attributes. All values in the set are the true
values. The grouping attributes if specified can be set-valued
attributes. However, it is required that the aggregate attribute
(to which an aggregate function is applied) should be a sin-
gle-valued attribute. In comparison, in our work, both
grouping attributes and aggregate attributes are partial
values.

Rundensteiner and Bic [26], [27] study aggregate opera-
tions in possibilistic databases. The possibilistic relational
model is characterized by a representation which allows for
data values to be modeled by discrete possibility distribu-
tions. Their aggregate operators generate all possible values
each with a possibility in exponential time. In comparison,
based on'partial values, our work generate all possible val-
ues without possibilities possibly in polynomial time.

Database practitioners are concerned primarily with the
performance of a database system and many of the query
evaluation algorithms for processing imprecise queries are
very complex and inefficient. This inefficiency, as pointed
out by Motro [22], is one of the reason for the slow accep-
tance of imprecision and uncertainty handling capabilities
into commercial database systems. Therefore, this work is
devoted to the accommodation of imprecise data in data-
base systems with elaboration on speeding up its process-
ing efficiency.

Since the brute-force computation of the extended ag-
gregates is very time-consuming in general, we find some
important properties and develop efficient algorithms (in
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polynomial time complexity) for count, maximum, and

-minimum. However, for sum and average, we point out that

in general it takes exponential time complexity to do the
computations.

The following section presents some basic concepts and
definitions of partial values. Section 3 is devoted to the
definition of our extended scalar aggregates and studies
their properties. In Section 4, the definition of our extended
aggregate functions and their evaluation algorithms are
presented. Section 5 concludes our work.

2 BAsIC CONCEPTS AND DEFINITIONS

2.1 Basic Concept of Partial Values

Partial values model data imprecision in databases in the sense
that, for an imprecise datum, its “true” value can be restricted
to be in a specific set of possible values [11] or an interval of
values [14]. In our work, we follow the definition of a partial
value given in [11], which is formally stated as follows.

DEFINITION 2.1. A partial value, denoted 1 = [ay, a5, ..., 4],
corresponds to a finite set of possible values, {a,, a,, ..., ap},
p 21, of the same domain for an attribute, in which exactly

one of the values in 1 is the “true” value of n.

- For a partial value 7 = [ay, ay, ..., a,], a function vis de-
fined on it [11], where v maps the partial value to its corre-
sponding finite set of possible values; that is, 1) = {4, 4,
.+, 4,}. Recall that an applicable null value [8], X, can be con-
sidered as a partial value with XX) = D, where D is the
whole domain. A relation containing tuples with partial
values is called a partial relation [11]. Otherwise, it will be
called a definite relation. We assume that each partial rela-
tion contains primary key attributes with definite values.

The cardinality of a partial value 77 is defined as | W(7) | in
[11]. When the cardinality of a partial value equals 1, ie.,
there exists only one possible value, say 4, in the partial
value, then the partial value [a] actually corresponds to the
definite “true” value a. A definite value 4 can be also repre-
sented as a partial value [a]. Moreover, a partial value with
cardinality greater than 1 is referred to as a proper partial’
value in [11]. For any two proper partial values, say 7, and
71, the “true” value of 7, may not be the same as the “true”
value of 7, even if U7,) = W(7,).

2.2 Alternate Worlds of a Partial Relation

Let T be a partial relation on a set of attributes {A;, A,, ..., A}
containing a set of tuples {t,, t,, ..., t,} where t; = <7, 1, ...,
N>, 1 Si<n. Let T[Aj] denote the projection of a partial rela-
tion T on an attribute A;. We may enumerate all the possible
cases that T[A,] represents by the following definition.

DEFINITION 2.2. Let T[A{] = {11y, 1y, ..., 70} where 15 = t.A,,
t; e T. An interpretation « of T[A)] is an assignment of
values from TTA]] denoted by an n—nary vector o= (ay, a,
<oy Ay Where az € U1pp), 1<i<n.

By Definition 2.2, for T[A]] = {1y, 1y, ..., 7}, Vi) x A 7y
X -+ X U7, is the set of all interpretations of T[A]. Notice
that 7 and My i # I, can both appear in T[Aj] even when
V(Uij) = V(ﬂz/).
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EXAMPLE 2.1. Suppose T[A/.] = {la, b], [c,d]}, there are four

interpretations, oq = (4, ¢), &y = (a, d), o = (b, ¢), and
o=, d).
For t; € T, we may enumerate all the possible tuples that

t; represents by the following definitions.

DEFINITION 2.3. Let t; = <1y, Ny, -.., N> € T. An interpreta-
tion, o = (ay, ay, ..., 4;,), of t; is an assignment of values
from partial values in t; such that a; € v(nij), 1<j<m.

DEFINITION 2.4. Let ¢ be an interpretation of t, t; € T. o4(t) is
defined as a tuple < a, ,a;, ,...,a;, > where a; denotes
the value of attribute A; for tuple t; under interpretation o4.
The set of all possible tuples represented by t, rep(t), is
defined as {¢(t;) | for each interpretation ¢ of t}.

For a partial relation T, we may enumerate all the possi-
ble relations that T represents by the following definitions.

DEFINITION 2.5 Let T be defined as the above. An interpretation
aof T is an assignment of values from partial values in T
denoted by an n X m matrix

Ay A 0 Oy

a u e a
a=|"10 "2 7 P

anl anl e anm_‘

whereaze U1, 1<isn, 1<j<m.
By Definition 2.5, for partial relation T,
By Gy oy

a, a a . .
2Tz 2:’"Mi]-ev(nij),lSzSnJS]Sm

Ay Ao 7 By

is the set of all interpretations of T.
DEFINITION 2.6. Let o4 be an interpretation of T. oi{T) is defined
as a relation
o ()| o) = <@y a0y, >, 1 € T)
The set of all possible relations represented by partial rela-

tion T, rep(T), is defined as {R; | R, = (T, for each in-
terpretation ¢, of T}.

EXAMPLE 2.2. Consider the following partial relation T.

T
A A
a C
b [c,d]

There are two interpretations, ¢; and o, of T:

o = [Z g} and o, = [Z 2]
The possible relations represented by T, o4(T) = R;
and a(T) = R,, are shown below:

Rl RZ
A Ay A Ay
a c a c
b c b d

3 EXTENDED SCALAR AGGREGATES OVER PARTIAL
VALUES

An extended scalar aggregate can be applied to an attribute
containing partial values. It in turn produces a partial value.

3.1 Definitions of the Extended Scalar Aggregates

Each extended scalar aggregate is defined as follows
through the function v, which maps the result of an ex-
tended scalar aggregate (which is also a partial value) to the
finite set of values to which it corresponds.

In the following, T denotes a partial relation and A; de-
notes an attribute of T.

DERINITION 3.1. The extended count (for the number of distinct
values) on A; of T, denoted count (T.A), is defined as:

Hcount(T.A)) = { I RA] ! | Ry e rep(T)}.

DEFINITION 3.2. The extended sum on A; of T, denoted
sum(T.A), is defined as:

v(sum(T. A;)) = { Eaijk | R, e rep(T)}.
teR,

DEFINITION 3.3. The extended average on A; of T, denoted
avg(T.A)), is defined as:

;
z*lliklll R, e rep(T) .
%

DEFINITION 3.4. The extended maximum on A; of T, denoted
max(T.A), is defined as:

viavg(T. A)) =

v(@ux(T. A = {?51{1( a; | R, € rep(T)},

DEFINITION 3.5. The extended minimum on A; of T, denoted
min(T.Aj), is defined as:

v(min(T. A].)) = {?5‘1: a; | R, € rep(T)}.

The following example illustrates these extended aggre-
gates.

ExAMPLE 3.1. Consider the following partial relation.

Employees
name salary
a . | [20k, 80K]
b {60k, 75k]
c [20k, 90k]

We compute the set of possible relations rep(Employee),
as follows:
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rep(Employees)
a 20k a 20k a 20k
{ b 60k |, b 60k |, b 75k |,

c 20k c 90k ¢ 20k
a 20k a 80k a 80k
b 75k |, b 60k |, b 60k |,
c 90k c 20k c 90k

a 80k a 80k

b 75k |, b | 75k }

c 20k c 90k

Then the extended scalar aggregates can be computed
as follows. Let T = Employees and A; = salary.

v(sum(E;ﬁployees. salary)) = { Z a ‘ R, e rep(T)}
t;eR,
= {100k, 170k, 115k, 185k, 160k, 230k, 175k, 245k}.

v(count(Employees. salary)) = {‘Rk[Aj]‘ ] R, e rep(T)} = {2, 3}.

a..
ztiekk K

v(avg(Employees. salary)) = IR | - |Rk € rep(T)
k

100k 170k 115k 185k 160k 230k 175k 245k
1373737373 /73 '3 "3

v(max(Employees. salary)) = {m%x a; |Rk € rep(T)}
teR, 7k

= {60k, 90k, 75k, 80k}.

v(min(Employees. salary)) = {fn%{n a;, } R, e rep(T)}
i €8

= {20k, 60k, 75k}
That is,
sum(Employees. salary) =
{100k, 170k, 115k, 185k, 160k, 230k, 175k, 245k},
count(Employees. salary) = [2, 3],
avg(Emplyees. salary) =
{1001( 170k 115k 185k 160k 230k 175k 2451

3 737373737377 373
max(Employees. salary) = [601(, 90k, 75k, 80k], and
min(Employees. salary) = [20k, 60k, 75k].

3.2 Properties and Algorithms for Evaluating Scalar
Aggregates over Partial Values

When ITl =nand l7;] =p for all t; € T, there are p" inter-
pretations of T[A]. Therefore, brute force methods for com-
puting the extended scalar aggregates are exponential. In the
following, we develop polynomial time algorithms to com-
pute count, maximum and minimum based on their properties.
Since the cardinalities of Wsum(T.A)) and Uavg(T.A)) are
equal to p” in the worst case (see Example 3.1), no polynomlal
time algorithms can be found for sum and average.

3.2.1 Properties of the Scalar Aggregate—Count

In this section, we use techniques in graph theory [2] to
develop an efficient algorithm for count. Before discussing
the details, we define some terminologies as follows.

DEFINITION 3.6. For a set S of vertices in a graph G(V, E), SV,
the neighbor set of S, denoted N(S), is defined to be the set
of all vertices adjacent to the vertices in S.

DEFINITION 3.7. For a bipartite graph G = (X U Y, E), we say a
set 5, S ¢ X, covers Y if N(S) = Y. If deleting any vertex
in S would make S cease to cover Y then S is a minimal
set that covers Y. S is a minimum set if it has the mini-
mum cardinality among these cover sets. Note that Y can
be an empty set.

DEFINITION 3.8. Let Y =

{ay, a5 ...,

bipartite graph G =

{771/ Thy «oes 777;} m’ld X U] <i V(771) =
aq}. The membersth graph of Y over X is a
(X UY, E), where

E={a, ) | a;e Un), 1<i<qg 1<j<nl.

DEFINITION 3.9. For a bipartite graph G = (X U Y, E), | X1 <
IY'l, we say there is a complete matching M from X to
Y if there is a matching of cardinality |X|, that is, each
vertex in X is adjacent to a distinct vertexin Y.

Hall [16] has given a necessary and sufficient condition
under which there exists a complete matching M from X to
Y for a bipartite graph G= (X U Y, E).

TrEoREM 3.1. ([16]) Let G = (X U Y, E) be a bipartite graph.
There exists a complete matching from X to Y if and only if
INS)I 2 1S1,VScX.

Now we state the properties for count as follows. We dis-
cuss the lower bound of Ucount(T.A)) first. Then the upper
bound of Ucount(T.A4)) is addressed Finally, we prove that
each integer number between the lower bound and the up-
per bound is in Ucount(T.A)).

LEMMA 3.1. Let Y = T{A] = {my, M3y, .., 1t X = U <, Wy,
and G=(XUY, E) be the membership graph of Y over X.
Let I denote the cardinality of the minimum set S, S < X,
that covers Y, then for all c & v(count(T.A-)), c=1.

PROOF. Suppose there is an element ¢ of v(count(TA)) such
that ¢ < . That is, there is an interpretation

k - (alfk'asz’“" ”jk)
of TTA;] with IRk[Aj] | = ¢ <1, where
RlA]={a; [1<i<n].
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Since a; € v(nij), for 1 <i < n, RA] covers Y. But

IRk[Aj]I < 1, which contradicts the assumption that

the cardinality of the minimum set that covers Y is L.

Hence, for all c € Ucount(T .Aj)), c2l. a

The following lemma states the upper bound of
Ucount(T.A)).

LEMMA 3.2. Let Y = T[A] = {mh, Ty - Thihs X =Uh i< YT,
and G = (X U Y, E) be the membership graph of Y over X.
Let u denote the cardinality of the maximum matching M
in G, then forall c € V(COMTLi’(T.A/-)), c<u.

PROOF. Suppose there is an element ¢ of Ucount(T.A)) such
that ¢ > u. That is, there is an interpretation
e,

oy =@y, .4y ui,)

of T[A]] with'| R([A/] | =¢>u, where

RlA])={a; [1<i<n}.
In other words, for each a € Rk[Aj], there exists at
least a distinct 7; € T[A;] such that ay; € v(nij)‘ That
implies, for all S ¢ Ri[A], IS| < IN(S)| in the mem-
bership graph of T[A] over Ri[A], G =RIAJUTIA],
E’). Therefore, by Theorem 3.1, there exists a complete
matching M from RiJA]] to T[A] in G’. By

Rk[A]-] = {aijk \ 1<i< n} c X,

M is also a matching in G. But IM | = IRJA]l > u,
which contradicts the assumption that the maximum
matching in G has cardinality u. Hence, for all ¢ €

count(T.A)), c <. O

The following lemma gives a necessary and sufficient
condition for an element to be in Ucount(T.A)).

LEMMA 3.3. Let Y = T[A] = {1y, Ty, -, Tyt and X =U, <i<n
U7, There is a complete matching from S, S < X, to Y in
the membership graph of Y over S, G’ =(SU Y, E), and S
covers Y in G = (X U Y, E) if and only if 15| e
ecount(T.A)).

PROCE. (<) Suppose |S| = c e Ucount(T.A)). That is, there

is an interpretation o, = (al].k,azjk,...,anjk) of T[A]
with RJA] = S. In other words, for each a; € v(ni].),
there exists at least a distinct 7; € T[A] such that
a; € v(nij). That implies, forall S’ S, 15’1 < IN(S) .
Therefore, by Theorem 3.1, we can construct a com-
plete matching M’ from RfAl=StoYin G’. Besides,
since S = Rk[Aj] = {aijk ‘ 1<i<n}and a; € v(S), for 1
<i<n,Scovers YinG.

(=) Assume there is a complete matching M from S to
Y in the membership graph of Y over S and S covers Y
in G. By S covers Y in G, we obtain S N 7; # @, for all
nm; € Y. To show that ISI e count(T.A)), we can
generate an interpretation a, =(a; ,ay; ,...,a, ) of

T[Aj] such that
a if (a,n) eM,
Iy = anyae S () n; otherwise.

Then, we obtain | Ri[A]l = IS| € UcounKT.A)). O

The following theorem states that all integers between
the lower bound and the upper bound are all in
Ucount(T.Ay)).

THEOREM 3.2. Let Y = T[A] = {1y, 1y, .., Mg X = Uiy V),
and G = (X U 'Y, E) be the membership graph of Y over X. Let
[ denote the cardinality of the minimum set S, S < X, that cov-
ers Y in G, and u denote the cardinality of the maximum
matching M in G, then v(count(T.Aj)) ={cl1<c<ul.

PROOF. By Lemmas 3.1 and 3.2, we obtain for all ¢
Weount(T.Ap), I < ¢ £ u. Now we need to show every
integer between ! and u (including [ and u) is an ele-
ment of Ucount(T.Ap)). To show that le Ucount(T.A)),
since S covers Y in G, we can generate an interpreta-
tion oy = (ay; ,ay; ..., 4, ) of T[A] such that a; €,

. for1<i<n. Thatis, le[Aj]I < 1Sl =1, where
RlAT={a; |1<i<nb.

By the result of Lemma 3.1, | Ri[A]]| 2 I. Therefore, we
conclude IRJA/]l =1e Hcount(T.Ap)).

To show that u € v(count(T.Aj)), we can generate an
interpretation o, = (aljk,uzjk,...,anjk)’ of T[A;] such
that

a if (u,nij) e M,
B, = anya e v(nij) otherwise.

Then, we obtain | Ri[A]l = IM | = u. By the result of
Lemma 3.2, IRJA]l < u. Therefore, we conclude
IR[A] = u e Acount(T.A)p).

Finally, we need to show that all integers between ! and
u are elements of Wcount(T.A)). Let V(M) be the set of
vertices in M. Define U = V(M) N X, then |U| = u. For
eachc, ] <c<u, thereexistsaset S, Sc S clUcX
with 18"l = c. Since u € Ucount(T.Ap), by Lemma 3.3,
there is a complete matching from U to Y in the mem-
bership graph of Y over U. By Theorem 3.1, there is
also a complete matching from 5" to Y in the member-
ship graph of Y over §’. Moreover, since S covers Y in
G, S’ also covers Y in G. By Lemma 3.3, we conclude
that 15| e count(T.A)). O

By Theorem 3.2, for a set of partial values T[A] = Y =
(i, Majo--., Myih, Tet X = Ui, U7). We can first construct the
membership graph of Y over X, G = (X U Y, E), then com-
pute the minimum set S, S ¢ X, that covers Y in G and
compute the maximum matching M in G, then
Ucount(T.A)) = {c | 1 < ¢ <u}, where ] and u denote the car-
dinality of A and M, respectively. Although the minimum
cover problem is NP-complete [13], the computation of a
minimal set S can be done as follows.
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ALGORITHM 3.1. An Algorithm for Computing the Mini-
mal Set S ¢ X That Covers Y in a Membership Graph
- G=XUY,B.
Input: A Membership Graph G=(X U Y, E).
Output: The Minimal Subset S of X That Covers Y in G.
D S=0; '
2) while (Y = @) do {
3) Choose a vertex a from X such that

IN({a})| = max [N ({z,})
a;eX

7

4) S=S U {a};

5 E=E—-{lx,y) | xe X Arye N{aD)};
6).Y =Y - N(a));

7) X=X~1{ak

8) }

9) Output(s);

In Example 3.1, to find Acount(Employees.salary)), we can
construct the membership graph G = (X U Y, E) as depicted
© in Fig. 1, where X = {20k, 60k, 75k, 80k, 90k} and Y = {[20k
80k], {60k, 75k], [20k, 90k]}. Thus, one of the minimal sub-
sets of X that covers Y is {20k, 60k} (which is also a mini-
mum cover set in this example, shown as the two shaded
nodes) and one of the maximum matching in G is M =
{(20k, [20k, 80k]), (60k, [60k, 75k]), (90k, [20k, 90Kk])} (the
three pairs associated with the lines of double-ended ar-
rows). Therefore, Vcount(Employees.salary)) = {2, 3}.

= [203, S0K]
= [20k., 920k}

Fig. 1. The membership graph for Example 3.1.

An 0> algorithm, where # is the number of vertices,
for the computation of maximum matching in a bipartite
graph has been developed by Hopcroft and Karp [17]. The
time complexity for computing maximum matching domi-
nates that for computing a minimal subset of X that covers
Y in G. Therefore, the time complexity of our algorithm for
count is O(n™"?).

3.2.2 Properties of the Scalar Aggregates—Max and Min

In this subsection, we develop two dual properties for the
scalar aggregates—Max and Min, respectively. These prop-
erties state that their corresponding scalar aggregates can
be solved in linear time.

THEOREM 3.3. Let T be a partial relation on attributes {A;, A,,
oo Ay} containing tuples {t1, £, ..., t,).

v(max(T. A/.)) = {a| ae tLJTv(nij),a > IP?TX min v(nij)}.
i€ !

PROCF. By Definition 3.4,
v(max(T. A].)) = {?‘22): in].k | R, € rep(T)}.

Let A = {max, .p a; | R, € rep(T)}and

B= {a’ ae UV(Tlij),a > 1}1:1;( min v(nij)}

teT

We want to show A= B.

(“c”) For any max, g 4; =4 e A, we obtain
a=

max{aijk l a; € v(nij), t; € T, for interpretation o}
= max{aijk [ ag € v(ng), ag, 2 minv(1y),

t, € T, forinterpretation o, } ‘

= a, D, a. > i ),
max{a,]k l ag € v(n), ag 2 I?STX min v(n,),
t; € T, for interpretation o}

e {u| ae UV(TL-]-), az max min v(n,)} = B.
t.eT i

("2”) Assume a € B, then we obtain
4 2 maxmin v(n,,)
t;eT d

and a € UtieT v(nij). Hence, there exists an 7, € T[A]

such thata € (7). Therefore, there exists ¢ subject to

[a ifi=1,
aijk ~min v(nil-) otherwise.

By
a Z max min v(1,.)
" teT d
we obtain g = max; g & - By max; . d; € A, we
obtaing e A. 0

In Example 3.1, max{min(20k, 80k}, min{60k, 75k},
min{20k, 90k}} = 60k. Therefore, max(Employees.salary)) =
{60k, 75k, 80k, 90k}.

Similarly, we can obtain the
Umin(T.A)p) as follows.

THEOREM 3.4. Let T be a partial relation on attributes {A;, A,,
.o.s A containing tuples {t;, t,, ..., £,}.

dual property for

vimin(T. A4))) = {ﬂ! ae tLJTV(nZ-j), as< 1??;;1 max v(7;) . |

PROOF. The proof can be obtained in an analogous way as

that of Theorem 3.3 by replacing “max,” “min,” and

“2” with “min,” “max,” and “<,” respectively. . O

In Example 3.1, min{max{20k, 80k}, max{60k, 75k},

max{20k, 90k}} = 75k. Therefore, Umin(Employees.salary)) =
{20k, 60k, 75k}.

Let ny = ztieT ’y(hij>" By Theorems 3.3 and 3.4, we can

compute maximum and minimum in O(nz). In’ comparison,
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the time complexity of the corresponding brute-force algo-
rithms is O(nyy), where n = H v(nij)’.

teT

4 EXTENDED AGGREGATE FUNCTIONS OVER
PARTIAL VALUES

4.1 Definitions of the Extended Aggregate Functions

Extended aggregate functions can be applied to a partial
relation T[..., A,, A, ...], where A, and A, are attributes
containing partial values. As a GROUP BY clause is speci-
fied, tuples in T are partitioned into groups by attribute A,
and the aggregate operation is then applied to attribute A,.
That is, they compute aggregation on attribute A, of partial
relation T[..., A,, A, ...] based on the distinct scalar values
a, of attribute A,, and return <a,, 77,>, where 7}, is the aggre-
gation of A, based on a,. For databases containing partial
values, the extended aggregate functions produce 7, as a
partial value. We use the same operator names as in Sec-
tion 3.1, but each extended with a by clause.

DEFINITION 4.1. For a partial relation T[..., A,, A,, ...], the ex-
tended count on T.A, by T.A,, denoted count(T.A, by
T.A)), is defined as:

count(T. A, by T.A) = [<a,,n, >|a, | JvtA) A
teT

vn,) = (3,14,]| R, € rep(M))

where S, ={t | te Ryat.A,=al.

DEFINITION 4.2. For a partial relation TI[..., A,, A,, ...], the ex-
tended sum on T.A, by T.A,, denoted sum(T.A, by

T.A)), is defined as:
sum(T. A, by T.A) =< a 1, >|a, | Jv(t.4) A
teT
vin,) = (Y t.A | R, rep(T) A S, # D}
teS,

where S, ={t | te Reat.A,=al.

DEFINITION 4.3. For a partial relation T[..., A,, A,, ...], the ex-
tended average on T.A, by T.A,, denoted avg(T.A, by
T.A,), is defined as:

avg(T.A, by T.A) ={<a,,n, >| a, € Uv(t.Ax) A

teT
E t.A
teS,

5 Y| R, erep(T) A S, # @)
15|
where S, ={t | te Reat.A,=a,}.
DEFINITION 4.4. For g partial relation T[..., A, A,, ...], the ex-

tended maximum on T.A, by T.A,, denoted max(T.A, by
T.A,), is defined as:

max(T. A, by T.A) = (< a,,1, > a, e Jvt. A) A
teT

v(n,) = (maxt. A,| R, erep(T) A S, # @i}

v(n,) =1

where S, ={t | te Reat.A,=a.
DEFINITION 4.5. For a partial relation T1..., A,, A,, ...], the ex-

tended minimum on T.A, by T.A,, denoted min(T.A, by
T.A,), is defined as:

min(T. A, by T.A)=1{<a,n, >|a, e| JvtA) A
teT
vn,) = (mint. A, | R, € xep(T) A §; # @)
€2k

where S, ={t | te Reat.A,=al.

The following example illustrates these extended aggre-
gate functions.

EXAMPLE 4.1. Consider the following partial relation.

Employees
name pos salary
a Mgr [40k, 45k]
b [Mgr, Engr] 32k
c Engr [20k, 32k}

rep(Employees) contains the following elements:

a Mgr 40k a Mgr 40k
b Mgr 32k b Mgr 32k
c Engr 20k 4 Engr 32k
a Mgr 45k a Mgr 45k
b Mgr 32k b Mgr 32k
c Engr 20k c Engr 32k
a Mgr 40k a Mgr 40k
b Engr 32k b Engr 32k
c Engr 20k c Engr 32k
a Mgr 45k a Mgr 45k
b Engr 32k b Engr 32k
c Engr 20k c Engr 32k

The aggregate functions over Employees.salary by Em-
ployees.pos are as follows.

sum(Employees.salary by Employees.pos) =

pos salary
Mgr [72k, 77k, 40k, 45k]
Engr | [20k, 32k, 52k, 64K]

count(Employees.salary by Employees.pos) =
pos | salary
Mgr [1,2]
Engr [1,2]

avg(Employees.salary by Employees.pos) =

pos salary
72k 40k 45k
Mor | 1, AR A
Engr [0k 32k 52k 64k|
1717272

max(Employees.salary by Employees.pos) =

pos salary
Mgr [40k, 45k
Engr [20k, 32k

min(Employees.salary by Employees.pos) =

pOS salary
Mgr [32k, 40k, 45K]
Engr [20K, 32K]
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Note that in this example the result of avg is

[2k 2k Sk 64k Ok can be removed

stk _ 3k
2 T 1

since

4.2 Properties and Algorithms for Evaluating Aggre-
gate Functions over Partial Values

In the following, we develop polynomial time algorithms to
compute count, maximum and- minimum based on their
properties. These properties are generalized from those
presented in the previdus section.

4.2.1 Properties of the Aggregate Function—Count

Before going through the details, we need the following
definitions.

DEFINITION 4.6. Let TT..., A,, Ay ] be a partial relation and
R= URk ereptry R The marginal membership graph of
T[A, Ayl over R[A, A with respect to (w.rt) a,

where a, € Uer WLA), is a
Hax =U U V,E), where

bipartite  graph

U={r|reRA, AL w4 =al,
V={tteTlA, Al a, evitA)), and
E= {(’L’,i’)| Terept), tel, te V}.

DEFINITION 4.7. Let T[..., A,, Ay ] be a partial relation and
R= URk erepmy Rk The strict marginal membership
graph of T[A,, Ay] over R[A,, Ay] w.r.t. a,, where a, €
UerntA), is a bipartite graph 3, = UV, &),
where

U= {rl TC R[Ax,Ay], T.A, = ux},
V= {tl te T[Ax,Ay], LA = ax}, and
g={@H]rerept), tcU teV}

According to our definitions, for an H, and H_ , it is

always true that U = U and V c V. Therefore, for each a,,
H, is always a subgraph of H, .
We now state the properties for count as follows.

LEMMA 4.1. For a partial relation TT..., A, Ay, ...Jandeacha,
Uernt.A, tet R =( Ry, H, =(UUV,8

be the strict marginal membership graph of T[A,, A,]
over R[A,, Al w.rt a, and [, denote the cardinality of

Ry erep(T)

the minimum S, S < ‘U, that covers Vin H, , then <a,,
n> € count(T.A, by T.A,) where, for all c € Un,),
czl .

PROOF. Suppose, for a <a,, 7,> € count(T.A, by T.A,), there is
an element ¢ of ®7,) such that ¢ <1, . That is, there is

an R, with Ri[A,, A,] = M, U N, where

M, =< BBy > <Ay, 0y >, < a,,a, >},

and
N, ={u,a, > <@ >, .0

X Yo T x’ aycn
where @, denotes those elements which are not a,.
Since, for each t € V, t.A, = a,, we obtain there is a
< ax,ay]_ > e M, such that < ax,ay] > € rep(f), which
implies M, covers Vin H, . But |M,| = c <1, which
contradicts that the cardinality of the minimum set that
covers Vin H, is, .Hence, this lemma holds. O

LEMMA 4.2. For a partial relation T1..., A,, A, ..land eacha, c
Uerntt.4), let R = | J Ry, H, =@ UV,E) be

Rkerep(T
the marginal membership graph of T[A,, A} over R

w.r.t. a, and u, denote the cardinality of the maximum
matching M in H, , then <a,, 1> € count(T.A, by T.A,)

where, for all c € V(ﬂy), c<u, .

PROOF. Suppose, for a <a,, 7,> € count(T.A, by T.A;), there is
an elementce 7,) such that ¢ > u, . That is, there is

an Ry € rep(T) with RiA,, A] = M, U N, where

Mk={<ax,a1>,<ux,u >, <a,,a, >,

¥ Y2 Ye

and

N, ={k7a,a >,<o7x,uyc+2 >0,

where z, denotes those elements which are not a,.

In other words, for each < a,,a, > e M,, there exists
i

v
at least a distinct £ e T[A,, A,} such that

<a,a, >e& rep(t)
7

(e, a,e UtA) and a, € Vv(t.A)). That implies, for all
i

Sc M, ISI < IN(S)! in the membership graph of V

over My, G’ = (M, U V, E). Therefore, by Theorem 3.1,

there exists a complete matching M from M; to V in G.

Besides, since M, ¢ UM isalsoa matching in H, . But

’M* = ‘Mk’ =c>u, , which contradicts that the
maximum matching in H, has cardinality u, . There-
fore, this lemma holds. O

LEMMA 4.3 For a partial relation T[..., A,, Ay, ...Jand each a, €
Usernt.Ay, let
D R= URkerep(T) Rk ’
2) H, =(UUV,E) be the marginal membership

graph of T[A,, Ay] over R[A,, AJw.rt a, and
3) H 0 = (U UV, be the strict marginal member-

ship graph of T[A,, Ayl over R[A,, A ] w.r.t. a, (Recall
that, according to our definitions, U = Uand V¢ V).

Then, there is a complete matching from S, S c U, to V in
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the membership graph of V over S, G =(S U V, E) (a
subgraph of H_ ), and S covers Vin 3, if and only if

<a,, 1> € count(T.A, by T.A) and |S| € Un,).

PROCF. (&) For a tuple <a,, > € count(T.Ay by T.A,), sup-
pose IS =c e W7,). That is, there is an R, € rep(T)
with Ri[A,, A ] = M, U N,, where

M, =S={<a,a a, >}

> <aa By,

>,...,<da

Y Y2

and
N, ={<a,a, > <@d,a, >..}

% Yo 2 Y
‘where @, denotes those elements which are not a,.

In other words, for each < a,, a, > € S, there exists at
]

least a distinct t € T[A,, A/] such that < a.,a, > € rep(t)
!

(ie,a, e UtA)and a, € v(t. A))). That implies, for
7

alls’ €S, 18I < INS)! in G =(S U V, E'). There-
fore, by Theorem 3.1, there exists a complete match-
ing M from S to V in G'. Since, for each t € V, t.A, =

a,, we obtain there is a <x,4, > €5, such that
]

Y

<a,a, > e rep(t), which implies S covers Vin H, .
i X

Yy

(=>) Assume there is a complete matching M from S to
Vin G and S covers Vin H, where

S={<a,a > <aga > ..bclu.

Y Y2

To show that |S] e v(ny), we can generate an inter-
pretation
ak(T[Ax,Ay]) ={< Oy, o By >0 <l lyy >y < By By >}
such that
<yl > =
<a,a, > if (< fer By > t)e M,

any <a,,a, >& (S rep(t), if(<a,,a, >#) ¢ Mandt, €V,
any <ay,a, >€ rep(t;) with By # 4, ift, e T[AX,Ay] -V
Then, we obtain I{t.A, | t;e R, t.A, =atl =[Sl e
Um,). |

THEOREM 4.1. For a partial relation T1..., A,, Ay, ...Jand each a,
€ UteTV(t-Ax), let

D R= URkerep(T) Rk ’
2) H, =(UUV,E) be the strict marginal member-

ship graph of T[A,, A/] over R[A,, A ] w.r.t a,,

3) lax denote the cardinality of the minimum set S, S U,
that covers Vin H, ,

4) Hux =U UV,E) be the marginal membership

graph of T[A,, A] over R[A,, A ] w.rt. a,, and
5) u, denote the cardinality of the maximum matching M

inH,,
then <a,, 1,> € count(T.A, by T.A,) and

vin,) =fe|l, <csu, b

PROOF. By Lemmas 4.1 and 4.2, we obtain, for each <a,, 7>
€ count(T.A, by TA), I, <c<u,, forall ce Un.

Now we need to show every integer between /, and

u, (including I, and u, }is an element of K7,).

We first show that [, € v(n,). Since 5 covers Vin

H, , we can generate an interpretation
+

o (TIA, A =< ay, 4, > <y, 8y, >, <dy, a4y, >}
such that
<y By > =
ift, e v,

any <a > € rep(t;) with By # Oy ift, eT - V.

4.
x /7y,

{< a8, >e(S N rep(t;)),

That is, |it. 4, |t € Rt A, =all=c<|S|=1], . By

the result of Lemma 4.1, ¢ > I, , we conclude

c= lﬂx € v(ny).

To show that u, € v(n,) by employing the maximum
matching M in H, = MU U V,E), we can generate an

interpretation
o (TIA, A =< ay 4y, > <y 8y, >/ < Ay 8, >}
such that
< By By > =
{< A,y > if(<a,,a, > 1) eM,
any <a, 4, ><rep(t), t; € T[A,A] otherwise.

Then, we obtain

6 A, [t € Rt A, = a,)

=02|M|=uax‘

By the result of Lemma 4.2, ¢ < u, . Therefore, we
conclude ¢ = u, € v(ny). '

Finally, we need to show that all integers between lux
and u, are elements of /7). Let V(M) be the set of ver-
tices ui M. Define W = V(M) N U, then [W| = u, . For
each ¢, lux <c<u,, thereexistsaset S, ScScWcU,
with | $'| = ¢. Since u ., € v(ny), by Lemma 4.3, there

is a complete matching from W to V in the member-
ship graph of V over W. By Theorem 3.1, there is also
a complete matching from S’ to V in the membership
graph of V over §'. Moreover, since S covers V in
H, , S also covers Vin H, . By Lemma 4.3, we

conclude that | "1 =ce W) a

Theorem 4.1 presents an algorithm for computing the
answer of the aggregate function count over partial values.

That is, for a partial relation TT..., A,, Ay, ...],and eacha, €

Ute UEAY, let R = URkemp(T) R, , we can



282

1) construct ,
o H, =(UUV, &) as the strict marginal member-
ship graph of T[A,, A, over R[A, Al w.rt a, and
e H =@UUV,E) as the marginal membership
graph of T[A,, A,] over R[A,, A)] w.rt. a,, then
2) compute
. lu ,
set S, S U, that covers Vin H, and

¢ u, , which denotes the cardinality of the maximum

which denotes the cardinality of the minimum

matching M in H, .
Then <a,, 1,> € count(T.A, by T.A,) and
v(n,) =lc|l, sc<u, ).

‘Although the minimum cover problem is NP-complete
[13], the computation of a minimal set S can be obtained by
Algorithm 3.1 with input parameter H, .

In Example 4.1, to find count(Employees.salary by Employ-
ees.pos), we can construct Hygr = (U UV, E) as depicted in
Fig. 2a, where U = {<Mgr, 40k>, <Mgr, 45k>, <Mgr, 32k>}
and V = {<Mgr, [40k, 45k]>, <Mgr, Engr], 32k>}. Besides,
ﬂMgr =(U UV, & is as depicted in Fig. 2b, where U =
{Mgr, 40k>, <Mgr, 45k>, <Mgr, 32k>} and V = {<Mgr,
[40k, 45Kk]>}. Thus, one of the minimal subset of ‘U that cov-
ers Vis {<Mgr, 40k>} (which is also a minimum cover set in
this example, shown as the shaded node in Fig. 2b) and one
of the maximum matching in Hy,, is M = {(<Mgr, 40k>,
<Mgr, [40k, 45k]>), (<Mgr, 32k>, <[Mgr, Engr}], 32k>)} (the
two pairs associated with the lines of double-ended arrows
in Fig. 2a). Therefore, <Mgr, [1, 2]> € count(Employees.salary
by Employees.pos). The other answer tuple for “Engr’ can be
computed accordingly.

Mg, [40K, 45>

<Mgr, [40k, 45k)>

<[Mgr, Engrl, 32k>

Fig. 2. (a) The marginal membership graph and (b) the strict marginal
membership graph for computing count in Example 4.1.
Since our algorithm for count is also dominated by the

maximum matching algorithm for each element in UtET
Ut.4,), the time complexity for computing count(T.A, by

T.A,) is O(m - n*%), where m = |U,c;1t.4,) | and 7 is the
number of vertices.
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4.2.2 Properties of the Aggregate Functions—
Max and Min
In this subsection, we develop two dual properties for the

aggregate functions—Max and Min, respectively. Let max &
= coand min J = — .

THEOREM 4.2 For a partial relation T[..., A,, Ay, o,

max(T.Ay by T.A)={< a.,m, >| a, € U"(t~Ax) A
teT

v(t. Ay) A

teTra ev(i:A,)

min v(t. Ay)}}A

v(ny) = {a’ ae

22 max
teTnt.A,=a,

PROOF. For a givena, € Ut,E tUt.A), let

A= {teRkIn/\t?A)i=ﬂ, f. Ay‘ R, € rep(T)} and
B= {a’ ae v(t.A), 2> max minv(t.A)}.
¥ teTnt. A =a, Y

teTna, ev(t.A,)
We want to show A ="8.

("c”) For any max,g ;4 _, -4, € A, R €rep(T),
we obtain

tERkI/{‘iaiznx g Ay

= rnax{t,..Ay| LeR, .4, =a}

= max[aiyk | ay, € v(t,. Ay), teT, 4, = a,} ‘

= rnax{aiyk | ay, € v(f,-.Ay), t,eT, a =4 > min v(ti.Ay)}

x/ aiyk

max

= ) . € . . L=
maxia, | ay, evl. A eT,a, =a e

gy 2 min v(t. Ay)}

c max{a| ae f vit.A),a2 max minv{t A)}
4 teTAt.A =z y
teTna, evit.A)) R

=B.
(“2") Assume g € B, then we obtain

qe U v(t. Ay) and a 2

teTna ev(t.A,)

max

teTAl. A =a

min v(t. Ay).

X

Hence, there exists a t; € T such thata, € Ut.A,) and a

€ W1.A,). Therefore, there exists an Ry € rep(T) such
that, forall 4, = a,, '

_a ifi=1I,
Yy T \minv(t. A,) otherwise,
By
2> max minv(t. A) > min vit. A),
teTAt. A, =a, Y teTAa, ev(t.A,) y

we obtain max Ay = 4. Therefore, a e A. O

tiER, Ay, =a, iy
In Example 4.1, for ‘Mgr,’

max min v(¢. salary) = max{min{40k, 45k}} = 40k.
teEmployees At.pos='Mgr' -

Therefore, <Mgr, [40k, 45k]> € max(Employees.salary by Em-
ployees.pos). For “Engr,”

max

min v(t. salary) = max{min{20k, 32k}} = 20k.
teEmployees nt.pos='Engr’ L

Therefore, <Engr, [20k, 32k, 32k> « max(Employees.salary by
Employees.pos).
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Similarly, for a partial relation TI..., A,, 4,, ...], we can
obtain the dual property for min(T.A, by T.A,) as follows.

THEOREM 4.3. For a partial relation T[..., A,, Ay,
a, e | vt A) A

teT
v(ny) = {a| ae U v(t.Ay) A
teTna ev(t.A,)
max v(t.Ay)}}.

min(T. A, by T.A,) =< a,n, >

a< min

teTat. A =a,

PROOF. The proof can be obtained in an analogous way as
that of Theorem 4.2 by replacing “max,” “min,” and

“2"” with “min,” “max,” and “<,” respectively. 0
In Example 4.1, for ‘Mgr,’

min max v(t. salary) = min{max{40k, 45k}} = 45k.
teEmployees at.pos="Mgyx’
Therefore, <Mgr, [32k, 40k, 45k]> € min(Employees.salary by
Employees.pos). For ‘Engr,’

min max V(t. salary) = min{max{20k, 32k}} = 32k.
teEmployees at.pos="Engr’
Therefore, <Engr, [20k, 32k, 32k]> € min(Employees.salary by
Employees.pos).

For the time complexity of maximum and minimum, let ny

= zteﬂ Ut.A))|. By Theorems 4.2 and 4.3, we can compute

maximum and minimum in O(ng) for each a, Uie TULA).
Therefore, the time complexity for our minimum and maxi-

mum are O(mg - nx), where my = I Ute UEAY) |

5 DiscusSION AND FUTURE STUDIES

Partial values have been used to represent imprecise data in
databases. Referring to the work of DeMichiel [11] on re-
solving domain mismatch problems in multidatabase sys-
tems by partial values, data imprecision may come from their
unavailability or data/schema incompatibilities in a multi-
database system. Therefore, in addition to imprecise data
manipulation, research work on partial values is also impor-
tant for the interoperability of a multidatabase system.

Since, in practice, relational algebra or calculus are in-
adequate for many important applications involving statis-
tical information or aggregations, modern query languages
are equipped with some useful aggregate operations. In this
paper, we define a set of extended aggregate operations,
namely sum, average, count, maximum, and minimum, which
can be applied to attributes containing partial values.

Since the number of the interpretations of a set of partial
values can be very large, the properties presented in this
paper can be used to speed up the computations of count,
maximum, and minimum. By the properties presented in
Section 3.2, we know that maximum and minimum can be
solved in polynomial time. For count, we show that the
lower bound is equal to the cardinality of the minimum
cover set and the upper bound is equal to the cardinality of
the maximum matching. The maximum matching can be
found in polynomial time while the minimum cover prob-
lem is NP-complete. A greedy algorithm is given to find a

minimal cover set. For sum and average, we point out that
the cardinalities of Usum(T.A)) and Havg(T.A)) are equal to

the cardinality of H,GTI Ut.A)| in the worst case and no
polynomial time algorithms can be found.

The count operation actually corresponds to those in SQL
with the keyword DISTINCT. For those in SQL with the
keyword ALL, count can be obtained by directly counting
the number of tuples in the involved relation.

Although Imielinski and Vadaparty [18], [19] pointed
out that if partial values are allowed to occur in databases,
the data complexity of query processing jumps from poly-
nomial time to CoNP [13], there also exist some types of
queries which have polynomial time complexity [18]. Our
studies on the query processing over partial values intend
to discover more polynomial time algorithms from alge-
braic point of view. In our recent work, we found the divi-
sion (by restricting the divisor to be definite) [31] and the
projection with redundancy elimination [29] over partial values
can be done in polynomial time. Besides, we generalized
partial values into probabilistic partial values in [30]. Similar
properties for probabilistic partial values are also being
studied.
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