
Index and Data Allocation on Multiple Broadcast Channels Considering Data
Access Frequencies

Chih-Hao Hsu, Guanling Lee and Arbee L.P. Chen
Department of Computer Science and Information Engineering

National Dong Hwa University
Hualien, Taiwan 973, R.O.C.

Email: alpchen@cs.nthu.edu.tw

Abstract
 In a wireless environment, the bandwidth of the

channels and the energy of the portable devices are
limited. Data broadcast has become an excellent
method for efficient data dissemination. In this paper,
the problem for generating a broadcast program of a set
of data items with the associated access frequencies on
multiple channels is explored. In our approach, we
consider allocating index information and data items on
multiple broadcast channels by extending the
distributed indexing approach. Moreover, global data
replication and local data allocation are performed to
improve the average access time of all data items.
Simulation is performed to compare the performance of
our approach with an existing approach. The result of
the experiments shows that our approach outperforms
the existing approach.

Keywords: Wireless Environment, Multiple Broadcast
Channels, Data Allocation, Broadcast Program, Index
Information.

1. Introduction

With the development of wireless technologies,
people can now access information any time, any where
via wireless communications. However, different from
traditional wired networks, some issues should be
considered in the wireless environment. First, the
bandwidth of the wireless network and the energy
needed for portable devices are limited. Second, the
environment is asymmetry, that is, from the power
consumption point of view, sending data is more costly
than receiving data for a portable computer. Due to
these issues, the traditional request-response system [21]
is no longer suitable for data dissemination in the
wireless environment. Therefore, data dissemination in
the wireless environment has become an interesting
research problem [6][14][19].

Broadcast-based information systems provide the
dissemination of information with a cost independent of
the number of clients, which compensates for the
limited bandwidth in the wireless environment.
Moreover, the clients can retrieve the broadcast data by
just tuning to the broadcast channel, which results in a

certain degree of energy saving. Therefore, data
broadcast has become an attractive solution for
information dissemination. In the broadcast-based
system, the clients have to access data items in the
broadcast channel sequentially. How to allocate data
items in the broadcast channel for efficient data access
becomes an important issue.

In order to generate broadcast program for data
dissemination, there are two factors to consider:
y Access time. It is the time elapsed from the moment

an initial probe is made into the broadcast channel to
the moment the desired data are acquired. This is the
total time the clients must spend and is often used to
evaluate the performance of the broadcast programs.

y Tuning time. It is the time spent by the clients
listening to the broadcast channel. There are two
modes for the clients to operate. When the clients are
listening to the data items in the broadcast channel,
the CPU must operate in the active mode, which is
costly for power consumption. However, the clients
can operate in the doze mode to save power
consumption, when the requested data items have
not arrived.
In the broadcast-based system, a broadcast program

needs to be constructed to determine the order of data
items to be broadcast. The main issue to generate a
broadcast program is to minimize the average access
time for saving the bandwidth and energy in a mobile
computing system. Many researcheres have focused on
generating broadcast programs for a single broadcast
channel. However, few researcheres attempted to
minimize the access time and tuning time on the
multiple channels environment.

In this paper, the method of data and index
allocation on multiple broadcast channels is proposed.
We devote ourselves to minimizing the average access
time and tuning time of the broadcast program. The rest
of this paper is organized as follows. Section 2
introduces the related work in this domain. In Section 3,
the technique for allocating data and index on the
multiple channels is proposed. The performance
analyses are studied in Section 4. Finally, in Section 5,
conclusion and future work are presented.

2. Related Work

 1

 In [BGH92][HGL87], the server uniformly
broadcasts each requested data item. However, in fact,
some data items are more frequently accessed than
others. Acharya et al. [1] propose the concept of
broadcast disks, in which all data items are partitioned
into several groups such that the groups containing data
items with higher access frequencies have shorter
broadcast periods. As a result, the average access time
decreases. The performance of broadcast disks is further
improved in [2][3][4]. Moreover, approaches
considering broadcasting variable-sized data items are
proposed in [13][23]. However, these techniques do not
consider generating indices to reduce the tuning time.

Imielinski et al. propose several indexing techniques
for accessing data items on the broadcast channel. In
(1,m) indexing [15], the index information is broadcast
m times for each broadcast period. Distributed indexing
[15] improves it by only replicating the index
information partially. Another technique called flexible
indexing was proposed in [16]. In flexible indexing, the
broadcast program is divided into several equal-sized
segments. In each segment, some index information is
provided to navigate all data items on the broadcast
channel. However, these techniques assume that the
access frequencies of all data items are the same. Chen,
Yu and Wu [9] propose an algorithm, called CF
(constant fanout), to generate an imbalanced index tree
for skewed data accesses. The basic concept of CF is to
make the data item with high access frequency to
approach the root node so that the access time can be
minimized. However, all of these techniques only apply
to the flat broadcast program. In a non-flat broadcast
program, data items with high access frequency are
broadcast more frequently. Some techniques are
proposed in [22][24] to solve this problem. These
techniques generate broadcast programs using the
broadcast disks method so that the broadcast program
contains several segments. Each segment can be treated
as a flat broadcast program and some index information
can be attached to it. All of these techniques reduce
tuning time by skipping irrelevant data items.

There are some other works focusing on generating
broadcast programs on multiple channels. Peng and
Chen ([18]) transform the problem of generating
broadcast programs on multiple channels into one of
constructing a channel allocation tree with variant
fan-out and develop a heuristic algorithm to minimize
the average access time of a broadcast program on
multiple channels. However, this technique does not
consider how to construct index structures. In [HT71], a
binary search tree, called Alphabetic Huffman Tree is
proposed. Shivakumar et al. [20] extend it to a k-nary
search tree and allocate this search tree to multiple
channels. However, it is inflexible because the number
of channels must equal to the height of the tree. Lo and
Chen [17] propose a solution for optimal index and data
allocation, which minimizes the average access time for
any number of broadcast channels. Moreover, in [10],
the issue of allocating dependent data on multiple
channels is discussed. A heuristic algorithm is proposed

to cluster related data items to minimize the average
access time.

3. The Multiple Broadcast Segment-Based

Method

3.1 Preliminary Concepts

We extend the work of distributed indexing proposed
in [15] to the multiple channels environment and
consider the problem of data replication. As a result, the
access time and tuning time of the broadcast program
are minimized.

Distributed indexing was proposed in [15]. There are
three different index distribution methods, i.e.,
non-replicated distribution, entire path replication and
partial path replication, differing in the degree of the
replication of the index information. We adopt the entire
path replication method (abbreviated EPR) in our
approach. In EPR, all data items are associated with an
index tree (see Figure 1). In this index tree, all data
items are allocated in the leaves and the index nodes are
built above these data items. The index tree consists of
two parts, replicated index part and non-replicated
index part. The top r levels of the index tree are the
replicated index part, while the other levels are
non-replicated index part. The index nodes of the (r +
1)th level are called non-replicated roots (abbreviated
NRR). Each index sub-tree rooted in an index node in
NRR appears only once in a broadcast cycle. However,
each index node in the replicated index part appears
more than once in a broadcast cycle. In the following,
we will show how to generate a broadcast program
based on this index tree.

R

a1 a3a2

b1 b3b2 b4 b6b5 b7 b9b8

c6c1 c2 c3 c4 c5 c9c7 c8 c12c10 c11 c15c13 c14 c18c16 c17 c21c19 c20 c24c22 c23 c27c25 c26

1 4 7 10 13 16 19 7976737067646158555249464340373431282522
Data
Items

Replicated
Index Part

on-replicated
Index Part

Figure 1: Data items associated with an index tree

Definition
Bi: The ith index node in NRR.
Rep(Bi): The sequence of index nodes along the path

from the root of the index tree to the non-replicated root
Bi (excluding Bi).

Ind(Bi): The index nodes of the index tree rooted at
Bi.

Data(Bi): The set of data items indexed by Bi.

 2

 Let NRR = {B1, B2, …, Bt}. The broadcast
program for the index tree is a sequence of triples:

 < Rep(Bi), Ind(Bi), Data(Bi) > ∀ Bi ∈ NRR,
in the left to right order.

 The resultant broadcast program for the index tree
is shown in Figure 2, where each triple forms a
broadcast segment, denoted by BS, and the BS
containing the triple < Rep(Bi), Ind(Bi), Data(Bi) > is
called BS(i).

1 4 7 10 13 16R a1 b1 c1 c2 c3 R a1 b2 c4 c5 c6 R a1 b3 c7 c8 c9 19 2522

28 31 34 37 40 43R a2 b4 c10 c11 c12 R a2 b5 c13 c14 c15 R a2 b6 c16 c17 c18 46 5249

55 58 61 64 67 70R a3 b7 c19 c20 c21 R a3 b8 c22 c23 c24 R a3 b9 c25 c26 c27 73 7976

BS(1) BS(2) BS(3)

BS(4) BS(5) BS(6)

BS(7) BS(8) BS(9)

Figure 2: The resultant broadcast program of the

index tree
In order to quickly find out the desired data items,

each node in the broadcast contains some indexing
information. All nodes (index nodes and data items)
have a pointer to the beginning of the next BS so that a
client can probe to the root of the index tree and trace
the index information held in the index nodes to traverse
the index tree. Besides, the first node in each BS
contains a pointer to the beginning of the next broadcast
cycle so that a client can check whether the desired data
item has been missed and goes to the next broadcast
cycle directly. According to the index information, a
client can search for a data item with key k as follows:
z Tune to the current node and get the offset to the

next BS, and doze off until the beginning of the
next BS.

z Check whether the client has missed the desired
data item, if that is the case, doze off until the
beginning of the next broadcast cycle.

z Trace the index tree and find out the desired data
item.

We use an example to illustrate the above steps.
Refer to Figure 2, assume the first probe for a client is
in node 64 and the desired data item is in node 34. Then,
the client makes the following probes 64, ninth_R,
first_R, first_a2, b4, c12, and 34 to get the desired data
item.

3.2 Extend Distributed Indexing into Multiple

Channels

In the distributed indexing method, the access
frequencies of data items are not considered. However,
in most situations, some data items are accessed more
frequently than others. Considering the access
frequencies of data items to generate a broadcast
program will minimize the average access time and the
tuning time for all data items. In our approach, we will
take the access frequencies of data items into
consideration to generate an initial broadcast program,

followed by a refinement of the initial broadcast
program.

3.2.1 Generating initial broadcast programs

In the distributed indexing, a sequence of triples <
Rep(Bi), Ind(Bi), Data(Bi) > is formed. Assume that the
summation of the access frequencies for the data items
involved in Data(Bi) is Sum(Bi), our approach for
generating initial broadcast programs works as follows:
z Sort the sequence of triples < Rep(Bi), Ind(Bi),

Data(Bi) > in descending order according to the
value of Sum(Bi).

z Allocate a triple in the order to broadcast in each
channel.

z Repeat the allocation until all triples are broadcast
in the channels.

Figure 3 illustrates our approach using the same data
set shown in Figure 1. In this example, assume the
number of channels is 3 and the summation of access
frequencies for each BS(i) is BS(1) > BS(4) > BS(7) >
BS(2) > BS(5) > BS(8) > BS(3) > BS(6) > BS(9). First,
BS(1), BS(4) and BS(7) are selected to be broadcast in
each channel. This forms a multiple broadcast segment,
denoted by MBS. Moreover, MBS(i) is used to denote
the ith MBS in the broadcast channels. After that, BS(2),
BS(5) and BS(8) are selected to be broadcast. Finally,
the BS(3), BS(6) and BS(9) are selected to be broadcast.
In the following, we will consider the problem of MBS
replication and the problem of data allocation in an MBS
to refine the initial broadcast program.

1 4 7 10 13 16R a1 b1 c1 c2 c3 R a1 b2 c4 c5 c6 R a1 b3 c7 c8 c9 19 2522

28 31 34 37 40 43a2 b4 c10 c11 c12 a2 b5 c13 c14 c15 a2 b6 c16 c17 c18 46 5249

55 58 61 64 67 70a3 b7 c19 c20 c21 a3 b8 c22 c23 c24 a3 b9 c25 c26 c27 73 7976

MBS(1) MBS(2) MBS(3)

Figure 3: The resultant initial broadcast program in

multiple channels

3.2.2 Refining initial broadcast programs
Replication of MBSs

As mentioned, in practice, some data items are
accessed more frequently than others. Therefore, it
makes sense to broadcast data items with higher access
frequencies more frequently. In the multiple broadcast
channels, the summation of access frequencies for the
data items in the multiple broadcast segments MBS(i),
denoted by M_SUM(i), is . According

to the property shown in [25], for fixed sized data items,
the total average access time will be minimized if the
instances of each data item are equally spaced and for
any two data items d

∑
∈)()(

)(
iMBSjBS

jSum

i and dj, jiji ffpp // = ,

where pi is the reciprocal of si which is the probability
that di will be selected to broadcast in each time slot,
and fi is the access frequency of di. Assume that the

 3

broadcast channels are divided into segments with the
size of an MBS. We can replicate the MBSs as follows:
Algorithm group_data_replication:
Input: The set of multiple broadcast segments MBSs =
{MBS(1), MBS(2), …, MBS(k)} and the corresponding
summation of access frequencies M_SUM(i).
Output: A broadcast program.
Begin
1. Let the rk (the number of replication) for the MBS(k)

with the smallest M_SUM(k) be 1. Decide integer ri
for each MBS(i) such that ri is as close to

)(_/)(_ kSUMMiSUMM as possible for
all i, i≠k.

2. for i = 1 to N
 Allocate the copies of MBS(i) to the broadcast

channels such that the distance between

any two copies of MBS(i) is as close to
i

N

j
j

r

r∑
=1 as

possible.
End

Refer to Figure 3, assume that the summation of
access frequencies in MBS(1) is 0.5 and the summation
of access frequencies in MBS(2) and MBS(3) are 0.25.
According to the property shown in [25], We will
broadcast MBS(1) twice in a broadcast cycle and
broadcast MBS(2) and MBS(3) once in a broadcast cycle.
The resultant broadcast program is shown in Figure 4.

1 4 7 10 13 16R a1 b1 c1 c2 c3 R a1 b2 c4 c5 c6

R a1 b3 c7 c8 c9 19 2522

28 31 34 37 40 43a2 b4 c10 c11 c12 a2 b5 c13 c14 c15

a2 b6 c16 c17 c18 46 5249

55 58 61 64 67 70a3 b7 c19 c20 c21 a3 b8 c22 c23 c24

a3 b9 c25 c26 c27 73 7976

1 4 7R a1 b1 c1 c2 c3

28 31 34a2 b4 c10 c11 c12

55 58 61a3 b7 c19 c20 c21

Figure 4: The resultant broadcast program after
global data replication

Data Allocation in an MBS
In order to further reduce the average access time for

all data items, we consider data allocation in an MBS.
As mentioned in Section 3.1, BS(i) consists of three

parts, Rep(Bi), Ind(Bi) and Data(Bi). According to the
index tree shown in Figure 1, we have to broadcast the
part of Rep(Bi) first such that the clients can trace the
index tree from the root. After, we have to consider the
allocation of the index nodes in Ind(Bi) and data items
in Data(Bi). As shown in Figure 5, assume that the
fan-out of the index tree is K, Ind(Bi) consists of K
sub-trees. In each sub-tree, the summation of the access
frequencies of the data items contained in this sub-tree
is calculated and all sub-trees are sorted in descending
order accordingly. The sub-trees with higher
summations of access frequencies will be allocated first
such that the average access time can be reduced.
Recursively, Each sub-tree also consists of K sub-trees.

We can allocate these sub-trees in the same way.

......

Bi

Figure 5: The structure of Ind(Bi)

The following example is used to illustrate our
approach. Refer to Figure 1, assume the summations of
access frequencies of data items indexed by c1, c2 and c3
are 0.25, 0.15 and 0.2 respectively. The allocation of
index nodes and data items for the triple < Rep(B1),
Ind(B1), Data(B1) > is shown in Figure 6.

1 47R a1 b1 c1 c2c3

Figure 6: The allocation of the triple <Rep(B1),
Ind(B1), Data(B1)>

4. Performance Evaluation

In order to evaluate the performance of the proposed
algorithm, a set of simulations is performed by
generating different broadcast data sets. In the
simulation, the cost metric is the average access time
and the tuning time of all data items. We compare the
cost of our approach with that of an existing algorithm
proposed in [17]. In [17], this problem is transformed to
the Directed Optimal Linear Ordering Problem.
Moreover, a polynomial time algorithm is proposed to
solve this problem in a single broadcast channel
environment. After that, this paper provides a linear
time algorithm to transform the result to the multiple
channels. This is shown in Figure 7.

A 4

32

1

DC

EB

20 10

15 7

18

C1 1 2 A E C 1 2 A E
3 B 4 D 3 B 4C2

C1
1 2 A B 3 E 4 C D

 (a) Index tree (b) One channel (c) Two channels

 4

Figure 7: The method of index and data allocation in

[17]

4.1 Simulation Model

 The following parameter is used to generate
different broadcast data sets.
PARAMETERS
z N: The number of data items being broadcast.
z θ: The parameter of Zipf distribution.
z Data size: the size of a data item
z Index size: the size of an index node
Parameters Default value Ranges

Number of data items (N) 1000 27 – 2187

Zip parameter (θ) 0.5 0 – 0.99

Ratio (Data size/Index size) 1 1-5

Table 1: Parameter Settings

The parameter settings for our experiments are listed
in Table 1. The access frequencies of data items are
based on the Zipf distribution [GSE94]. In the Zipf
distribution, the access frequencies for the data items
follow the 80/20 rule that 80 percent clients are usually
interested in 20 percent data items.

4.2 Performance Evaluation

4.2.1 Effect of the Number of Nodes

 In this simulation, the effect of the number of
channels is considered. The result is shown in Figure 8.
As shown in Figure 8(a), the average access time of all
data items increases as the number of the channels
increases. Intuitively, as the number of channel
increases, the length of the broadcast cycle increases.
Therefore, the average access time of all data items
increases. In this experiment, we find out that our
approach outperforms the other for the average access
time. The reason is that our approach replicates the data
items with high access frequencies on the broadcast
channels such that the average access time of these data
items is reduced. Also, the average tuning time is shown
in Figure 8(b). We can see that the average tuning time
for the two approaches is almost the same.

(a)The average access time (b) The tuning time

0

200

400

600

800

1000

0 500 1000 1500 2000 2500
Niumber of data nodes

A
ve

ra
ge

 a
cc

es
s

ti
m

e

LC00

Our approach

0

2

4

6

8

10

0 500 1000 1500 2000 2500
Number of data nodes

T
un

in
g

ti
m

e

LC00

Our approach

Figure 8: Effect of the number of nodes

4.2.2 Effect of Zipf Parameter θ
 Another factor that affects the performance of the

broadcast program is the access distribution of the data
items. In this simulation, the access frequencies of data
items is based on the Zipf distribution. In the Zipf
distribution, as the Zipf parameter θ tends to 1, the
access frequencies of data items become skew, that is,
few data items have high access frequencies. In this
experiment, we show the effect of different skew
degrees of access frequencies. The experiment result is
shown in Figure 9. When the access frequencies become
skewer, a small number of data items are accessed more
frequently. Therefore, our approach reduces the average
access time of these data items by replicating these data
items more frequently. This confirms with the result
shown in Figure 9(a). Figure 9(b) shows the average
tuning time. Because the index tree proposed in [17] is a
skew index tree, the average tuning time decreases in
this approach as θ tends to 1.

(a)The average access time (b) The tuning time

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8 1

A
ve

ra
ge

 a
cc

es
s

ti
m

e LC00

Our approach

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

T
un

in
g

ti
m

e

LC00

Our approach

Figure 9: Effect of Zipf Parameter θ

4.2.3 Effect of the Ratio of the Size of Data Item to

the Size of Index Node
 In our approach, the data items and index nodes

are allocated in different time slots. However, the
approach proposed in [17] mixes the data items and
index nodes in the same time slot. In [17], as the size of
data items is greater than the size of index nodes, some
broadcast bandwidth allocated to index nodes is
wasteful. In this experiment, we show the effect of the
ratio of the size of data item to the size of index node.
The experiment result is shown in Figure 10. Our
approach outperforms the other on the average access
time and the average tuning time as the size of data item
becomes larger than the size of an index node.

(a)The average access time (b) The tuning time

0

300

600

900

1200

1 2 3 4 5
Ratio

A
ve

ra
ge

 a
cc

es
s

ti
m

e

LC00

Our approach

5

6

7

8

1 2 3 4 5
Ratio

T
un

in
g

ti
m

e

LC00

Our approach

 5

Figure 10: Effect of the ratio of the size of data item to

the size of index node

5. Conclusion

In this paper, a heuristic algorithm of allocating
index information and data items on the multiple
channels is proposed. In our approach, the distributing
indexing method is extended to the multiple channels
and the access frequencies of data items are considered.
Moreover, data replication between MBSs and data
allocation in an MBS are presented to reduce the
average access time of all data items. Simulation is
performed to compare the performance between our
approach with an existing approach. The result of
experiment shows that our approach is better than the
other approach.

There are many applications that allow the clients to
access multiple data items at a time. How to allocate all
data items on multiple channels to minimize the average
access time and the tuning time is a challenge.
Moreover, how to generate the broadcast program to
adapt to the changing access frequencies is also a
problem to solve.

Reference

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik,
"Broadcast Disks: Data management for Asymmetric
Communication Environments," Proc. ACM SIGMOD Conf.,
pages. 199-210, San Jose, CA, May 1995.
[2] S. Acharya, M. Franklin and S. Zdonik,
“Dissemination-based Data Delivery Using Broadcast Disks”,
IEEE Personal Communications, 2(6), Dec. 1995.
[3] S. Acharya, M. Franklin and S. Zdonik, “Disseminating
Updates on Broadcast Disks”, Proc. VLDB Conference, pages
354~365, 1996.
[4] S. Acharya, M. Franklin and S. Zdonik, “Prefetching
from a Broadcast Disk”, Proc. IEEE International Conference
on Data Engineering, pages 276~285, 1996.
[5] S. Acharya, M. Franklin and S. Zdonik, “Balancing Push
and Pull for Data Broadcast”, Proc. ACM SIGMOD
Conference, pages 183~194, 1997.
[6] R. Alonso and H. Korth. “Database Systems in Nomadic
Computing” In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, pages
388-392, 1993
[7] Y. D. Chung and M. H. Kim, “QEM: A Scheduling Method
for Wireless Broadcast Data”, Proc. International Conference
on Database Systems for Advanced Applications proceedings,
pages 135~142, 1999.
[8] J. Cai and K.L. Tan. “Tuning Integrated
Disseminated-based Information Systems”. Data an
Knowledge Engineering, 30(1): pages 1-21, 1999.
[9] M. S. Chen, P. S. Yu and K. L. Wu, “Indexed Sequential
Data Broadcasting in Wireless Mobile Computing”, Proc.
IEEE International Conference on Distributed Computing
Systems, pages 124~131, 1997.

[10] A.R. Hurson, Y.C. Chehadeh and J. Hannan, “Object
Organization on Parallel Broadcast Channels in a Global
Information Sharing Environment,” IEEE International
Performance, Computing, and Communications Conference
(IPCCC), February 2000.
[11] Quinlong Hu, Dik Lun Lee, Wang-Chien Lee “Optimal
Channel Allocation for Data Dissemination in Mobile
Computing Environments”. In Proceeding of the 1998
International Conference on Distributing System, pages
480-487, 1998.
[12] S. hameed and N. Vaidya. “Efficient Algorithms for
Scheduling Data Broadcastation”
[13] S. hameed and N. Vaidya. “Efficient Algorithms for
Scheduling Data Broadcastation”. ACM/Baltzer Wireless
Networks, 5(3):183-193,1999.
[14] T. Imielinski, B.R. Badrinath, “Data Management for
Mobile Computing” SIGMOD RECORD, 22(1): 34-39, 1993
[15] T. Imielinski, S. Viswanathan, and B. R. Badrinath,
"Energy Efficient Indexing on Air," Proc. ACM SIGMOD
Conf., pages 25-36, 1994.
[16] T. Imielinski, S. Viswanathan, and B. R. Badrinath,
"Power Efficient Filtering of Data on Air," 4th International
Conference on Extending Database Technology (EDBT),
pages 245-258, 1994.
[17] S.C. Lo and A. L. P. Chen. “Optimal Index and Data
Allocation in Multiple Broadcast Channels” In Proceeding of
the 16th International Conference on Data Engineering, pages
293-302, 2000
[18] W.C. Peng and M.S. Chen, “Dynamic Generation of Data
Broadcast Programs for a Broadcast Disk Array in a Mobile
Computing Environment” Proc. of the ACM 9th Intern'l Conf.
on Information and Knowledge Management, November 6-11,
2000.
[19] E. Pitoura and G. Samaras “Data Management for Mobile
Computing”, Kluwer Academic Publishers, 1998.
[20] N. Shivakumar and S. Venkatasubramanian,
"Energy-Efficient Indexing For Information Dissemination In
Wireless Systems," ACM, Journal of Wireless and Nomadic
Application, 1996.
[21] K.L Tan and B.C. Ooi. “Batch Scheduling for
Demand-driven Servers in Wireless Environment”
[22] K.L Tan and J.X. Yu, “Energy Efficient Filtering of
Non-uniform Broadcast”, In Proceeding of the 1996
International Conference on Distributing System, pages
520-527, 1996.
[23] N. Vaidya and S. Hameed. “Scheduling data broadcast in
asymmetric communication environments” ACM/Baltzer
Wireless Networks, 5(3):171-182,1999.
[24] J.X. Yu and K.L Tan, “An Analysis of Selective Tuning
Schemes for Non-uniform Broadcast”, Data and Knowledge
Engineering, 22(3): 319-344, 1997
[25] J.W. Wong. “Broadcast delivery”, Proceeding of the IEEE,
76(12): 1566-1577, 1988

 6

