Extending the E-R Concepts to Capture
Natural Language Semantics for Database Access

Frank Shou-Cheng Tseng

Department of Computer Science and
Information Engineering
National Chiao Tung University
Hsinchu, Taiwan
dep77806@csuniz.csie.nctu.edu.tw

Abstract

Research on accessing databases in natural language usually em-
ploys an intermediate form for the mapping process from natural
language to database languages. However, much effort is needed
to bridge the gap between the existing intermediate forms and the
database languages. In this paper, we extend the E-R concepts to
capture the natural language semantics and develop a logical form to
represent the natural language queries. The logical form can be effi-
ciently transformed into relational algebra for query execution. The
whole process provides a clear and natural framework for processing
natural language queries to retrieve data from database systems.

1 Introduction

In database management systems, data are retrieved via a well-defined
query language. Although some query languages, say SQL (Struc-
tural Query Language), can be very powerful, users may suffer greatly
from their complex usage. Research in natural language processing for
DBMS interface attempts to ease this complexity by freeing users from
knowing the exact database structure and learning the query language.

An intermediate form is usually used for mapping natural language
constructs onto the underlying database schema. This intermediate
form can be a universal relation [16] as used in FRED [10][14]. It can
also be a hierarchy structure constructed from the information about
the database. TEAM [9] and QPROC [17] are two example systems
of this type. Besides, the TQA [6] system use a semantic net model
as its intermediate respresentation.

However, Ullman has pointed out that interpreting queries over
a universal relation is a difficult task [16]. Other intermediate forms
suffer from the bias to natural language constructs and much effort
is needed to translate the intermediate forms into the database lan-
guages.

In this paper, we study the inter-relationship between the natural
language constructs of a query and the E-R conceptual schema {3].
Chen [4] has pointed out that the basic constructs of English sen-
tences can be mapped onto E-R schemas in a natural way. Chen [4]
has studied 11 rules for translating information requirements, which
are originally documented in English, into database schemas in terms
of E-R diagrams. In comparison, we propose an approach to map
the natural language queries into relational algebra through the E-R
schema.

1.1 Review of E-R Model

The Entity-Relationship model 3] adopts the view that the real world
consists of entities and relationships among entities. An entity is a
‘thing’ which can be distinctly identified. A relationship is an associ-
ation among entities. The E-R model uses the concepts of entity set,
relationship set and value set. More details about these concepts can
be found in [3].

The structure of a database organized according to the E-R data
model can be depicted by an Entity-Relationship Diagram (ERD). In
an ERD, an entity set is represented by a rectangular, and a rela-
tionship set is represented by a diamond, labeled by their associated
names. The entity sets that participate in a relationship set are in-
dicated by edges with their corresponding semantic roles attached.
Moreover, a value set is represented as an oval labeled with the at-
tribute defined on it.

0730/3157/91/0000/0030/$01.00 © 1991 |[EEE

Arbee L. P. Chen

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan
alpchen@cs.nthu.edu.tw
Fazx: 836-35-723694

30

Wei-Pang Yang

Department of Computer Science and
Information Engineering
National Chiao Tung University
Hsinchu, Taiwan
wpyang@tunctull.bitnet

Suppliers
sno __sname _ status city Shipments
S1 Smith 20 London sno_pno_ qly
S2 Jones 10 Paris
S3 Blake 30 Paris S P1 300
S4 Clark 20 London g}]lg Zgg
Taipei
S5 Adames 30 aipei 31 Pa 200
Parts St PSS 100
pno pname _color weight city S1 P6 100
S2 Pl 300
Pl Nut Red 12 London
. S2 P2 400
P2 Bolt Green 17 Paris
S3 P2 200
P3 Screw Blue 17 Roae
S4 P2 200
P4 Screw Red 14 London S4 P4 300
PS5 Cam Blue 12 Paris
S4 PS 400
P6 Cog Red 19 London

Figure 1: The Suppliers-and-Parts Datab

Information about an entity set can be organized into a relation
which is named entsty relation. Similarly, a relationship relation can
be constructed by collecting the attributes of the relationship set with
the primary keys of the associated entity relations. For example, in
Figure 1, the relations Suppliers and Parts of the Suppliers-and-Parts
database described in [8] are entity relations, while Shipments is a
relationship relation. Our examples will be based on this database
hereafter.

1.2 Overview of Natural Language Pro-
cessing

Language understanding process is commonly divided into three
stages. First, the sentence is parsed according to the predefined gram-
mar, then the semantic roles are built and finally these semantic roles
are mapped onto the specific objects in the real world.

Augmented-Transition-Net (ATN) [19] is traditionally used to
parse a natural language sentence. By following a method for ex-
pressing grammars in logic due to Kowalski [11], Pereira and War-
ren [13] have developed a clearer and more powerful formalism named
Definite Clause Grammar (DCG). McCord [12] contributes to the syn-
tactic analysis and semantic interpretation of natural languages in the
framework of logic programming.

Winston [18] described a variety of constraints to help establish
semantic roles in a sentence. These semantic roles reveal how the
nouns are related to the verb. Consider the sentence “Andy moves
the dirty table into the messy office.” It is parsed into a noun phrase
and a verb phrase. The verb phrase consists of a noun phrase and a
prepositional phrase which consists of another noun phrase.

Suoe

au‘an

Stin

Desh}zauon
the messy office ®) @

Figure 2 (a): The Semantic Roles for “Andy moves the dinty table
into the messy office.”
(b): Mapping Semantic Roles onto Specific Objects.

The semantic roles of the sentence are shown in Figure 2(a). It

indicates that the verd is move, the subject is Andy, the object is the
dirty table, and the destination is the messy office. Finally, these
semantic roles can be mapped onto specific objects in the real world
as Figure 2(b) illustrates.

Our approach follows these three stages and we focus on the map-
ping from semantic roles to an E-R schema. We develop a logical form
to represent the mapping result and it can be efficiently transformed
into the relational algebra for query execution.

The remainder of this paper is organized as follows. Section 2
describes the processing model and the mapping process. Section 3
devotes to the logical form constructs which can be used to represent
the mapping result of a user query. Query transformation process
which transforms logical forms into the relational algebra is described
in Section 4. Finally, we conclude and suggest future research in Sec-
tion 5.

2 The Processing Model and the
Mapping Process

1. In addition to the original attributes, each entity relation is aug-
mented with a surrogate. Any reference to this surrogate is in-
terpretated as a reference to the corresponding relation. For
example, in the Suppliers-and-Parts database, we add the extra
attributes sno and pno as the surrogates of Suppliers and Parts,
respectively.

2. We also augment each relationship relation with a surrogate
which is composed of the surrogates of the involved entity re-
lations. For example, the surrogate of the relationship relation
Shipments is formed by grouping sno and pno into (sno, pno).

2.1.1 The Dictionary

The linguistic knowledge that enables the semantic roles of a verb
to be mapped onto the correct attributes of the associated relation-
ship relation is stored in the dictionary. Notice that some of these
attributes are surrogates of the entity relations involved in the rela-
tionship. For the Suppliers-and-Parts database, the knowledge for the
verb ‘supply’ would be like

English — e F'Sf;:,‘d Logical Form Relational Relation | Semantic Roles | the Corresponding Attribute
Queries and T Algebra Shipments | Subject sno {the surrogate of Suppliers)
Mapper Object pno (the surrogate of Parts)
The Underlying E-R with-object aty
Schema Associated with the N . . .
Dictionary Semantic-Role Frame Other mformatlon S}lch as the synonyms pf the entity sets with
(ER/SRF) the corresponding relations and all the domain values with the cor-

Figure 3: The Processing Model.

2.1 The Processing Model

The processing model is shown in Figure 3. There is a front-end
parser/mapper to parse the English queries and map them onto the
underlying E-R schema. The parsing and mapping process may refer
to

1. the dictionary and

2. the underlying E-R schema associated with the semantic-role
frame (ER/SRF).

After the parsing phase, the query is decomposed into

1. semantic roles, each of which is composed of a headnoun and
some modifiers (a headnoun is the main noun in a noun phrase;
for example, “the London suppliers” has a headnoun ‘suppliers’
and the other noun ‘London’ is a modifier which modifies the
headnoun) and

2. the verd that relates these semantic roles.

Each of the semantic roles is mapped onto an entity relation and
its headnoun and modifiers are mapped onto the corresponding at-
tributes of that entity relation based on ER/SRF (to be discussed in
Section 2.1.2). The verb that relates these semantic roles is mapped
onto the relationship relation that associates these entity relations.
Figure 4 illustrates this mapping mechanism.

We develop a logical form in Section 3 to represent the mapping
result. After the logical form is generated, it is passed to the query
transformer to produce the query in relational algebra.

Our processing model makes the following assumptions.

Natural Language Queries

the verb that
relates the
semantic roles,

-
f

Relation 2

Figure 4: The Schema Mapping Mechanism.

31

responding attributes are also needed to be stored in the dictionary.

2.1.2 The Schema and the Semantic-Role
Frame Represented in ERD

For each entity relation, attributes are identified as the headnoun and
the modifiers that modify the headnoun. For example, the attributes
corresponding to the headnouns of Suppliers and Parts are sname
and pname, respectively. Other attributes are identified to be the
corresponding modifiers. The above information will be encoded into
the original ERD. For example, the ERD and the semantic-role frame
representing the Suppliers-and-Parts database are shown in Figure 5.

Object

hipments)

with_object
(modifier)

Figure 5: The ERD and the Semantic-Role Frame of the Suppliers-and-Parts Database.

2.2 Description of the Mapping Process

The mapping process can be considered as the counterparts presented
in [4].

2.2.1 Mapping Verbs onto Relationship Rela-

tions

We can map the verb of a query sentence onto the corresponding
relationship relation and its semantic roles onto the corresponding
attributes. The query “Does Smith supply nuts with quantity 300 ?”,
for instance, has the semantic roles which can be mapped onto the
attributes as depicted in Figure 6. The attributes sno and pno refer
to the entity relations Suppliers and Parts, respectively. That tells us
‘Smith’ and ‘nuts’ will be associated with the headnouns of the entity
relations Suppliers and Parts, respectively. Moreover, ‘300’ will be
mapped onto the attribute ¢ty of the relationship relation Shipments.

Sentence Does l Smith | supply I nuts lwilh quantity 300 ?

I Subjec!l verb IOh'ecll with_object

Semantic
roles
vibutc) (uuibune) (o 3
attribute. attribute;)
§ (surrogate) (auribute)

(surrogate) .
Shipments
(relationship relation)

Figure 6: The Mapping for *Does Smith supply nuts with quantity 300 ?”

Note that the verb ‘be’ is treated differently, for it is a linking
verb, which is followed by a subject complement which describes the
subject. Linking verbs do not transfer action; rather, they join the
subject and the complement. For example,

Smith is a London supplier.

in which supplier describes Smith. Because the verb ‘be’ does not
transfer action, we need not associate it with a relationship relation.
The above sentence is mapped onto the entity relation Suppliers (and
the attributes sname and city, see Section 2.2.2).

Note also that an imperative mood sentence is always used for
issuing command. The leading verb does not transfer action. For
example,

List the suppliers located in London.

is mapped onto the entity relation Suppliers (and attribute city).
2.2.2 Mapping Noun Phrases onto Entity Re-
lations and Its Modifiers onto Attributes

As we have shown in the previous section, the semantic roles of a verb
in a sentence can be mapped onto those surrogates of involved entity
relations. Those entity relations actually interpret noun phrases of
the sentence.

However, the noun phrases may consist of more than one noun
modifiers (which can be adjectives or nouns) or relative clauses that
modify the headnoun. For example, “the London suppliers” and “the
red parts” are two noun phrases and have the noun modifiers ‘London’
and ‘red’, respectively. These noun modifiers can be interpreted into
the attributes of the corresponding entity relation. According to the
dictionary, the interpretation of these noun modifiers described above
can be mapped as Figure 7 illustrates. Notice that some relationships

Corresponding | Interpretatiion of
Noun Phrase Relation the Noun Modifier
the London Suppliers Suppliers city = “London™
the red panis Parts color = “red”

Figure 7: Mapping Noun Modifiers onto Attributes.

can be queried in possessive form like “List A’s B.” (or “List the B of
A.") In this case, there is no verb to be mapped onto the relationship
relation. But, by referring to the schema and the semantic-role frame
represented in ERD, we may first map the noun phrases (A and B)
onto the corresponding entity relations and then establish the path
between the entity relations according to the ERD. This path is ob-
tained as the mapping reslut. For example, if we have the following
schema

| Subject ject [——— Obj /\s bject
Teacher hd Jec\'r\uch/Objul1Course Ob]eane/ oee Student

then the query “List Arbee’s student.” can be mapped as follows.

List

Arbee's

students.

And the relations on the path (Teacher, <Teach>, Course,
<Take>, Student) are our mapping result, where relationship rela-
tions are enclosed by angle brackets. Note that this query is equiv-
alent to “List the students who take the courses taught by Arbee.”

3 The Logical Form

In this section, we develop a logical form for representing the results
of mapping from English queries onto an E-R schema. 1t can be easily
translated into the relational algebra for query execution.

3.1 The Extension of E-R Diagram for
the Logical Form

Based on the constructs of E-R diagram, we develop a logical form by
extending the constructs of E-R diagram. The logical form takes into
account the following conditions of an English query.

1. The representation for the negative and positive forms of a verb,

2. The representation for modifiers,
3. The representation for conjunctives ‘and’ and ‘or’, and

4. The representation for the word ‘all’.

These conditions are explained in the following subsections.
3.1.1 The Representation for the Negative and
Positive Forms of a Verb

A verb is uaually mapped onto a relationship relation, which is de-
picted as a diamond in the E-R diagram. But the verb in a query may
be issued in negative form. For example, a user may issue a query in
negative form like “List the suppliers who do not supply nuts.” We
extend the diamond representation of E-R diagram to represent both
the negative and positive form of a query as Figure 8 shows. In posi-

QO

(@) ()

Figure 8: (a) The RclalionshiP Representation in Positive Form
(b) The Relationship Representation in Negative Form.

link to the entity set

whose semantic role

does not satisfy this
relationship

tive case, we represent the relationship as before; in negative case, we
represent the relationship as a dimond except that there is a black tri-
angle that links to the entity set whose semantic role does not satisfy
the relationship. In the previous query, the black triangle links to the
entity set Suppliers.

3.1.2 The Representation for Modifiers

After the headnoun and modifiers of an entity set are recognized,
we respectively associate them with the corresponding attributes and
form them into predicates (attribute ¢ constant, 8 € {>,<,=,#,>
,<}). These predicates are represented by oval nodes in our logical
form. For example, “List the suppliers who supply red parts.” has the
logical form shown in Figure 9. We define the predicate “attribute =
?" as a pseudo predicate; it represents the target attribute which is
to be output to the user.

the suppliers who ~ supply

List Ied parts.

\

Figure 9: The Logical Form of “List the suppliers who supply red pans.”

3.1.3 The Representation for
‘And’ and ‘Or’

The conjunctive ‘and’ is sometimes interpreted to be a disjunction
(logical ‘or’). For example, “List the red parts and the blue parts.” is
equivalent to “List the red parts or the blue parts.” But we will not
explore such phenomenon in this paper. We assume ambiguities are
solved in parsing phase.

From the point of view of E-R model, ‘and’ and ‘or’ can be used
to conjunct the following three cases.

Conjunctives

1. Modifier and Modifier. In this case, the oval nodes that corre-
spond to these modifiers are linked pairwise by edges labeled ‘A’
and ‘v’ for conjunctives ‘and’ and ‘or’, respectively. For exam-
ple, “List the parts with color blue and (or) located in London.”
has the logical form shown in Figure 10(a).

2. Entity Set and Entity Set. In this case, a conjunctive conjuncts
two noun phrases. The rectangle nodes that correspond to the
nouns are linked pairwise by edges labeled ‘A’ and ‘v’ for con-
junctives ‘and’ and ‘or’, respectively. For instance, “List the
suppliers who supply red parts and (or) nuts.” has the logical
form shown in Figure 10(b).

3. Relationship and Relationship. In this case, a conjunctive con-
juncts two verb phrases. The diamond nodes that correspond
to the verbs are linked pairwise by edges labeled ‘A’ and ‘v’
for conjunctives ‘and’ and ‘or’, respectively. For instance, “List
the suppliers who supply red parts and (or) supply nuts.” has
the logical form shown in Figure 10(c). Note that the following
example does not fall into this case.

List the suppliers who supply nuts and are located in London.

Although the ‘and’ conjuncts two verbs, the verb “are located
in” is used to modify the suppliers instead of performing action.
This sentence is equivalent to “List the London suppliers who
supply nuts.” and there is no conjunction at all.

&>

(a) The Logical Form for “List the parts with color blue and (or) located in London.”
Figure 10: (b) The Logical Form for “List the supplicrs who supply red parts and (or) nuts.”
(c) The Logical Form for “List the supplicrs who supply red parts and (or) supply nuts.”

3.1.4 The Representation for the Word ‘Al

Consider the following examples,

1. List the suppliers who supply all red parts.
2. List the suppliers who supply red parts.

Figure 11: (a) The Logical Form for “List the suppliers who supply all red paris.”
(b) The Logical Form for “List the suppliers who supply red parts.”

The answer of the first example is the suppliers who supply all the
red parts, but the second example is the suppliers who supply any red
parts. Therefore, the answer of (1) is always contained in that of (2).
We use a shadow rectangle to represent the entity set whose semantic
role is preceded by ‘all’. Otherwise, a blank rectangle is used (see
Figure 11). Note that the semantic meaning of “List all the suppliers
who supply all red parts.” is equivalent to that of (1). The first ‘all’
has no effect on this query.

3.2 Definition of the Logical Form

From the previous discussion, a logical form for a query Q can be

denoted by LF(Q(} :O(SN,E, /N, SE), where . .
1. N is a set of nodes which can be further classified into the sets

N,, N.,and N, (i.e. N=N,UN.,UN,), where

(a) N, is the set of diamond nodes representing relationship
relations,

(b) N. is the set of rectangle nodes representing entity rela-
tions,
(c) N, is the set of oval nodes representing predicates which
is of the form “attribute 8 constant”, 8 € {>,<, =, #,2
’ S}'
2. E is a set of edges, which can be further classified into the
sets E(,,_e), E(r"), E(hp)’ E(P‘p), E(e'e), and E(",.) (ie. E=
E(,,G) V] E(,.,) V] E(z’,) u E(’_P) u E("¢) u E(,_,)), where

(a) E(,’e) C N, x N.. An edge (r,e) € E(r.:) is said to join
the diamond node r and the rectangle node e.

(b) E(,,p) € Nr X N;. An edge (r,p) € E(, ,) is said to join
the diamond node r and the oval node p.

(<) E(,p) & Nex Np. An edge (e,p) € E(, ,) is said to join
the rectangle node e and the oval node p.

(d) E(,,5) € Np X Np. An edge (p1,p2) € E(,) is said to
join the oval nodes py and p;.

(e) E(.,.) € Ne X Ne. An edge (e1,¢2) € E(.,e) is said to
join the rectangle nodes e1 and e;.

(f) E(,,y) € N. x N,. An edge (r1,r2) € E(,) is said to
join the diamond nodes r; and rj.

3. fn is a set of mappings, f~v = {fnr,fNe, [Np}, Where

(a) fnr: N, — Rn, where Ry is the set of the relationship
relation names labeled on r;,Vr; € N,.

(b) fne : No = En x {V¥,3}, where Ey is the set of the
entity relation names labeled on e,,Ve; € N.. {V,3} rep-
resents the cases ‘all’ (V) and ‘any’ (3) as addressed in
Section 3.1.4.

(¢) Jnp: Np — P, where P is the set of the predicates labeled
on p;,Vp; € Nyp.

4. fE = {JEre.JErp JEep, JEpp, fEce, fErr]} i8 2 set of mappings,
where

(2) fere : E(,,) = Sr % {P,N}, where S, is the set of the
labels of (ri,e;),V(ri,e;) € E(,,.), which represent the
semantic roles of the rectangle nodes e;. {P, N} repre-
sents the positive (P) and negative (N) cases discussed in
Section 3.1.1.

(b) fErp : E¢,,) — VM, where VM is the set of labels of
(ri,p;),V(ri,pj) € E(r,p)' which represent the verbd mod-
ifiers of the verb corresponding to the diamond nodes r;.

(¢

(d

~

SEep: E(G‘P) — {headnoun, modifier}.

~

SEpp - E(Py’) — {A, v}, where ‘A’ and ‘V’ are the edge
labels representing conjunction and disjunction, respec-
tively.

(e) fgee: B,y = {A,V]}.
(f) ferr: E, .y~ {A, v}

Figure 12: The Logical Form for Example 3.1.

Example 3.1 For the query Q = “List the London suppliers who do
not supply all red parts.”, the logical form LF(Q) = (N, E, fn, JE)
as represented in Figure 12 is formally specified as follows:

1. N = {r1,e1,€e2,p1,p2,P3} = N, U N, UN,, where N, =
{r1}, Ne = {e1, €2}, and N, = {p1,p2,p3}.

2. E = {(r1,e1),(r1,e2),(e1,P1), (e1,P2), (€2,p3)} = E(,)V
E(,,,) u E(e,’) u E(,") u E(e.c) 9] E(,',), where E(r'e) =
{(r1,e1),(r1,e2)}, E..py = {(e1,p1),(e1,p2), (e2,p3)}-
E‘(r,‘,),E(P,P),E(eYC), and E(,‘,) are all empty sets.

3. SN ={INr INe INp}, Where

fnr(r1) = (Shipments)

fne(e1) = (Suppliers, 3), fne(e2) =(Parts, V),

Inp(p1) = “sname =7, fnp(p2) = “city = London”, and
Inp(pa) = “color = red”.

4. fB = {fEre,JEep}, Where

SEre((r1,€1)) = (Subject,N), fEre((r1, e2)) = (Object,P),
JEep((e1,p1)) = ‘headnoun’, fEe,p((e1,p2)) = ‘modifier’,
and fgcp((€2,p3)) = ‘modifier’. O

Note that this definition of the logical form can be extended if more
natural language constructs are to be taken into account in the map-
ping process. For example, we may add the constructs for aggregation
functions (i.e. Max, Min, Avg, Sum, and Count).

4 Transforming a Logical Form
into Its Relational Algebra

We select relational algebra as our target for the following reasons.
1. For the consideration of query optimization.

2. The relational algebra can be further transformed into other
query languages (e.g. SQL or QUEL [7)) either for portability
consideration [14][15] or for distributed database retrieval [5].

Recall that a pseudo predicate is a predicate of the form “at-
tribute = ?”. The target attributes of a query Q, denoted T(Q),
are defined as the set of the attributes involved in all the pseudo
predicates of the logical form LF(Q). The i-th component of an n-
tuple t = (¢1,¢2,...,¢n) is denoted x;(t) = c¢i. In Example 3.1,
71(fNe(e1)) = ‘Suppliers’ and r3(fne(e1)) = ‘3"

In the following, the notations used in [16] will be adopted, in
which o, %,+,b4,U, N, —, and K represent selection, projection, divi-
sion, join, union, intersection, difference, and semijoin, respectively.
The transformation process is discussed based on whether the logical
form contains diamonds node or not. In Section 4.1, we discuss the
case where the logical form contains no diamond ncde. In Section 4.2,
we devote to the cases where the logical form contains one or more
diamond nodes.

4.1 The Transformation Process for a
Logical Form with No Diamond
Node

The query transformation process for a logical form LF(Q) is

1. For the entity relation, use the predicates, except for pseudo
predicates, to restrict it.

2. Project T(Q).

That is, LF(Q) will be transformed into ‘IT(Q)(GP'(Il(INg(B)))),
where e is the single rectangle node, and P; is the compound predicate
of the relation 7y (fne(e)).

4.2 The Transformation Process for a
Logical Form Containing One or
More Diamond Nodes

4.2.1 The Transformation Process for a Logical
Form Containing One Diamond Node

Without loss of generality, we assume that the logical form has no
edge of E(,). If there are edges of E.) then the logical form
can be decomposed according to these edges and the answer is the
union/intersection of the results of the sub-logical forms. For example,
the logical form in Figure 10(b) can be decomposed into the following
two sub-logical forms.

@D

")

A relational algebra expression represents an execution order of
the query. The transformation of a query Q to a relational algebra
expression is essentially to determine an algebraic order from its logical
form.

The relationship set relates a set of entity sets. That is, the sur-
rogate values of the entity relations can be used to semi-join (i.e. to
restrict {1]) the surrogate values of the relationship relation to pro-
duce the answer surrogate values (which will be used to compute the
answer). Before performing the semi-joins, different conditions such
as the one-to-all relationship (Section 3.1.4), the negative form re-
lationship (Section 3.1.1), and the predicates (Section 3.1.2) can be
evaluated to reduce the surrogate values of the relationship set and
entity sets.

The predicates can be directly applied to restrict the corresponding
relationship relation or entity relations first. A one-to-all relationship
can be implemented by a division operation [8]. Moreover, a negative
form relationship can be implemented by computing the positive form
relationship followed by a set difference operation.

The transformation process can therefore be stated in the following
five phases.

1. For each entity and relationship relations, use their respec-
tive predicates, except for pseudo predicates, to restrict
the corresponding entity and relationship relations. That
is, the transformation first produces op,(71(fne(ei))) and
op;(11(fne(r;))),Vei € N and Vrj € N,, where P; and P;
are the compound predicates of the relations 71 (fne(ei)) and
x1(fnr(r;)), respectively.

2. Project the surrogates of all relations. Let S; denotes the set of
surrogate values of the restricted entity relation RE; obtained
in Phase (1), and (S, S2,...,Sa) denotes the set of surrogate
values of the restricted relationship relation RR(1,2,...,,\) which
associates with the entity relations REy, RE;,..., and RE,.

3. For all entity relations which correspond to shadow rectan-
gle nodes (i.e., there exist one-to-all relationships), say Si,
S52,..., 5k, define < Sx41,S5k42,---,8n D=

(- (((81,52,- .-, Sa) + 51)+ 52))+ Sk
Also, define [Sy, 52,...,Sa] =

Sk41:Sk42::15n
¢

(51,582,.--,5n) < 531, Sk42:--15n >

4. If the diamond node corresponding to the relationship relation
has a black triangle linked to an entity relation (i.e., there exist
negative form relationships), say S, then the set of the answer
surrogate values can be defined as CSp,52,...,520=

S;
(51,52,.--,5a) % (Si = %5,([51,52,---,5a)))s
else
CS1,52,.--,5.3=[51,52,.-.,8n).

5. Since CSy, S2, ..., SaD contains the answer surrogate values, we
can join these values with the surrogate values of all relations
and project on the target attributes to get the answer. That is,
the answer of the query can be produce by

51,S9,.-,8
"R RRGg,)

*r(@)(CS1, 52,1 50D
s s S
>4 RE; b4 RE; - 83 RE,).

However, we can often eliminate unnecessary join operations. If,
for example, the attributes of RE; is not contained in T(Q) then
the join on RE; can be eliminated.

4.2.2 The Transformation Process for a Logi-
cal Form Containing More Than One Di-
amond Node

If a logical form contains more than one diamond node linked by edges
of E(rr) then, without loss of generality, it can be decomposed into
sub-logical forms according to the edges. The sub-logical forms can
be separately transformed by the process presented in Section 4.2.1.

The final answer is the union/intersection of the results of these sub-
logical forms. For example, the logical form in Figure 10(c) can be
decomposed into the following two sub-logical forms.

The result of this decomposition is equivalent to that of Fig-
ure 10(b). This is because the query corresponding to Figure 10(b)
has the same semantic meaning as the query corresponding to Fig-
ure 10(c).

Note that if the logical form containing more than one diamond
node but these nodes are not linked by edges of E(, .y, then we can
transform it as follows.

1. Restrict all the relations by the respective predicates, except for
pseudo predicates,

2. Project the surrogates of the restricted relationship relations,
3. Join these surrogates to get the answer surrogate values,

4. Perform necessary joins and project those attributes enquired
by the user.

Such a case occurs when the logical form is constructed from a
query which represents the relationship in possessive form (refer to
Section 2.2.2).

In the following, we follow Example 3.1 (Figure 12) to show the
transformation process. Refer to Figure 1 for this example.

Example 4.1 In Figure 12, we depict the logical form LF(Q) =
(N,E, fn,JE), where Q = “List the London suppliers who do not
supply all red parts.”, and we have presented LF(Q) in Example 3.1
in detail. The transformation process is now explained as follows.
Notice that we also evaluate the algebraic operations in the process.

1. After restricting both entity relations Suppliers and Parts, we
obtain

RE; = oc;,,_:L,,,.da,.(Suppliers) and REy = Ocolor=red (Parts).

Note that there is no restriction on Shipments. Therefore,
RR(1,2) = Shipments.

2. Perform the projections on surrogates, we get the surrogates as
follows.

S1 = Xyno(RE1) = Xyno(Ocity=London(Suppliers))= {S1, S4},
S2 = *pao(RER) = Tpno(Tcolor=rea(Parts))= {P1, P4, P6},
and (51, 52) = Tuno.pno(RR(3 2 } = %4no,pno(Shipments)

= {(Sl,Pl),(Sl,P2),(Sl,P3),(Sl,P4),(51,P5),(SI,P6),
(52, P1),(52, P2),(S3, P2),(54, P2),(54, P4),(54, P5)}.

3. < 8 >=(5;1,82)+ 52 and

(51, 52] = (51, 52) ;<< $1 >= (51,52) % ((51,52) + 52)
= (51,52) ¢ ({S1))
= {(51, P1),(S1,P2),(51,P3),
(SI,P4),(51,P5),(SI,PG)}A
S
4. C51,50 = (51,52) :‘ (S1 = %5, ([51, S2])
(51,52) % ({51,554} - {851})

= (51,5 ® ({S4})
= (54, P2), (54, P4),(54, P5)).

1}

5. Because there is only one attribute Suppliers.sname in T(Q), we
eliminate unnecessary join operations and perform

Finame(CS1, 52250 RE;)
= Tyneme (({(54, P2), (54, P4),(54, P5)}) sno

Tcity= London{Suppliers))
{ Clark }. o

I}

35

5 Conclusions and Future Work

We study the inter-relationship between the natural language con-
structs of a query and the E-R conceptual schema. The basic con-
structs of English sentences can be mapped onto E-R schemas in a
natural way. We develop a logical form by extending the E-R con-
cepts to capture natural language semantics and describe a processing
model for the query transformation process. In this processing model,
when the target database is changed we only have to change the dic-
tionary and the ER/SRF. The front-end parser/mapper and the query
transformer remain unchanged.

English sentences may also be mapped onto the universal relation
[16], in which the entire database is imagined to be kept in a sin-
gle relation. But this needs to further transform the universal query
command into the actual stored schema. Moreover, other intermediate
forms suffer from the bias to natural language constructs and much
effort is needed to transform them into database query languages. In
comparison, our logical form has the merit that it is represented in a
form similar to the ERD and can be efficiently transformed into the
relational algebra.

Finally, an extension for mapping the natural language constructs
of a query onto the schema generated by an object-oriented design
methodology (e.g. the one proposed by Blaha, et al. [2]) will be
investigated in the near future. Besides, by combining the framework
presented by Zvieli and Chen [20], our work can be extended to process
a natural language query involving a modifier like ‘almost’, ‘very’, or
‘nearly’. This combination is served as a step toward analyzing the use
of modifiers, which are fuzzy in natural, to communicate with fuzzy

*E® Acknowledgement

The authors wish to thank the anonymous reviewers for their valuable
comments.

References
[1] P.A. Bernstein and D.M.W. Chiu, Using Semi-Joins to Solve
Relational Queries, Journal of the ACM 28 (1) (1981) 25-40.
[2] MR. Blaha, et al, Relational Database Design Using an
Objected-Oriented Methodology, Comm. ACM 31 (4) (1988)

3} f’].]s.%’gén, The Entity-Relationship Model — Toward a Unified
View of Data, ACM _TODS 1 (1) (1976) 9-36.

{4] P.P. Chen, English Sentence Structure and E-R Diagrams, In-
formation Sciences 29 (2.1)(1983 127-149. . .

[5] A.L.P. Chen, et al., Distributed Query Processing in a Multiple

Database System, JEEE Journal on Selected Areas in Commu-

nications 7 (3) l!,1989) 390-398.

[6] F.J. Damerau, Problems and Some Solutions in Customization
of Natural Language Database Front Ends, ACM Trans. Office
Information S(:{sc_ems 3;?3) %985 165-134.

7] C.J. Date, A Guide to INGRES (Addison-Wesley, MA, 1987).

3] C.J. Date, An Introduction to Database Systems (Addsion-

Wesleé, MA, 5th ed. 1990]\'}, X . .

[9] B.J. Grosz, et al, 'TEAM: An Experiment in the Design of
Transportable Natural-Language Interfaces, Artificial Intelli-
g}eﬂje 32 (1) (1987) 173-243.

f10] akobson et al’, An Intelligent Database Assistant, [EEE
Expert 1 (2) (1986) 65-79.
[11] R.KA Kowalski, Logic for Problem Solving (North-Holland, Am-

sterdam, 1979).

[12] M.C. McCord, Using Slots and Modifiers in Logic Grammars for
Natural Language, Artificial Intelligence 18 (3) (1982) 327-367.

[13] F.C.N. Pereira and D .H.D. Warren, Definite Clause Grammars
for Language Analysis — A Survey of the Formalism and a Com-
parison with Augmented Transition Networks, Artificial Intel-
ligence 13 g(i) 1930) 231-278.

[14] G. Piatetsky-Shapiro and G. Jakobson, An Intermediate
Database Language and Its Rule-based Transformation to Dif-
ferent Database Languages, Data & Knowledge Engineering 2

%1989 1-29.

[15] F.S.C. Tseng, S.Y. Lee and W.P. Yang, DELICIOUS: An

Intermediate Code Scheme for Heterogeneous Database Sys-

tems, Proc. International Computer Symposium, Taiwan, ROC

51988[)] 993-1003.

[16] J.D. Uliman, Principles of Database and Knowledge-Base Sys-
tems (Computer Science Press, Vol. 2, Rockville, MD, 1988).

[17] M. Wallace, Communicating with Databases in Natural Lan-
uage\&lEllis Horwood, England, 1984). .

[18]) ﬁAHA inston, Artificial Intelligence (Addison-Wesley, MA,

1984)

W.A

7 Wood, Transition Network Grammars for Natural Lan-
uage Analysis, Comm. ACM 13 (10) (1970) 591-606.

i. %vieli and P.P. Chen, Entity-Relationship Modeling and
Fuzzy Databases, Proc. IEEE Int. Conf. Data Engineering
(1986) 320-327.

(19)
[20]

