Improving the Performance of a Distributed Computing System
through Inconsistent Caches

Arbee L.P. Chen? Kuo-Fang Chieng*, Tony C.T. Kuo* , Eddy J.D. Lee®, Shu-Chin Su'

Abstract

In a Server/Client based distributed computing sys-
tem, data can be cached at the clients to increase read
effictency and system scalability. When the consis-
tency of the caches can be relazed and the inconsis-
tency controlled, the performance of the distributed
system can be furture improved. In this paper, we elab-
orate on this concept and present a prototype system
which we have constructed to show the viability of the
concept.

1 Introduction

In a distributed computing system based on a
server/client architecture, data can be replicated
among servers for increasing data availability and re-
liability. Data can also be cached at clients for in-
creasing read efficiency and system scalabihty. Repli-
cas among servers are usually kept consistent at every
point of time while the consistency of caches at the
clients could be relaxed by allowing some degree of
value divergence from the data in the servers.

By this consistency relaxation, applications may
tolerate some inconsistencies for several advantages.
The advantages include allowing updates to be prop-
agated from the servers to the clients more efficiently
(e.g., when the system is lightly loaded, or by batch-
ing together updates), reducing the need to globally
lock replicated data for updates so that data avail-
ability can be increased, and possibly eliminating the
need to synchronize read-only transactions with up-
date transactions so that the query response time can
be reduced. Various consistency requirements encoun-
tered in various applications can be accommodated by
a flexible inconsistency specification mechanism.

In this context, the notion of quasi-copies which was
introduced in [1] becomes relevant. Quasi-copies are
caches at the clients whose values may be somewhat

*Department of Computer Science, National Tsing Hua Uni-
versity, Hsinchu, Taiwan, ROC.

tComputer & Communication Research Laboratories, Indus-
trial Technology Research Institute, Hsinchu, Taiwan, ROC.

0-8186-2755-7/92 $03.00 © 1992 IEEE

diverged from those of the replicas but are guaran-
teed to meet a certain predicate (named gquasi-caching
predicate). Several types of inconsistency predicate
may he defined: delay conditions (e.g., the cache must
not be more than one hour old than the replicas), ver-
sion conditions (e.g., the cache should not lag behind
more than two versions of the replicas), and arithmetic
conditions (e.g., the cache’s value must not be off by
more than 10% of that of the replicas).

In this paper, we elaborate on the concept by con-
sidering different types of read and a mechanism to
control the cache inconsistency. There are presented
in section 2. Section 3 presents a prototype system.
We have built for the concept, whose gquasi-caching
predicates are based on version conditions. We con-
clude this work in section 4.

2 Allowing Cache Inconsisten-
cies

2.1 Taxonomy of read operations

Three types of read operations are provided in the
system for fulfilling different user requirements of the
data currency and consistency. That is, a strong-
read reads current and consistent data, an urgent-read
always reads current data which may sometimes be
inconsistent, and a quasi-read reads consistent data
which may be out-of-date. They are detailed in the
following.

¢ quasi-read: Clients may tolerate the deviation
of the cached data within some range (named
quasi-range). A quasi-read can be issued in this
case to improve the read performance. In order
to achleve the data consistency for all reads in a
process(i.e., all data read are in the same version),
the quasi-range is checked only at the opening of
a file. That is, even the quasi-range is exceeded
when the process 1s active, the same version of
data is used for the whole process. We call this a
weak consistency of read operations.

e urgent-read: In some situations, to always read
the current data without being blocked is re-
quired. In this case, there is no need to syn-
chronize this read with other operations on the
file in the server. Since each read in the process
1s required to read up-to-date data, the cache in
the client may need to be refreshed several times
before the file is closed. That is, the data read
may come from different versions and therefore
can possibly be inconsistent.

o strong-read: This type of reads requires reading
the up-to-date data and also does not allow other
transactions to modify the data when the process
is active. The data read for the whole process are
up-to-date and consistent.

2.2 Controlling cache inconsistency

The implementation of these three types of read oper-
ations and the control of the data inconsistency are ac-
complished by a mechanism with four flags: a CALL-
BACK flag to inform the clients that the data in the
servers have been changed; a QUASI-CACHE flag to
inform the clients that the predicates governing the
consistency constraints between the replicas and the
caches have been violated; a WRITELOCK flag to
lock the data for updates at the servers such that the
data cannot be read or modified by other transactions;
and a READLOCK flag to lock the data such that the
data can only be read by other transactions.

These four flags are combined as a four-flag vec-
tor (C,Q,W,R), C for CALLBACK, Q for QUASI-
CACHE, W for WRITELOCK, and R for READ-
LOCK. The vector can be stored at a server or at the
clients. When it is stored at the clients, the clients
can reference the vector locally to know the current
status for read/write actions. However, to maintain
the vectors at all clients poses a difficult consistency
contro!l problem.

On the other hand, if the vector is stored at a server,
the maintenance of the vector becomes easier. How-
ever, the client has to access the server to check the
status of the vector for its read/write actions. This
increases the burden of the server and decreases the
scalability of the system.

We therefore divide the vector (C,Q,W,R) into two
parts (C,Q) and (W,R). (C,Q) associates with a cache
in the client, and is located at the client. (W,R) asso-
ciates with a file stored in the server, and is located at
the server. The meanings of the four flags are listed in
the following before we discuss different cases of their
combinations:

e C is set to 1 when the cache in the client is out-
of-date. That is, the corresponding replicas have
been modified.

o Q is set to 1 when the predicate governing the
consistency constraint between the replicas and
the cache has been violated.

e W is set to 1 when the replicas have been locked
for modification.

o R is set to 1 when the replicas have been locked
for read.

The semantics of the possible cases represented by the
flags are discussed as follows.

¢ (C,Q)=(0,0) means that the data in the cache
is up-to-date, and the quasi-range is (of course)
not exceeded. Quasi-read and urgent-read can be
performed directly at the cache while strong-read
and write need to request a lock on the replica
at the server. The performance improvement for
quasi-read and urgent-read can easily be seen.

(W,R)=(0,0) permits either strong-read or write
issued from a client.

(W,R)=(0,1) disallows write operations until R is
reset.

(W,R)=(1,0) disallows strong-read and write op-
erations.

(W,R)=(1,1) represents an impossible situation
where a data item is both read-locked and write-
locked.

¢ (C,Q)=(0,1) represents an impossible situation
because C=0 means the cache is up-to-date,
which implies the quasi-range cannot be ex-
ceeded.

¢ (C,Q)=(1,0) means that the data in the cache is
out-of-date but the quasi-range is not exceeded.
In this case, quasi-read is permitted while urgent-
read will require a request to refresh the cache
first.

¢ (C,Q)=(1,1) means that the data in the cache is
out-of-date and the quasi-range is exceeded. Any
operation referencing the cache should request the:
server to refresh the cache first.

This mechanism checks the flags to know the status
of the caches for various data operations. It also issues
actions to refresh the cache for an operation which
cannot be satisfied with the current data.

3 A Prototype System

3.1 System overview

This prototype works on BSD UNIX operating envi-
ronment with one computer serving as a server and
others as clients connected by computer networks.
The communication mechanism uses the Berkeley
socket-based IPC (InterProcess Communication) [2].
The system architecture of the prototype is shown in
Figure 1.

The operations between a client and a server are
shown in Figure 2. There are three processes in this
figure — ServerP, ClientP, and a user process. The
user program is linked with cm ibrary (cache man-
agement library) to form the user process. ServerP
and ClientP are always active at the server and client,
respectively; however, the user process is active only
when the user program is executed.

ServerP receives the requests from the user
process. The requests could be getnewcache,
flush, set_readlock, set_writelock, release_readlock, and
change_quasirange (to be explained in section 3.3.2).
ClientP receives the messages from the ServerP. The
messages could be set_callback (to set the CALLBACK
flag) and set_quasicache (to set the QUASI-CACHE
flag).

The cm_hibrary is built on top of the C-library
to provide the cache management functions. The
provided functions are cm_open, cm_close. cm_read,
cm-write, and to_change_quasirange (will be discussed
in detail in section 3.3.1).

Cachetable, cachelist], and cachelist? are three ta-
bles used to maintain the cache consistency. Ca-
chetable is referenced by ClientP and the user pro-
cess while cachelistl and cachelist2 are referenced by
ServerP.

3.2 Data structure

The tables — cachetable, cachelist! and cachelist? —
are extensions of the four-flag vector described in sec-
tion 2.1. Cachetable and cachelist! control the data
inconsistency between the server and clients while ca-
chetable2 controls the quasi-caching predicates.

cachetable : this table exists at each client. Each
tuple in the table corresponds to one file cached
in this client. This table contains five attributes.
Its structure is shown as follows :

[flcname | CALLBACK | QUASI-CACHE |

mode | 5 ive]

e filename : if a filename exists in this table,
this file is cached at the client.

20

¢ CALLBACK : this flag is set when the
corresponding cache is out-of-date. It is ref-
erenced by cm_open operation whose open
mode (will be discussed later) can be urgent-
read, strong-read, or read-write. It can also
be referenced by cm_read operation with
open mode urgent-read.

¢ QUASI-CACHE : this flag is set when
the corresponding predicate is violated. It is
referenced by cm._read operation with open
mode quasi-read.

e mode when a file is opened, the
open mode 1is set and saved 1in this
flag (i.e., the open operation’s format is

cm_open(filename, open mode)). The
open mode can be quasi-read, urgent-
read, strong-read, or read-write. If a file

whose open mode is quasi-read (urgent-read,
strong-read), then the cm_read operation is-
sued on this file is quasi-read (urgent-read,
strong-read). This flag is referenced by read,
write and close operations.

e active : when the file has been opened, this
flag is set. We allow a user to open many
files at the same time, but disallow a file to
be opened by multiple users at the same time
to prevent conflicting open modes. When
a user wants to open a file, the active flag
will be checked. If the flag is set then this
operation is rejected; otherwise, the file is
opened. Another function of this flag is that
it prevents this file from being flushed out
during cache replacement. When we close
the file, this flag 1s reset.

cachelistl : The structure of cachelistl table 1s
shown as follows :

[filename] READLOCK l WRITELOCK] version |

If a file exists at the server, there should be a
tuple in this table. READLOCK and WRITE-
LOCK flags are set by cm_open operation with
the open mode strong-read and read-write, re-
spectively. Version is used to record the number
of updates on the file. It is increased by 1 each
time when the corresponding file is updated.

cachelist2 : the cachelist2 table controls the quasi-
caching predicate. We show the structure of it as
follows :

I filename [client [allow I version [

3.3.1

filename : the name of a file cached at the
client.

e client : the address of a client which caches
the file. This attribute is used when the
server wants to communicate with the client.

¢ allow : it denotes the allowable quasi-range.

e version : the version number when the file
was cached at the client. When a file is
updated at the server, the version number
in cachelist]l table is increased. Therefore,
when

(cachelistl.version — cachelist2.version)

> cachelist2.allow

the predicate is violated.

3.3 Operations

Clients

The following functions are used by the clients:

¢ cm_open(filename, open mode) : The open
mode could be read-write, strong-read, urgent-
read, and quasi-read.

read-write : it sends set-writelock message to
the server; if the server returns a failure
message (e.g., the WRITELOCK or READ-
LOCK flag has been set) then this function
returns a failure message to the user. Other-
wise, it checks CALLBACK flag to see if the
cache can be used to perform the update.
If CALLBACK is set then it sends getnew-
cache (to be explained later) to the server.

strong-read : it sends set-readlock message to
the server; if the server returns a failure mes-
sage (e.g.,the WRITELOCK flag has been
set) then this function returns a failure mes-
sage to the user. Otherwise, it checks CALL-
BACK flag to see if the cache can be used
for the read. If CALLBACK flag is set then
it sends getnewcache message to the server.

urgent-read : it checks CALLBACK flag first;
if this flag is set then it sends getnewcache
message to the server; CALLBACK flag
must be checked for each of the reads in the
process.

quasi-read : it checks QUASI-CACHE flag first;
if this flag is set then it sends getnewcache

21

message to the server. Notice that in or-
der to maintain a weak consistency, QUASI-
CACHE flag need not be checked for the fol-
lowing read operations.

e cm_close(filename) : it checks the open mode
first; if it is urgent-read or quasi-read then it need
not inform the server. Otherwise,

read-write : it sends flush message to the server
and transfers the modified data from the
client to the server.

strong-read : it sends release-readlock message
to the server.

¢ cm read(filename) : it checks the open mode
first; if it is urgent-read then checks the CALL-
BACK flag; otherwise, reads the data directly. If
the CALLBACK flag is set then it sends the get-
newcache message to the server. Other types of
read read the cache directly.

e cm_write(filename) : it checks whether the file
is opened for read-write mode; if it isn’t then this
request is rejected else the data are written di-
rectly.

¢ to_change_quasirange(filename,
client-address, quasi-range) we allow
users to change the quasirange specified in
cachelist2. That is, after the execution of
to_change_quasirange, cachelist2.allow will have a
new value ”quasi-range”.

3.3.2 Servers

The following functions support the requests from the
client :

o set_writelock(filename) : the server checks
WRITELOCK and READLOCK flags; if one of
the two flags is set then it returns a failure mes-
sage. If the two flags are both reset, the server
determines which set_writelock request to accept
when there are more than one request arriving at
the same time. The server returns a success mes-
sage to the client and sets the WRITELOCK flag
accordingly.

¢ set_readlock(filename) : the server checks the
WRITELOCK flag; if it is set then it returns
a failure message. If the WRITELOCK flag is
not set then the READLOCK flag is increased by
one. The READLOCK flag is implemented as a

counter to represent the number of the transac-
tions currently reading the data. The server then
returns a success message to the requested client.

o release_readlock(filename) : it decreases the
number of the transactions currently accessing
the data (i.e., decreasing the value of the READ-
LOCK flag). After that, if none of the trans-
actions are reading the data then the value of
READLOCK is zero.

¢ getnewcache(filename, client address) : it
transfers data from the server to the client to re-
fresh the cache. The CALLBACK and QUASI-
CACHE flags at the client are reset accordingly.
If the file is newly cached by the client, then a
new tuple is inserted to the cachelist2 table; oth-
erwise, the value of the version attribute in the
corresponding tuple of cachelist2 table is updated
by the value of the cached file’s new version.

¢ flush(filename) : it updates the file according to
the modified one received from the client, sets the
CALLBACK flags for all the other clients which
cache the data, tests quasi-range for all the other
clients which cache the data, and sets the QUASI-
CACHE flag at the clients if needed. Moreover.
the WRITELOCK flag is reset.

e change_quasirange(filename, client ad-
dress, quasi-range): When the server receives
the to_change_quasirange request from the client,
it updates the allow attribute value in the corre-
sponding tuple of cachelist2 table. In addition,
it must check whether the quasi-range is violated
due to this change.

4 Future Work

We have described a mechanism to control inconsis-
tent caches and an implementation of the mechanism.
The following issues are our future work items on this
system :

e provide a robust system :

We have discussed the advantages of the
inconsistent-caches in a distributed system. To
gain these advantages, however, the system must
be able to control the cache inconsistency in the
presence of failures. There are many algorithms
proposed to preserve database consistency when
failures occur [3, 4, 5, 6, 7, 11, 13, 14]. We will
investigate if they can be adapted to our environ-
ment.

provide a flexible quasi-range : Quasi-range
can be defined based on delay conditions, version
conditions, or arithmetic conditions. We have
used version conditions as the quasi-caching pred-
icate. Other conditions can also be considered.
Furthermore, we should provide users a flexibil-
ity to choose from different conditions for their
own application requirements.

performance analysis :

Currently, we are doing system performance anal-
ysis based on the prototype system and a simula-
tion model. The effect of various cache units (lock
units), cache replacement strategies, percentages
of quasi-read, quasi-ranges, and other issues are
under investigation.

References

(1

Alonso, R., Barbara, D. and Garcia-Molina, H.,
“Data Caching Issues in an Information Re-
trieval System”, ACM Trans. Database Syst.,
Sept. 1990.

W. Richard Stevens, "UNIX Network program-
ming”, Prentice-Hall, 1990, pp. 258 — 341.

Blaustein, B. T. and Kaufman, C. W., ”Updat-
ing Replicated Data During Communication Fail-
ures” , Proceedings of the 11th International Con-
ference on Very Large Data Bases, 1985.

Davidson, S. B., "Optimism and Consistency
in Partitioned Distributed Database Systems”,
ACM Trans. Database Syst., Sept. 1984,

Garcia-Molina, H. and Barbara, D., ”How to As-
sign Votes in a Distributed System”, Journal of
ACM, Oct. 1985.

Jajodia, S. and Mutchler, D., ”Dynamic Voting,”
Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1987.

Jajodia, S. and Mutchler, D., "Dynamic Voting
Algorithms for Maintaining the Consistency of
a Replicated Database”, ACM Trans. Database
Syst., Jun. 1990.

Paris, J. F., "Voting with Witnesses: A Con-
sistency Scheme for Replicated Files”, Proceed-
ings of the IEEE International Conference on Dis-
tributed Computing, 1986.

[9] Satyanarayanan, M., ”Scalable, Secure, and [12] Levy, E. and Silberschatz, A., ”Distributed File

Highly Available Distributed File Access”, IEEE Systems; Concepts and Examples”’ ACM Com-
Computer, May 1990. puting Surveys, 1990.
[10] Satyanarayanan, M., et al,, "Coda: A Highly [13] Bhargava, B. and Lian, S., ”Typed Token Ap-
" Available File System for a Distributed Worksta- proach for Database Processing during Network
tion Environment”, IEEE Trans. on Computers, Partitioning”, Tech. Rep., Computer Science De-
Apr. 1990. partment, Purdue University, 1991.
[11] Wright, D. D., ”On Merging Partitioned [14] Susan B, Davidson. and Hector Garcia-Molina.
Databases”, ACM SIGMOD Rec., 1983. and Dale Skeen. ” Consistency in Partitioned Net-

works”, ACM Computing Surveys, 1985

.
/’ <
Server 1
client client LA client
i -

! e -

’ e -

(] ’ -

Figure 1: The server/client system architecture.

23

set_callback or
et_quasicache

I"_'———_"._'____——"__—"-__-_"'“I
]
|

cachetable [*-4 ClientP :

Q |

1

')

]

H]

s request :

1

User '

data |

Program 1

]

[}

1

link i

l

t

cm_library :

[}

l

user process :

______________________________ [}
Client

]
]
[}
]
]
i
1
]
]
]
]
1
]
ServerP i
]
. t
ll ‘\ [}
+ AY]
II \‘ l
l \ 1
7 \ |

’ Ay
’ \]
2 \)
| 4 A | |
]
cachelist1 cachelist2 !
]
]
]
|
]
[}
]

Server

Figure 2: The operations beteeen server and client.

