Improving Execution Concurrency for Long-Duration Database
Transactions*

Alex N.J. Wut

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300

Abstract

This paper presenis an approach for processing
long-duration database transactions with high concur-
rency degree. The basic idea is based on the use of a
reposilory which stores the data ilems thai can be ez-
posed before the associaled transaction commits. The
management of the reposilory is described. Since we
allow a transaction to read and update the early ex-
posed data ilems, if the data tlems are invalidated we
have to rollback the transactions that have read these
data items. In order to reduce the cost of rollback, a
partial rollback mechanism is proposed. Further, iran-
sactions that have read the early ezposed data may
commil earlier than the corresponding uncommitied
transactions. We describe the commit decision rule to
determine whether earlier commilment can be allowed,
by which the system throughput can be increased.

1 Introduction

Conventional database management systems have
been designed primarily to support the transaction-
oriented business applications. A transaction as used
in conventional applications has two properties: ato-
micity and serializability. The atomicity property
means that all the reads and writes in a transaction
are regarded as a single atomic action. It ensures that
either all the operations in a transaction must be com-
plete or none of them be done. The serializability
property [10, 7, 8, 9, 11] means that the effect of con-
current executions of more than one transaction is the
same as that of executing the same set of transactions
one at a time.

The conventional transaction management systems
are not suitable for transactions whose duration is
much longer than that of conventional transactions.
Two-phase locking will cause a long-duration transac-
tion to hold a lock and block other transactions which
need to access the locked data in a conflicting mode
until the long-duration transaction finishes. The ato-
micity property will cause a long-duration transaction

*This research was partially supported by the Republic of
China National Science Council under Contract No. NSC 83-
0408-E-007-029.

The author is working for Institute for Information Industry
Technology Research Division

0730-3157/94 $04.00 © 1994

380

Arbee L.P. Chen

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300

to back out all the previous results if a failure occurs
just before it finishes.

In this paper, we propose an approach to satisfy
the requirements of speeding up the execution of the
long-duration transactions and still preserving serializ-
ability to guarantee the data consistency. With these
facilities, users can cooperate efficiently in a long last
environment. Early exposure of partially completed
data is essential for long-duration transactions. Stable
data [1, 2] are data which have been read and upda-
ted by a transaction and will not be further referenced
by the transaction before its completion. Our main
idea on improving the execution concurrency of long-
duration transactions is based on the early exposure of
stable data, and the appropriate management of these
data to satisfy the serializability property. We assume
that there is a repository in which the stable data are
stored. When a data item become stable, it is written
to this repository. By means of accessing to the re-
pository, the other transactions can read and update
the stable data. Again, after the data item is further
modified and become stable, it is written back to the
repository for more data sharing.

It is noteworthy that when a transaction reads the
stable data of an uncommitted transaction, it cannot
commit before the uncommitted transaction. Since
the result produced by a committed transaction can-
not be undone, the commitment has to be controlled
in an appropriate manner. On the other hand, once
the uncommitted transaction aborts, the transactions
which have ever read the stable data should be rolled
back accordingly. When rolling back these transacti-
ons, it is only required to partially roll back to the
point where the stable data were read [4]. This can be
accomplished by writing a special mark (savepoint) in
the log when the stable data are read.

From the above statements, data can be shared be-
fore becoming permanent, thus the concurrency de-
gree can be improved. We provide a commit decision
rule to decide whether the earlier commitment can be
allowed. In that case, the total system throughput
will be increased.]

The remainder of the paper is organized as follows.
Section 2 provides the related research work. The mo-
del of our approach and the mechanisms required are
presented in Section 3. Section 4 describes the com-

mit decision rule of this approach. In Section 5 we
illustrate our approach by some cases. Section 6 con-
cludes our work and states our future work.

2 Related Research

Conventional database management systems consi-
der a transaction as an atomic unit of work. However,
executing a long-duration activity as a single transac-
tion can significantly delay the execution of the other
transactions. To solve the problem, the notion of saga
is proposed as a model for long-running activities. An
activity is composed of a sequence of transaction steps
Ty, T3, ..., Ta. When T; finishes, it commits and then
Ti41 is invoked. If T; fails, then T; is aborted and
the compensating transactions Ci_1, ..., C2, Cy are
invoked to eliminate the effects of earlier committed
transactions. In general, the specification of the com-
pensating transactions must be provided by the app-
lication programmers.

A transaction can be formed as a hierarchy of sub-
transactions [6]. This nested irensaction model is an
important extension of the conventional transaction
model, allowing more semantics to be captured and
greater concurrency to be achieved. An extension of
the nested transaction model is proposed, which go-
verns the execution of subtransactions by rules with
different coupling modes is proposed.

These approaches provide the features that a long
transaction can be regarded as a set of short transacti-
ons. These subtransactions can be organized systema-
tically to allow more parallelisms. However, the inter-
transaction concurrency is not well considered. In our
approach, mechanisms are developed to improve inter-
transaction concurrency degree.

Some approaches involve the concept of public and
private databases to manage data sharing among tran-
sactions [3, 2]. A transaction can check out data from
the public database and the private databases of the
other transactions. A primary advantage of this ap-
proach is to allow a designer to check out the par-
tial design and complete the design. Kim [2] presents
a model of engineering transactions which augments
existing models by refining the notion of checkout en-
vironment and coupling it with the notion of nested
transactions.

The recovery in nested transactions using savepoint
is discussed in [4]. Savepoints are exploited to support
a finer grained transaction UNDO to allow partial roll-
back of ongoing transactions. It also serves as a restart
point when some problems are encountered.

Version control is one of the most important data
modeling requirements in the next-generation data-
base applications [12]. Data with different versions are
also helpful in the teamwork environments. Coopera-
tive users can communicate with each other through
these different versions of data such that long occupa-
tion of data can be alleviated.

Klahold et al. [3] organizes different versions of a
design object by a version graph. This approach pres-
ents a mechanism by which a transaction can operate
on the versions. However, some of the operations, e.g.,
the merging of versions, need to be done manually.

The approach mentioned in [12] distinguishes a ver-
sion into a iransient version, a working version and a
released version. The concept of versioning can also

‘be found in our approach. Since we allow an early

exposed data items to be shared by others transacti-
ons, they can be regarded as working versions. The
working version in [12] can only be read, while our
approach also allows updates on a working version.

3 Improving Transaction Concurrency

3.1 Basic Definitions
Before expounding this approach, the transaction
model and some terminologies are defined as follows.

Definition 1 A transaction is a collection of or-
dered operations called ezecution patlern (EP) which
changes a set of data from one consistent state to ano-
ther. We can represent a transaction T' as:

T:(5,EP) — &

The notation s denotes all the data items read and
updated by an execution pattern (EPy) of T. After
the execution, s will be changed into s’. A transaction
is terminated only when committed or aborted. Notice
that depending on the execution flow of a transaction,
a transaction can be associated with different EP’s.

Definition 2 An operation OP is compensatable if
there exists an inverse operation of OP such that

d= 0P~ }(OP(d))

A transaction is said to be compensatable if all its ope-
rations are compensaiable. In this paper, we consider
that all the transactions are compensatable. Not every
operation has an inverse operation in the real case.
Thus we have to keep track of each modification of
data. This information can be used as an undo log to
achieve the compensatability.

Definition 3 A rollback caused by reading invalid
stable data is called a turnback. In essence, a turn-
back performs a partial rollback to the point where
the stable data were read. A transaction Tj is {urn-
back dependent on T} if the abortion of T; causes the
turnback of Tj. The set of all transactions which are

turnback dependent on T; is denoted by Trp (Ty).

3.2 Mechanisms
3.2.1 Dangling Object Repository

Dangling Object Repository (DOR) is a place in which
all stable data are stored. Each stable data item is
associated with a table Tab in the DOR. The Tab as-
sociated with data item z is denoted by Tab.z.

In addition to writing the updated value of a stable
data item to the DOR, some important information
should also be recorded. This information is stored
in Tab with the schema shown in Table 1. T,V
and OP indicate the new value of the data item up-
dated by the operation of the transaction denoted by
T. S implies that the transaction is running, aborted

381

Table 1: Schema of Tab

[CTid] VaTue | OPer | Status | Chkinitp | ChkOutstp |

[I I I I I 1

or committed. I means the timestamp of the data
item checked in by transaction T. O means the time-
stamp of the data item checked out by transaction T.
Tab.z[V;] denotes the V field of the ith entry in the
Tab of data item z. The notation is similarly applied
to other fields. When a transaction reads a data item
from a Tab in the DOR, this T'ab is locked to prevent
the others from accessing the same data item. We as-
sume a data item is always read for a later update,
thus locks in our approach are all exclusive locks. A
lock is released after the associated data items is writ-
ten back to DOR. New record is written at the first
available entry of the associated T'ab. Suppose there
are m entries in a T'ab, we have the following:

{Tk+1) LR ,Tm} g TTD(Tk)
where k is an index of the
entries in the Tab,1 <k <m-—1.

When a transaction issues a read command on a data
item which is locked by the lock manager, this com-
mand is forwarded to the DOR server. The DOR ser-
ver checks the availability of the data item in the DOR,
and lets the transaction check out the data item if it is
in the DOR and is not locked at the moment. When
a checkout or a checkin is performed, the timestamp
should be recorded in the corresponding field.

3.2.2 Rollback and Turnback

Once a transaction T aborts, the transaction manager
has to inform the DOR server to find all the transac-
tions which are turnback dependent on T. We give an
example shown in Figure 1 to illustrate how to find
those transactions which have to be turned back.

checkinta)(1 1)
}

Tl

! chechin(b)(15)

chegkin{c)(5)
' Checkouta)(13)

) l

Checkout(c) (10) Checkour{b)(17)
T4
Checkout(d)(8) @
B e Avort
o ool Tumbeck
, Checkout(c)

- v Turnback
B =

Checkont{d {

T+
®)

Figure 1: (a) A Snapshot of Executions (b) Transac-
tion T1 Aborts ‘

Figure 1.(a) manifests the checkins and checkouts
by each transaction. The stamps associated with edth

checkin and checkout are also indicated. For exam-
ple, a is checked in by T} at stamp 11 and checked
out by T, at stamp 13. If T} aborts, T} has to roll
back totally. However, T> has only to turn back to
the savepoint associated with the checkout of a. The
turnback of Ty causes T3 to turn back to the save-
point where T3 checks out b, since the result of T;
before stamp 13 will not be affected by the turnback
of T,. For the same reason, the result of T3 before
stamp 7 will not be affected by the turnback of T3,
transaction 74 need not be turned back at all. Thus,
Trp(Th) = {T»,T3}. Figure 1.(b) evinces the condi-
tion of rollback and turnback. The dash lines indicate
the rollback and turnback portions. Note that if a
transaction checked out more than one invalid stable
data, it has to turn back to the savepoint associated
with the earliest invalid data item.

From the above illustration, if T; aborts, its turn-
back dependent transactions can be found by the fol-
lowing steps:

¢ all the transactions that have directly checked out
the stable data items of T; are turnback dependent
on T;.

¢ these transactions must be turned back to the sa-
vepoint associated with their checkouts from T;;
the checkout is called invalid checkoul.

¢ if a transaction has checked out a data item which
was checked in after the invalid checkoul, it also
needs to be turned back. Of course, the transac-
tion is turnback dependent on T; and the checkout
becomes an invalid checkout.

e the above procedure is applied repeatedly until
no new- transaction can be found to be turnback
dependent on T;.

3.2.3 Checkout Dependency Graph

We use the DOR to allow a transaction to expose
its stable data before commitment. Accessing to
the DOR. should be concerned to avoid violating se-
rializability property. Consider the following case:
According to the Figure 2, we will get the following

Read(a)
'
i

" b Checkinda) Checkin(l)

Chectoui(h)

Read(b) , Dargting Object Repository
' E

Chectinfa)

,
™ £

Checkout(u) Checkinb)

Figure 2: A Case which Violates the Serializability

schedule:

Ri(a) Ra(b) Wi(a) Ra(a) Wa(a) Wa(b) Ra(b)
W, (b) o

Obviously, the above schedule is not a serializable
schedule. We should prevent the above situation. For
this purpose, we use a checkoul dependency graph to
detect such a scenario.

Definition 4 A checkout dependency graph is de-
noted Gi = (T, E), where T is the set of nodes corre-
sponding to transactions that have checked out object
i, and E is the set of edges e, where e is a directed
edge from Ty to Ty if Ty checks out the data which
is checked in by T;. Each time when a transaction
checks out a data item, the corresponding edge should
be added. Once a transaction 7} commits, all the ed-
ges correspond to T; are deleted.

Lemma 1 An execution which has checked out
data from the DOR is serializable with respect to the
DOR if the checkout dependency graph G = U;G; is
acyclic.

Once a transaction has to check out a data item, we
have to test whether the checkout will result in a cycle
in the checkout dependency graph. If yes, the tran-
saction cannot perform the checkout since the cycle
implies that the checkout will make the schedule non-
serializable.

4 Commit Decision

A transaction once committed, by definition, can-
not abort. It is required that if transaction Tj reads
the value of a data item written by T;, then T} can-
not commit until T; commits. A system with such a
property is said to be recoverable [5]. However:

Initial: a = 500

Ti: T2:
begin-transaction begin-transaction
Read(a)
a = a-200
Write(a)
Read(a)
if 8 > 100 then
a=a+ 100
else
a = a4 200
endif
Read(b)
Read(c)
c=c-b
Write(c)
Write(a)
d-t d-t "

In this case, no matter Tj commits or aborts, T will
always add 100 to a. Under this condition, we allow
Ty to commit before 73. If Ty successfully completes
its execution then 400, the value of q, is written back
to the database. However, if 7} aborts, 600 is written
back instead. If we leave the decision, whether we
should write 400 or 600 back to the database, to the
last active iransaction that holds the lock on a, we can
commit Ty before T.

4.1 Commit Decision Rule

To determine whether a transaction T; € Trp(T;)
can commit before T}, we have to decide whether the
execution patterns of T; are identical no matter T;
commits or aborts. By Definition 1, a transaction
changes one database state to another through an exe-
cution pattern. Different values of data may alter the

383

execution pattern [5]. Consider the conditional branch
of the form:

if (p) then OP; else OP2

where OP; and OP; are two different operations, and
p is a predicate whose truth value depends on the con-
tent of data.

We say that two execution patterns are equal if they
have the same number of operations and their corre-
sponding operations are the same. Without loss of ge-
nerality, we assume that T} reads a data item a with
data value z, thereafter a is updated to y by 71. Now
T, checks out ¢ after Ty checked in it to the DOR.
Two different execution patterns are possible for the
following execution depending on whether T} commits
or aborts. T3 can be represented as follows:

((y)vlva;-uyvn ,EP] —* Sp if T] commits
z,v1,V2,...,%), EPy) — sy if Ty aborts
Tz:
where vy, ...

y Un
are read from the database.

Now, if T, wishes to commit but 77 is still running,
we have to check whether execution patterns EP; and
E P are equal. If the answer is yes, we can commit T3,
otherwise Ty should wait until T3 commits or aborts.
4.2 Equality Check of Execution Patterns

To achieve the effect of earlier commitment, we have
to determine whether the possible execution patterns
spanned by a transaction are equal. The checking pro-
cedure is invoked between a checkout and a checkin
performed by a transaction. We give an example
shown in Figure 3 to illustrate how to check the equa-
lity of the execution patterns.

L{“‘J Valie _f.\p;mlion tag /3"”\‘

T4 | 400 +100 i 400 300
N S
12 | 200 200 1 200 400 160 300
T3 | 70 4500 |41 700 200 500 400 CO° 100 400 300

Figure 3: Equality Check of Execution Patterns

Initially, the value of a is 800. The left hand side
of Figure 3 indicates the operations on a performed
by Ty, T> and T3. The right hand side is a decision
tree. The root of the decision tree is the initial value
of a. The ith level of the decision tree corresponds
to the ith entry in the T'ab.a. Each node in the tree
has two children. The left child is the value of a as-
suming the corresponding transaction commits, while
the right child is the value of a assuming the corre-
sponding transaction aborts.

As Figure 3 shows, the possible values of a read by
T, are 400 and 800. Assume no matter the value of
ais 400 or 800, Ty always subtracts 200 from a. We
can get the four nodes as shown in the second level.
T, is then positively tagged in Tab.a to indicate that
its execution patterns with respect to the checkout of

a are equal. After the operation of T3, there are four
possible values of a to be tested by 75. We assume if
the value of a is less than 250 then T3 adds 500 to a,
otherwise T3 adds 100 to a. Since the possible values
of a generated by Ty are 200, 400, 100 and 300, T3
will span two different execution patterns. Therefore,
T3 is negatively tagged. After the checkin of a by T3,
we get the third level of the decision tree as shown.
If all the entries corresponding to the transaction
in the Tab’s are positively tagged, we say that the
execution patterns of this transaction are equal.

4.3 Finalizing the Data Values

We know so far that if a transaction T; € Trp(T:),
T; may be allowed to commit before T;. According
to the durabilily property of a transaction, we have
to make the effect of an operation performed by the
committed transaction permanent. A transaction may
delegate the responsibility for finalizing its effects on
some of the objects to another transaction. To achieve
this goal, the DOR server must reflect the final value
of the data object to the database when all the tran-
sactions participate some Tab commit or abort. One
important thing has to be determined is what have to
be done when a transaction T aborts while some of
Trp(T) had already committed or still in running.

If a transaction T aborts, the situations can be di-
vided into the following categories:

e All the transactions belong to Trp(T) are still
running, then Trp(T) have to be turned back to
the corresponding checkin point. Those entries
belong to Trp(T) in each Tab have also to be
deleted.

e Some of the transactions belong to Trp(T) are
running however some had already committed. In
this case, the running transactions have to be tur-
ned back, however the V fields for the committed
transactions should be recomputed by the follo-
wing rule

Tab.d[T] aborts and Tab.d[T;] € Trp(Tx)

if Tab.d[T;] is the first committed entry after
Tab.d[Ty)
then
Tab.d[V;] = Tab.d[OP;])(Tab.d[Vi_1])

Tab.d[V;] = Tab.d[OP;)(Tab.d[V))

else

where j is the index corresponding to the
committed transaction, i is the last committed
L transaction index before j

Since the data value for the committed transaction
had to be recomputed after some transaction aborts.
We have only to reflect the T'ab.d’s final entry’s V field
to the database when all the transactions in T'ab.d had
committed.

384

5 Transaction Executions

This section elaborates the transaction execution
process under various situations. Before illustrating
the following paragraph, we separate the transacti-
ons in an acyclic checkout dependency graph into the
head, body and tail transactions which correspond to
the root, internal nodes and leave nodes in the graph
respectively. Transactions execution as shown in Fi-

Reaifa) '

y Chechinta) Running

Tt

Dangling Object Repusitory

Checkinfa) .
Running

Checkowifa

3 7
Checkout(a)
Running

T2
Cheekinfa)

Figure 4: All Participating Transactions Are Running

gure 4 can expressed by Table 2. We start our discus-
sion by this example:

Table 2: The Content of T'ab.a While All Transactions
Are Running

[(Td_] Valuc | OPer | Status | Chkinstp | ChkOutstp]|

T 1900 ~100 Running 10 18
Ty 2100 §200_| Running 20 26
Ty 2600 F500 | Ruuning 28 34

5.1 One Participating Transaction Ab-

orts

To discuss the case that one participating transac-
tion aborts, we delimit it into two subconditions: The
abort transaction is a tail transaction or a non-tail
transaction. It is rather easy to understand that when
the abort ransaction is a tail transaction, we only have
to rollback the tail transaction. The abort does not
cause any effect on the other transactions. We dis-
cuss the case when the abort transaction is a non-tail
transaction.

Transaction T3 is a non-tail transaction. To ab-
ort Ty, we have to find all the transactions that are
turnback dependent on it. In other words, we have to
compute Trp(T3) then every transaction belongs to
Trp(T:) has to be turned back accordingly. Table 3
shows the Tab.a after the rollback and turnback.

5.2 One Participating Transaction Com-
mits

In this subsection, we discuss the case where one
transaction commits. We discuss a case in the follo-
wing paragraph, where the committed transaction is
a non-head transaction. Suppose T3 wishes to com-
mit while T} and Ty are still running. As described. in

Table 3: The Content of T'ab.a While A Transaction
Aborts

{CTia] Velue | OFer | Siatue | Chklnstp | ChkOuuip)
[CT; [1900 | -100 | Running | 10 1 18
[T | 2100 | Fa00 | Abort | 30 1 26
| !] { | 1 1

Section 4, T3 can commit only when its execution pat-
terns are all equal. We assume that all the execution
patterns of T3 are identical, thus we can commit T3
before T} and T%. Since Tj and T3 are still running, a
will not be reflected in the database by T3. Instead,
T3 has to upward propagate its operation on a. After
that we can get the T'ab.a as shown in Table 4

Table 4: The Content of T'ab.a While A 7T ansaction
Commits

[T [Valuc | OPer | Status_] Chhinsip | CbkOutstp]
Ty 1560 ~100
T, 2160 $260
Ty 2600 F3500

Ruoning 10 is
Running 20 26
Commit 26 34

Now, if we assume transaction Ty aborts after T3
has already committed. Under this case, the DOR
server has to inform all transactions contained in
Trp(T2) and status is running to turnback accordin-
gly. Further, those transactions whose status is com-
mit have to recompute their V field to reflect the new
value of data by the rules mentioned in section 4.3.
The reult is shown in Table 5.

Table 5: A Transaction Aborts After Its Turnback
Dependent Transaction Commits

[Tid | Value | OPer | Status | Chkinsip | ChkOutstp |

T 1900 =100 | Runming 10 16
Ty 2100 F300 Abort 20 26
Ty 2400 +3500_| Commit 38 31

The cases demonstrated above represent the primi-
tive cases. The real situation may be a combination of
these primitive cases. However, they can be processed
with the similar procedures.

6 Conclusion

This paper introduces an approach tailored to the
requirements of the long-duration transactions. The
existing methodologies can be classified into two cate-
gories. One is to view a long-duration transaction as a
sequence of short transactions, and the other approach
relaxes the requirements for atomicity and serializabi-
lity of transactions.

The differences between our approach and the exi-
sting methodologies are that we view a long-duration
‘transaction as a single atomic unit such that the pro-
perties of transactions are preserved. It is not difficult

385

to find when a data item becomes stable in a simple
transaction. However, when a transaction becomes
complex, a flow analysis mechanism for finding the
stable data is needed. Also, a performance compa-
rison with other approaches is required to show the
usefulness of our approach. These works are currently
under investigation.

References

[1] Calton Pu, Gail E. Kaiser, Norman Hutchin-
son “Split-Transaction for Open-Ended Activi-
ties”, Proc. 14th Iniernational Conference on
Very Large Database, Aug, 1988.

[2] Won Kim, Raymond Lorie, Dan McNabb, Wil
Plouffe “A Transaction Mechanism for Enginee-
ring Design Databases”, Proc. 10th International
Conference on Very Large Database, Aug, 1984.

[3] P. Klahold, G. Schlageter, R. Unland, W. Wil-
kes “A Transaction Model Supporting Complex
Applications in Integrated Information Systems”,
Proc. of the ACM SIGMOD, Austin, Texas, 1985.

[4] Theo Haerder, Kurt Rothermel “Concept for
Transaction Recovery in Nested Transactions”,
Proc. of the ACM SIGMOD, San Francisco, May
1987.

[5] Henry F. Korth, Eliezer Levy, Abraham Silber-
schatz “A Formal Approach to Recovery by Com-
pensating Transactions”, Proc. 16th Internatio-
nal Conference on Very Large Dalabase, Aug,
1990.

[6] J. Moss “Nested Transactions: An Approach to
Reliable Distributed Computing” MIT Labtory
for Computer Science, MITLCSTR-260, 1981.

[7] Weimin Du, Ahmed K. Elmagarmid, Won Kim
“Maintaining Quasi Serializability in Multidata-
base Systems”, International Conf. on Data En-
gineertng, 1991,

[8] Weimin Du, Ahmed K. “'magarmid “Quasi Se-
rializability: A Correctness Criterion for Global
Concurrency Control in InterBase”, Proc. 15th
International Conference on Very Large Dala-
base, Aug, 1989.

[9] Calton Pu, Avrasam Leff “Replica Control in

Distributed Systems: An Asynchronous Ap-
proach”, International Conf. on Dala Enginee-
ring, 1991.

[10) Henry F. Korth, Abraham Silberschatz “Data-
base System Concepts”, McGRAW-Hill Interna-
tional Editions, ISBN: 0-07-100804-7.

[11] Yuri Breitbart, Avi Silberschatz, Glenn R.
Thompson “Reliable Transaction Management in
a Multidatabase System”, Proc. of the ACM SIG-
MOD, Atlantic City, NJ, May 1990.

[12] Won Kim, “Introduction to Object-Oriented Da-
tabases”, The MIT Press, ISBN: 0-262-11124-1,
1991

