
Index Structures of User Profiles for Efficient Web Page Filtering Services

Yi-Hung Wu and Arbee L. P. Chen�
Department of Computer Science

National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

E-mail: alpchen@cs.nthu.edu.tw

                                                          
�Contact author

Abstract
Searching information from the WWW efficiently and
effectively has become a very important issue. In this
paper, we apply the information filtering concept to
finding good matches of web pages for what the users need.
Furthermore, we propose four new methods for indexing
the users’ information needs and show their efficiency in
comparison with two well-known approaches.
Keywords: information filtering, index structure, user
profile, web page, signature.

1. Introduction

Owing to the booming development of the WWW,
users have to face a variety and a large number of web
pages and often waste much time on searching or
browsing the web pages. To alleviate the difficulty, many
tools have been developed and used on the WWW. They
can be classified into two types [10]:

Search engine: a centralized processing approach. A
search engine often collects the representative descriptions
of the web pages before the users’ information needs
appear. Two approaches are used to get the descriptions of
the web pages. One is to provide a registration form for a
web page author to describe what the web page contains,
e.g., Yahoo [25]. The other is to fetch the web pages and to
extract the representative information periodically, e.g.,
Google [2] and WebCrawler [16]. Most of the systems
extract the keywords from web pages. Some systems also
consider the authors’ names or the URLs, e.g., HotBot [6].
After that, the descriptions of the web pages are properly
organized as an index for future retrieval.

To find the most related web pages against the index,
the user may use two basic approaches: a subject guide or
a keyword search. A subject guide is useful in browsing
the general topics, while for the specific topics, a keyword
search is usually used [8]. Some of the popular search
engines are InfoSeek [7], Lycos [11], Northern Light [14]

and Alta Vista [20]. The detailed comparisons among the
search engines can be found in [18] and [22].

Meta-search engine: a distributed processing
approach. In contrast to the search engine, a meta-search
engine collects the information of the web pages when the
users make their requests. The descriptions of the web
pages are distributed in a set of search engines. A meta-
search engine only keeps the summary information of the
individual search engines, such as the index size, the
frequency of updates, the search capability, and the
expected response time. When the user issues a query, a
meta-search engine selects the best set of search engines to
answer the query. Some systems also consider the way to
use the selected search engines. After that, the query is
sent to individual sites for processing and the results are
integrated. Some of the meta-search engines are
SavvySearch [5], MetaCrawler [19], Discover [21], and
HyPursuit [23].

The search engines process the users' requests in a
centralized way. On the contrary, the distributed
processing techniques are employed in the meta-search
engines. Obviously, the performance of the search engines
will get worse if the number of web pages grows rapidly
[9]. As for the meta-search engines, there exists a tradeoff
between the processing time and the quality of query
results. If the summary information of the individual
search engines is rich, the quality of query results will be
promoted but the processing time worsened. Therefore, a
compromise between satisfying the users' requests and
promoting the system performance should be made.

In this paper, we apply the concept of information
filtering to find good matches between the web pages and
the users’ information needs. A typical architecture of the
information filtering service is illustrated in Figure 1.
Users first give descriptions about what they need, which
are called user profiles, to start the services. A profile
index is built on these profiles. A series of incoming web
pages will be put into the matching process. Each
incoming web page is represented in the same form of the
user profile. In this way, the users who are interested in an



incoming web page can be identified by comparing the
descriptions of the web page with each user profile. At last
the web page will be recommended to the users whose
profiles belong to the filtered result.

incoming web pages

user A

user B

matching
process

filtered
result

user C

user
profiles

profile index

Figure 1. An information filtering service

Compared with the search engine and the meta-search
engine, the filtering service can reduce the efforts on
building the index of the web pages. Therefore, the
filtering service can perform as usual no matter how the
number of web pages grows.

Many research results on the information filtering
services have been presented in the literature [4]. Most of
the works focus on two topics. One is to provide an
efficient method for indexing and matching the user
profiles automatically, such as [26], [27], and [28]. The
other is to devise an effective method for creating and
modifying the user profiles, such as [13] and [15]. In
addition, [1], [12], [17] and [29] also consider the issues
on the system design and demonstrate the feasibility of the
information filtering services.

In our approach, a proxy server is regarded as a
mechanism to produce web pages. That is, the web pages
fetched by the proxy server will form the incoming web
pages for the information filtering service. In a web page
filtering service, users first specify their profiles as a set of
keywords, named the keyword profiles. All the keyword
profiles are stored together and organized into an index.
Similarly, an incoming web page is represented by the set
of keywords extracted from it. After the comparisons
between these sets of keywords are made, the users who
are interested in the incoming web page can be identified.

Because the proxy servers only fetch the web pages
based on the users’ requests, the scope of incoming web
pages is limited. Another mechanism is provided to
broaden the scope of the incoming web pages. This
mechanism allows the users to specify the URL profiles
[3]. A URL profile is a partial specification of URLs,
which can be used to represent a set of URLs that the users
may be interested. For instance, a URL profile can be
http://db.nthu.edu.tw/* or http://db.*.edu.tw/ (the symbol *
stands for the don’t care condition). When a web page is

fetched by the proxy server, the complete URLs contained
in the web page, such as the URLs specified in the
hyperlinks, will be collected. These URLs will be
compared with the URL profiles to find the matches. For
example, the URLs http://db.nthu.edu.tw/alp/alpchen.html
and http://mx.nthu.edu.tw/~secwww/president/index.html
are both the matches for the URL profile
http://*.nthu.edu.tw/*. By considering the matched URLs
as users’ requests, the proxy server will fetch more web
pages. In this way, the scope of the incoming web pages
can be broadened.

As described above, a critical issue of the information
filtering service is how to index the user profiles for an
efficient matching process. Several approaches to profile
indexing were proposed in [27] and [28]. In this paper, we
will propose new indexing methods, which can reduce the
costs of storage space and the processing time for
modifying the user profiles.

The rest of the paper is organized as follows. In section
2, two well-known indexing methods are introduced.
Section 3 presents four new indexing methods. The
performance analysis and comparison among these
methods are shown in section 4. In section 5, we give the
conclusions and future work.

2. Related approaches

Several indexing methods for keyword profiles have
been proposed in [27] and [28]. In the following
subsections, we first describe an example that will be used
to illustrate the structure of profile index and the matching
process. Afterwards, two well-known approaches will be
introduced.

2.1. An example

Profile Keyword
P1 a b
P2 a d
P3 a d e
P4 b f
P5 c d e f
Example Page a b c f

Table 1. An example

This paper will consider the tables shown in Table 1 as
an example for profile indexing. A set of profiles and an
example page are presented with the associated sets of
keywords. The alphabets in the Keyword column denote
the keywords specified in the profiles or extracted from
the example page. For instance, the profile P1 is
represented by two keywords a and b. That is, the user
specifying P1 is interested in the web pages which contain
the two keywords. Consider the example page that
contains four keywords a, b, c, and f. After the matching
process terminates, only P1 and P4 will belong to the



filtered result because both the keyword sets {a b} and {b
f} are contained in {a b c f}.

Among the previous works on profile indexing, the
approaches proposed by Yan and Garcia-Molina [26] [27]
[28] [29] are well recognized. Two basic methods used in
[27] will be introduced in the following two subsections.
Due to the lack of space, we omit the detailed algorithms
and the complexity analyses from this paper.

2.2. The counting method

In the first method, all the profiles containing a specific
keyword are put together in the form of inverted lists. To
illustrate, the right-hand side in Figure 2 shows the
inverted lists derived from all the profiles in Table 1. Note
that P1 appears in both the inverted lists of a and b,
indicating that P1 contains these two keywords. Similarly,
P1, P2, and P3 all appear in the inverted list of a, indicating
that all the three profiles contain the keyword a.

P1

P2

P3

P4

P5

Profiles

2

2

3

2

4

COUNT

1

1

2

2

TOTAL

2

Keywords

P1
a

b

c

d

e

f

P2

P1

P5

P2

P4

P4

P3

P3

P5

P5P3

P5

Figure 2. The counting method

At the left-hand side in Figure 2, two auxiliary arrays,
called TOTAL and COUNT, are constructed for the
matching process. TOTAL is used to keep the number of
keywords in the profile. For example, P2 appears in the
inverted lists of a and d, and the corresponding entry in
TOTAL is 2. COUNT is used to keep the number of
occurrences for a profile during traversing the inverted
lists in the matching process. Before the matching process
for a web page starts, all the entries in COUNT are set to 0.
After that, the inverted lists of the keywords extracted
from the web page will be traversed one by one. Consider
the example page in Table 1. The inverted lists, which are
shaded at the right-hand side in Figure 2, will be traversed
during the matching process.

During the traversal of the inverted lists, the number of
occurrences for each profile will be accumulated in the
corresponding entries of COUNT. At last, a profile will be
regarded as a match if the value of the COUNT entry
equals the value of the corresponding entry in TOTAL.
Consider the shaded blocks at the left-hand side in Figure
2. P1 is a match because the values in the corresponding
entries of TOTAL and COUNT are equal. Similarly, P4 is
also a match.

2.3. The tree method

As described above, a profile may be repeatedly stored
in the inverted lists. Therefore, the storage space and the
matching time may get worse with the increase of
repetitions. The other approach considers a tree structure.
The internal nodes in a tree structure can be shared by
their descendants. In this way, the repetitions of storing the
same information can be reduced to a certain extent.

A tree derived from a set of profiles is called an index
tree, which is composed of nodes and edges. There are two
types of nodes: one keeps a keyword and the other records
a profile, which are called the k-node and p-node,
respectively. The root is a pseudo node. As shown in
Figure 3, all the internal nodes are k-nodes, while all the
leaf nodes are p-nodes. Furthermore, a keyword may
appear in several k-nodes, while a profile can only appear
in one p-node. In this way, an external path can be defined
as a path that starts from the root, passes a consecutive
sequence of k-nodes, and ends with a p-node. In the index
tree, each profile is represented by an external path. For
example, the profile P1 is represented by the external path
that starts from the root and ends with the p-node P1. The
keywords on the k-nodes, passed by this path, are the same
as the keywords specified in P1. Therefore, a profile can be
inserted by traversing and creating the corresponding
external path. Obviously, the repetitions of the k-nodes can
be further reduced by promoting the most common used
ones. For instance, the keyword f appears in both the
profile P4 and P5. Therefore the promotion of the k-node f
to the first layer can save the space of a k-node.

root

P1

a b c

f ddb

e

f

e

P3

P2 P4

P5

Figure 3. An index tree

To find the matches for a web page, a traversal of the
index tree from the root has to be conducted. That is, all
the external paths, which may cover a set of profiles, have
to be examined. If the keyword in a k-node is not
contained in the set of keywords extracted from a web
page, all the external paths containing this k-node will not
cover any matched profiles. For example, the keyword d is
not contained in the keyword set {a b c f} of the example
page. Therefore, all the profiles P2, P3, and P5 covered by
the external paths containing k-node d will not be the
matches. Furthermore, only the k-nodes and p-nodes,
which are shaded in Figure 3, have to be accessed during
the matching process.



3. Our approaches

Since the counting method and the tree method result in
the repetitions of profiles and keywords, respectively,
these methods waste too much space on storing the index
and too much time on matching. On the contrary, our
methods focus on removing the repetitions in the profile
index. Therefore, we can expect to minimize the storage
space with acceptable costs for the matching process.

In this section, we present four new approaches to
profile indexing. The example given in Table 1 will be
used to illustrate all these approaches. Due to the lack of
space, we omit the detailed algorithms and the complexity
analyses from this paper. In [24], the reader can find the
inserting algorithm, the matching algorithm, and the
complexity analysis for each approach.

3.1. Method 1: index path with path signatures

This method has an index structure which looks like a
linear path, named an index path, as illustrated in Figure 4.
There are also two types of nodes: k-nodes and p-nodes.
Because a keyword and a profile can only be put in a k-
node and a p-node, respectively, this method guarantees
that no repetition will occur in the index.

head a b d e f c

P5

001111
P2

101
P1

11
P3

1011
P4

01001

Figure 4. An index path with path signatures

The index path starts at the head, which is a pseudo
node, and consists of a series of k-nodes. Among the
keywords contained in a profile, there exists a keyword
whose associated k-node is located at the rightmost
position in the index path. We put the p-node associated
with the profile under this k-node. For example, P1

contains two keywords a and b. Moreover, node b is on the
right side of node a in the index path. Therefore node P1 is
put under node b as shown in Figure 4. In this way,
different p-nodes may be put under the same k-node.

Each profile is represented by a particular signature,
called a path signature, in the associated p-node. A path
signature is in the form of a bit string, indicating the
locations of the associated k-nodes in the index path from
left to right. In the bit string, two numbers 1 and 0 are used
to denote whether the keyword of a k-node is contained in
the profile or not. For example, the path signature of P1 is
11, indicating that P1 is associated with the leftmost two
nodes a and b in the index path.

To insert a profile, we only have to traverse the index
path from the head and build the path signature based on
the comparisons with the k-nodes. After all the associated
k-nodes are passed, a p-node for the profile will be created
under the rightmost k-node. As shown in Figure 4, P3 is

put under the node e because all the other associated k-
nodes, such as node a and d, appear before node e.

As for the matching process, the keywords extracted
from a web page are compared with the k-nodes during
traversing the index path from the head. A path signature
for the web page can also be built as a bit string. However,
the path signature for the web page may be recomputed as
the traversal of the index path moves to different k-nodes.
For instance, the path signature of the example page is
changed from 1100 to 11001 when the traversal of the
index path moves from node e to node f. In this way, the
matched profiles can be found by comparing the path
signature of the web page with the one of each p-node
under the matched k-nodes when the matching process
proceeds.

Considering the example page in Table 1, its path
signature equals 11 at node b and 110 at node d. Therefore
P1 is a match, but P2 is not. Because the example page is
associated with the k-node c, which is at the end of the
index path, all the k-nodes have to be accessed during the
matching process and are shaded in Figure 4. After that,
only P1 and P4 are the matches, which are also shaded in
Figure 4.

3.2. Method 2: index graph with path signatures

Method 1 adopts a linear structure to reduce the storage
space to a certain degree. However, it may waste too much
time on traversing the whole path. To overcome the
difficulty, a directed graph structure without any cycle,
named an index graph, is proposed to store the profiles.
The graph in Figure 5 illustrates the index derived from
the set of profiles in Table 1. There are also two types of
nodes in the graph: k-nodes and p-nodes. Because a
keyword and a profile can only be put in a k-node and a p-
node, respectively, this method also guarantees that no
repetition will occur in the index.

root a b d e

c

P2

12
P1

11
P3

121

1 1

2

1

2

1

f

P5

3111

P4

21

1

3 1

Figure 5. An index graph with path signatures

In an index graph, a link that points from a k-node to
another indicates a direction for traversing the graph. The
root is regarded as the starting node of the traversal. All
the links are associated with a number such that the
numbers of any two links from the same k-nodes are
different. For example, there are two links from node a in
Figure 5, which are associated with numbers 1 and 2
respectively. Furthermore, the sequence of numbers



associated with the links in a path from the root can be
used to specify the path. No different paths can be
specified by the same sequence of numbers. For example,
consider the two paths ending at node d. The one passing
node a is specified as 12, and the other passing node c as
31. Obviously, no other paths can be specified by 12 or 31.

Each profile can be represented by a path from the root,
which only passes all the associated k-nodes of the profile.
Therefore, the sequence of numbers for specifying a path
can also be used to represent a profile. For instance, the
path root�a�d�e is specified as 121, which can also be
used to represent P3. In this way, each profile will be
associated with a path signature, which is formed by a
sequence of numbers for the corresponding path in the
index graph.

To insert a profile, we have to traverse the index graph
from the root and build the corresponding path. After all
the associated k-nodes are linked into a path, a p-node for
the profile is created under the ending k-node of the path.
As shown in Figure 5, P3 is put under node e, which is at
the end of the path root�a�d�e. Moreover, the path
signature is computed by gathering the sequence of
numbers that appear on the links in the path. For example,
the path signature of P3 equals 121 because the
corresponding path consists of three links, i.e. root�a,
a�d, and d�e.

As for the matching process, the keywords extracted
from a web page are compared with the k-nodes during
traversing the index graph from the root. A path signature
for the web page can also be built as a sequence of
numbers. However, the path signature for the web page
may be recomputed as the traversal of the index graph
produces different paths from the root. Consider the
example page in Table 1. The path signature equals 111
when the traversal moves to node f along the path
root�a�b�f, while it becomes 21 if the traversal
produces the path root �b�f. In this way, the matched
profiles can be found by comparing the path signature of
the web page with the one of each p-node under the
matched k-nodes when the matching process proceeds.

If the keyword on a k-node is not contained in the set of
keywords extracted from the web page, all the paths
starting from this k-node can be ignored. For instance, the
paths starting from node d can be ignored considering the
example page. In this way, all the k-nodes except node e
have to be accessed during the matching process and are
shaded in Figure 5. After that, only P1 and P4 are the
matches, which are also shaded in Figure 5.

3.3. Method 3: index path with profile sets

In method 1 and method 2, we attach a path signature to
each p-node for identifying the matched profiles. However,
both of them may waste too much time on comparing with
the keywords in the k-nodes, which are not associated with
any matched profiles. In this method and the next, we will

introduce the ways to reduce the overheads and improve
the overall performance. First of all, we refine the index
path used by method 1.

As shown in Figure 6, the new index structure is similar
to the one used by method 1 except that each k-node is
associated with a set of profile identifiers, named a profile
set. For each k-node, a profile set can be used to indicate
the set of profiles containing the keyword in it. For
example, the profile set of node a in Figure 6 equals
{P1P2P3}, indicating that all these profiles contain the
keyword a. In addition, we put a profile identifier instead
of a path signature in each p-node.

head a b d e f c

P5P2P1 P3 P4

{P1P2P3} {P1P4} {P2P3P5} {P3P5} {P4P5} {P5}

Figure 6. An index path with profile sets

As described in method 1, different p-nodes may be put
under the same k-node. Furthermore, this method also
guarantees that no repetition will occur in the index
because a keyword and a profile can only be put in a k-
node and a p-node, respectively. To insert a profile, we
can follow the same algorithm of method 1 except the
operations on the k-nodes. If the keyword in a k-node is
contained in the profile, the profile identifier will be added
into the profile set of the k-node. After all the associated k-
nodes are passed, a p-node of the profile will be created
under the rightmost k-node. As shown in Figure 6, P3 is
contained in the profile sets of node a, d, and e. Moreover,
the p-node for P3 is put under node e, which is the
rightmost one.

As for the matching process, we can also follow the
same algorithm of method 1 except the use of path
signature. First of all, we define a candidate profile as a
profile, which may be a match. Moreover, a candidate set
is defined as the set of all candidate profiles during the
matching process. For example, all the profiles are
included in the candidate set when the matching process
starts. In addition, we define a target set as the intersection
of the candidate set and the profile set of a k-node. As
method 1 describes, the keywords extracted from a web
page are compared with the keyword of each k-node
during traversing the index path from the head.
Furthermore, the candidate set is also compared with the
profile set of each k-node. After these comparisons are
made, two kinds of results will be obtained.
� If the keyword of a k-node is a match, all the p-nodes

under this k-node may be matches. Furthermore, we
can regard a p-node as a match if it contains a profile
identifier belonging to the target set. After that, all the
matched profiles are removed from the candidate set
before the matching process continues.

� On the contrary, all the p-nodes under a k-node are not
matches if the keyword of the k-node is not a match.



Furthermore, a profile containing the keyword can not
be a match. Therefore, all the profiles in the target set
can also be removed from the candidate set. The
following lemma explains this property.

Lemma 1.
Assume that a profile Pj contains a keyword X and KEYweb

is the set of all keywords extracted from a web page Y.
Then, X � KEYweb � Pj is not a match of Y.

Consider the example in Table 1. The candidate set is
set to {P1P2P3P4P5} when the matching process starts. At
node a, the target set equals {P1P2P3}, while there is no p-
node under it. The candidate set keeps all the profiles.
Similarly, the target set is {P1P4} at node b. Therefore P1 is
a matched profile and the candidate set becomes
{P2P3P4P5}. At node d, the target set is {P2P3P5} and the
keyword is not contained in the keyword set of the
example page. By lemma 1, all the three profiles are
removed from the candidate set (i.e. {P4}). In this way,
another matched profile P4 can be found at node f.
Moreover, the process also terminates at node f because all
the associated k-nodes have been passed.

3.4. Method 4: index graph with profile sets

In this method, we apply the concept of the profile set
to the index graph. As shown in Figure 7, the new index
structure is similar to the one used by method 2 except that
each k-node is associated with a profile set. As described
in method 3, the profile set of a k-node indicates the set of
profiles containing the keyword in it. In addition to the
profile identifier, a p-node is also associated with the
number of keywords contained in the profile, named a
path length. For example, the p-node of P1 in Figure 7
records its profile identifier and a number 2, which stands
for the path length of P1. Note that no sequence number is
associated with the link.

root a b d e

c

{P1P2P3}

f

{P1P4} {P4P5}{P3P5}{P2P3P5}

{P5}

P1 2 P2 2 P3 3 P4 2

P5 4

Figure 7. An index graph with profile sets

As described in method 2, different p-nodes may be put
under the same k-node. Furthermore, this method also
guarantees that no repetition will occur in the index
because a keyword and a profile can only be put in a k-
node and a p-node, respectively. To insert a profile, we
can follow the same algorithm of method 2 except the
operations on the k-nodes. If the keyword in a k-node is
contained in the profile, the profile identifier will be added
into the profile set of the k-node. After all the associated k-

nodes are passed, a p-node for the profile will be created
under the ending k-node of the traversed path. As shown
in Figure 7, P3 is contained in the profile sets of node a, d,
and e. Therefore, the p-node for P3 is put under node e,
which is at the end of the path root�a�d�e. Moreover, a
p-node is also associated with the path length of the profile.
For example, the path length of P3 equals 3.

As for the matching process, we can follow the same
algorithm of method 2 except the use of path signature.
Furthermore, this method also adopts the concepts of the
candidate set and the target set defined in method 3.
During traversing the index graph, a target set of a k-node
is derived by the intersection of the candidate set and the
profile set of the k-node. Moreover, this target set can be
regarded as the candidate set for the next k-node along the
same path if the comparison of keywords succeeds. Take
the index graph in Figure 7 as an example. The candidate
set is set to {P1P2P3P4P5} when the matching process starts.
At node a, the target set is {P1P2P3}. Because the keyword
a is contained in the keyword set of the example page, the
candidate set for node b becomes {P1P2P3}. On the
contrary, the target set can also be used to reduce the
candidate set if the comparison of keywords fails. By
lemma 1, the profiles shown in the target set can be
removed from the candidate set.

A path length for the web page is accumulated during
traversing the index graph. In this way, we can find the
matched profiles if all the following conditions are
satisfied:
� The keyword of the k-node is contained in the keyword

set of the example page.
� The profile identifier associated with the p-node is

contained in the target set of this k-node.
� The path length associated with the p-node is equal to

the path length of the web page at this k-node.
Consider the example page in Table 1 and the index

graph in Figure 7. As described above, the candidate set of
node b becomes {P1P2P3} considering the path root�a�b.
Therefore, P1 belongs to the filtered result because all the
three conditions are satisfied. In this way, another matched
profile P4 can also be found by traversing the path root�b
�f. At last, the matching process terminates when the
candidate set for the web page is set to �.

4. Comparisons

In Table 2, some notations are listed with the associated
values based on the example in Table 1. For instance, P
refers to the set of all profiles and the notation |P| stands
for the number of profiles, which equals 5 in the example.
Moreover, only six distinct keywords are used in the
example. Therefore the notation |K|, which means the
number of distinct keywords, equals 6. In the following,
these notations will be used to denote the results of the
complexity analyses for the indexing methods. The
complexity analyses are based on the average case.



Symbol Value Description
P |P|�5 The set of all profiles
K |K|�6 The set of all distinct keywords
n 2.6 Average number of keywords

specified in a profile
f 2.16 average number of profiles in which

a specific keyword is contained
m 4 average number of keywords

extracted from a web page
Table 2. Some notations

As shown in Table 3, the characteristics of the six
approaches to profile indexing are listed under six criteria.
� Duplication of information: Both the counting method

and the tree method incur the repetitions of the same
information in the indexes. In the inverted lists
constructed by the counting method, each profile will
be duplicated as many times as the number of keywords
it contains. For the index tree constructed by the tree
method, two profiles may share some keywords if they
happen to contain the same keywords that compose the
same path from the root. However, there are still many
keywords duplicated in the index tree. In our
approaches, all the four methods guarantee that there is
no duplication of information.

� Sorting of keywords: Only the tree method and the
graph based methods need to keep the order of
keywords shown in the indexes. That is, the keywords
are inserted to the indexes in a specific order, such as
the alphabetical order. In the index tree, the order for
inserting keywords has a significant impact on the
number of duplicated keywords. Therefore, the
performance of the tree method will degenerate if the
order for inserting keywords results in more duplicated
keywords. On the other hand, the order for inserting
keywords has no impact on the performance of the
graph based methods. All we have to do is to insert
keywords in an order, which can be chosen arbitrarily.
Regarding the other three methods, the keywords can
be inserted to the index in an arbitrary order. Therefore
the overheads for sorting the keywords in advance can
be saved.

� Space to store the profile index: As shown in Table 3,
the counting method costs the most to store the whole
index. Further, the tree method also wastes much space
on the repetitions of keywords. All of our approaches
guarantee that there is no duplication of information in
the indexes. Therefore, we claim that the proposed
approaches can save much storage space as compared
to the counting method and the tree method.

� Time to insert or delete a profile: From Table 3, we
have that method 2 is similar to the counting method
and the tree method regarding the time to insert or
delete a profile. The other methods spend less time on
the insertion or deletion of a profile. Especially method
3 and method 4 can provide efficient ways to find

unused k-nodes.
� Time to match the profile index: As shown in Table 3,

the costs to match the profile indexes are similar for all
the methods except the counting method. The extra
expenditure of the counting method is to find a set of
matched profiles by checking all the entries in TOTAL
and COUNT.

� Time to modify a profile: The time complexity of
modifying the content of a profile is the same as the one
of inserting or deleting a profile. That is, method 1,
method 3 and method 4 perform better than the other
methods.

5. Conclusions

In this paper, we consider a web page filtering service
utilizing the proxy servers on the WWW. Four index
structures of user profiles and the related algorithms for
the web page filtering service are proposed. Moreover, the
comparisons with other representative approaches to
profile indexing are discussed according to different
criteria of performance. To sum up, our indexing methods
take advantage of both the graph structure and the
signature to save the storage space and reduce the
overheads of profile updates. Therefore, we claim that the
proposed approaches to profile indexing are effective and
efficient for the web page filtering services.

In general, the performance evaluation can be done in
three ways: formal analysis, simulation modeling, and
experiments on real data. In this paper, we only obtain a
primitive result of the performance analysis. A simulation
model and the test bed for the experiment can be
considered in the future. A web page filtering service
consists of three phases: input of user profiles, filtering of
incoming web pages, and dissemination of the filtered
result. An effective and efficient way to disseminate and
display the filtered result is urgently required in a low
bandwidth mobile environment.

To provide better flexibility and precision on specifying
the user profiles, we will also consider more types of
query predicates and different kinds of matching functions
in the future. These works include the multi-field queries,
truncation or thesauruses of keywords, and vector-space
queries.

Reference

[1] Balabanovic, M., “An adaptive web page recommendation
service,” Proceedings of International Conference on
Autonomous Agents, 1997.

[2] Brin, S. and L. Page, “The anatomy of a large-scale
hypertextual Web search engine,” Proceedings of seventh
International WWW Conference, 1998.

[3] Chen, J. P., Y. H. Wu, and A. L. P. Chen, “Index structures
of URL profiles for efficient web page filtering services,”
NTHU Technical Report, 1999.

[4] Communications of the ACM, 35(12), 1992.



[5] Dreilinger, D. and A. E. Howe, "Experiences with selecting
search engines using metasearch," ACM Transactions on
Information Systems, 15(3), 1997.

[6] HotBot, http://www.hotbot.com/, 1999.
[7] InfoSeek, http://www.infoseek.com/, 1999.
[8] Kansas City Public Library, “Introduction to search

engines,”
http://www.kcpl.lib.mo.us/search/srchengines.htm, 1999.

[9] Kosmynin, A., ”From bookmark managers to distributed
indexing: an evolutionary way to the next generation of
search engines,” IEEE Communication Magazine, June
1997.

[10] Lawrence, S. and C. L. Giles, “Searching the Web: general
and scientific information access,” IEEE Communication
Magazine, January 1999.

[11] Lycos, http://www.lycos.com/, 1999.
[12] Mostafa, J., and et al., “A multilevel approach to intelligent

information filtering modeling, system, and evaluation,”
ACM Transactions on Information Systems, 15(4): 368-399,
October 1997.

[13] Moukas, A., “Amalthaea: information discovery and
filtering using a multi-agent evolving ecosystem,”
International Journal of Applied Artificial Intelligence,
1997.

[14] Northern Light, http://www.northernlight.com/, 1999.
[15] Park, Y. W. and E. S. Lee, “A new generation method of an

user profile for information filtering on the Internet,”
Proceedings of IEEE Conference on Information
Networking, pp.261-264, 1998.

[16] Pinkerton, B., “Finding what people want: experience with
the WebCrawler,” Proceedings of first International WWW
Conference, 1994.

[17] Rhodes, B. J. and T. Starner, “Remembrance agent: a
continuously running automated information retrieval
system,” Proceedings of PAAM, 1996.

[18] Search Engine Watch, “Search engine features for
webmasters,” http://searchenginewatch.internet.com/
webmasters/features.html, Revised 1999.

[19] Selberg, E. and O. Etzioni, “Multi-service search and
comparison using the MetaCrawler,” Proceedings of third
International WWW Conference, 1995.

[20] Seltzer, R., E. Ray and D. Ray, The AltaVista search
revolution: how to find anything on the Internet, McGraw-
Hill, 1997.

[21] Sheldon, M. A. et al., “Discover: a resource discovery
system based on content routing,” Proceedings of third
International WWW Conference, 1995.

[22] Slot, M., “Web matrix: overview matrix,” http://www.
ambrosiasw.com/~fprefect/matrix/overview.html, 1996.

[23] Weiss, R. et al., “HyPursuit: a hierarchical network search
engine that exploits content-link hypertext clustering,”
Proceedings of ACM Conference on Hypertext, pp. 16-20,
1996.

[24] Wu, Y. H., and A. L. P. Chen, “Index structures of user
profiles for efficient web page filtering services,” NTHU
Technical Report, 1999.

[25] Yahoo, http://www.yahoo.com/, 1999.
[26] Yan, T. W. and H. Garcia-Molina, "Index structures for

information filtering under the vector space model,"
Proceedings of International Conference on Data
Engineering, pp.337-347, 1994.

[27] Yan, T. W. and H. Garcia-Molina, “Distributed selective
dissemination of information,” Proceedings of Parallel and
Distributed Information Systems, pp.89-98, 1994.

[28] Yan, T. W. and H. Garcia-Molina, “Index structures for
selective dissemination of information under the boolean
model,” ACM Transactions on Database Systems, 19(2):
332-364, 1994.

[29] Yan, T. W., "SIFT--A Tool for Wide-Area Information
Dissemination," Proceedings of USENIX, 1995.

Approaches
Criteria

Counting Method Tree Method Method 1 Method 2 Method 3 Method 4

Duplication of
information

profiles keywords No no no no

Sorting of keywords no yes No yes no yes
Storage space O(|P|+f|K|) O(n|P|) O(|P|+|K|) O(|P|+|K|) O(|P|+|K|) O(|P|+|K|)
Insertion/Deletion time O(nf) O(nf) O(n+f) O(nf) O(n+f) O(n+f)
Matching time O(mf+|P|) O(mf) O(mf) O(mf) O(mf) O(mf)
Modification time O(nf) O(nf) O(n+f) O(nf) O(n+f) O(n+f)

Table 3. Summary of the six approaches to profile indexing


