OUTERJOIN OPTIMIZATION IN MULTIDATABASE SYSTEMS

Arbee L.P. Chen

Bell Communications Research
Piscataway, NJ 08854, U.S.A.
rb@ctt.bellcore.com

ABSTRACT

Outerjoin is used in distributed relational multidatabase
systems for integrating local schemas to a global schema.
Queries against the global schema need to be modified,
optimized, and decomposed into subqueries at local sites for
processing. Since outerjoin combines local relations in
different databases to form a global relation, it is expensive to
process. In this paper, based on the structure of the query and
the definition of the schemas, queries with outerjoin, join,
select and project operations are optimized. Conditions where
outerjoin can be avoided or be transformed into a one-side
outerjoin are identified. By considering these conditions the
response time for query processing can be reduced.

1. Introduction

It is becoming increasingly important to manage databases as a
repository resource and allow application programs to access
this resource in a heterogeneous distributed environment. A
multidatabase system [25], [28] is a system to meet this goal
by providing uniform and integrated access to a distributed
collection of existing databases.

Views are defined in multidatabase systems to provide data
distribution and schema difference transparencies {5], [18],
[19], [20]. To process queries against these views, modification
of queries [27] from against the view to against the underlying
local schemas is needed.

Many distributed query processing algorithms have been
proposed. Some make use of semijoins to reduce the amount
of data transfer [1], [3], [4], [9] - [12], [29]; some make use of
the fragment and replicate strategy to allow parallel processing
[30], [31]; some integrate these two strategies for adapting to
various network environments [8], [32]; some use operation
grouping as the heuristic [14]); some consider query
transformation for multidatabases [17], [22]; moreover, some
apply semantic information for fast query processing [21],

[23], [24}, 33].

In this paper, query optimization in a relational multidatabase
system is considered. Outerjoin is used for integrating local
schemas to provide views of the multidatabase. After the query
modification process, a query could contain outerjoin, join,
select, and project operations. Based on the structure of the
query and the definition of the schemas, the modified queries
are optimized. None of the above query optimization

CH2895-1/90/0000/0211$01.00 © 1990 IEEE

211

algorithms consider the optimization of outerjoin processing.

The paper is organized as follows. Section 2 discusses schema
integration by outerjoin. The definition of outerjoin and its use
for schema integration in relational multidatabases are detailed.
Query modification and the semantics of the modified queries
are discussed in Section 3. Section 4 provides the query
processing strategy for multidatabase queries. Section 5
concludes this work.

2. Schema Integration by Outerjoin
2.1 Outerjoin

The join (or innerjoin) over two relations results in a new
relation in which each tuple is formed by joining two tuples,
one from each of the original relation, such that the joining
attribute values of the two tuples satisfy the join predicate.
Therefore, it can lose information in the sense that unmatched
tuples in the joining relations do not participate in the result of
the join. In contrast, the outerjoin does not lose such
information. An outerjoin is obtained by appending additional
tuples to the result of the corresponding join. The additional
tuples are those unmatched tuples, extended with null values
for the other attributes.

The formal definition of outerjoin as given in Date [16] is as
follows. Let R(A,B1) and S(B2,C) be two relations with
atiributes R.A, RB 1, S.B2, and S.C. Define X to be the 6-join
of R on B, with S on B, where 0 represents any valid scalar
comparison operator;

X=JgrB, 058, R,S)

where Jrp, 058, denotes the 6-join. Define R’ and S’ as
follows:

R’=R-X[A,B{]
$'=S-X[B2C]

Here X [A ,B,] and X [B,,C] are the projection of X on A and
B and the projection of X on B, and C, respectively. R’ and
S’ are therefore the unmatched tuples of R and S, respectively,
with respect to the 6-join. The outerjoin of R on B with S on
B, denoted OJ g B, 6 5.B,, is defined as:

OJrB,05B,=XUR XDV ((-)%xS)

where "-" denotes the nuil value, and "x" denotes the extended
Cartesian product. The left and right outerjoins (or one-side
outerjoins) of R on By with S on B, denoted LOJrp, 658,
and ROJr B, 95 B,, are defined as:

LOJRrB,65B,=X U R’ X (--))
ROJrE, 058, =XV ((--)x$")

respectively. The left outerjoin preserves information for the
left relation of the pair while the right outerjoin preserves
information for the right relation.

If © is equality, the 6-join is referred to as an equi-join (which
applies to both innerjoins and outerjoins).

2.2 Use of Outerjoin for Schema Integration

Since an outerjoin preserves information for the two
outerjoining relations, it can therefore be used to "union" two
"semantically related" relations in a multidatabase system [5],
[14], [19]. The two outerjoining relations are local relations in
different databases while the result of the outerjoin is a global
relation in the multidatabase.

In the relational data model, a key is an identifier of a relation
and a non-key attribute represents a property of the relation,
functionally determined by the key. For two local relations in
different databases to be qualified as "semantically related"
relations, we require that their keys be semantically the same.
That is, the keys may have different names or be represented in
different formats, conceptually they represent the same thing.
In order to integrate these two semantically related local
relations, natural outerjoin over these two relations is
performed. A natural outerjoin is an equi-outerjoin on the
common attributes with one set of the common attributes
projected out of the resultant relation. (Notice that there are
two sets of the joining attribute in the resultant relation of a
join, one from each joining relation.) The common attributes
are then designated as the global relation identifier.

The data inconsistency problem in the schema integration will
not be discussed in this paper. That is, if the key values are the
same in two tuples each from one local relation, the values of
the other common attributes in the two tuples are assumed the
same.

Natural outerjoin (we use outerjoin and its notation hereafter
for natural outerjoin) as a schema integration operation
generates two groups of tuples in the global relation when it is
materialized. One group consists of the tuples whose identifier
values can be found in both local relations. The values of the
other attributes in the tuples come from the values of the non-
outerjoining attributes in both local relations. This group
consists of "objects” which exist in both local relations, and
whose properties are stored in both local relations.

The other group consists of the tuples whose identifier values
can only be found in one relation, say Ry, but not in the other,
say R,. The values of the other attributes in the tuples are
from the values of the non-outerjoining attributes in R, and
null for the others. This group consists of objects which exist
in one local relation only. The properties of these objects are

212

therefore partly stored in the local relation that they belong to
and partly unknown.

Therefore, outerjoin represents the generalization concept [26]
in semantic data modeling, which has been used in the
extended relational model RM/T [13]. Notice that when both
local relations contain the same set of attributes, the global
relation is actually the union of the tuples in the local relations
with the redundant tuples eliminated. Thus, the local relations
can be conceptually considered as fragments of a horizontally
partitioned global relation. When there exist duplicate key
values in the local relations, they can be considered as
fragments of a vertically partitioned global relation [7].

Example 1: Two databases DB and DB, each contains two
relations: IEEE(SS#,Name) and Subs(SS#,Journal) for DB,
and ACM(SS#,Age) and Subscribe(SS#,Journal) for DB 5, are
to be integrated as a multidatabase. The global relations
MEMBER and SUBS are defined as follows:

MEMBER (SS#,Name,Age) = OJ 554 (IEEE, ACM)
SUBS(SS#,Journal) = OJ ss# jounal (Subs, Subscribe)

where the subscript of OJ represents the common attributes.

The contents of the local relations IEEE, Subs, ACM,
Subscribe, and the global relations MEMBER, SUBS (when

materialized) are shown in Figure 1.

3. Query Modification
3.1 Modification process

An expression of relational algebra can be interpreted not only
as the specification of the semantics of a query, but also as the
specification of a sequence of operations [6]. For example, a
query to retrieve the names of the computer society members
who subscribe to "TODS" in the example multidatabase can be
expressed in relational algebra as follows.

TName Olournal=TODs J ss# (MEMBER, SUBS)

where ® denotes project, ¢ denotes select and J ssx denotes
equi-join on the attribute SS#. MEMBER and SUBS are
global relations and thus need to be replaced by their schema
definitions. After the replacement, the modified query is as
follows.

TName OJoumnal=TODS J ss# (OJ ss¢ (IEEE, ACM),
OJ ss# Journal (Subs, Subscribe))

Attribute names in the user query may also need to be mapped
to names in the local relations.

3.2 Semantics of the modified query

Since null values may exist in the global relations, operations
on the null values as well as null values in the answer are
possible. Two algebraic operators MAYBE_SELECT and
MAYBE_JOIN were defined in Date [15] and Codd [13].
MAYBE_SELECT selects tuples for which the value of a
specified attribute is null, and MAYBE_JOIN joins tuples for
which the value of either of the joining attributes is null.

[EEE Sube
SS# | Name SS# | Joumal
1 A 1 TSE
2 B 2 TC
8 D 8 TC
8 TSE
DB,
ACM Subscribe
SS# | Age SS# | Journal
2 40 2 TODS
3 37 3 TODS
10 29 10 | JACM
DB,
MEMBER SUBS
SS# | Name | Age SS# | Journal
1 A - 1 TSE
2 B 40 2 TC
3 37 2 TODS
8 D - 3 TODS
10 - 29 8 TC
8 TSE
10 | JACM
The Multidatabase

Figure 1: local relations and global relations.

However, these operators will not be considered in the
discussion of the query processing in the next section. That is,
null values are not involved in either select or join operation in
the discussion.

However, the null values in the answer have their meanings,
and have to be considered. For example, if there exist null
values in the answer of the above query, it means that there are
members in the multidatabase, who subscribe to "TODS" but
their names are not stored. The number of the null values may
also be important because it represents the number of such
members in the multidatabase.

As the modified algebraic expression of the query shows,
outerjoin needs to be processed before join and select.

However, outerjoin combines all data in local relations, which
is expensive and needs to be optimized. Outerjoin is a

213

system-specified operation, which “prepares” the global
relations for processing the user query. In certain situations it
need not be processed for answering the user query. In other
situations, a one-side outerjoin is enough. The query
optimization techniques to be discussed in the following
identify these situations based on the structure of a query and
the locality of data in the multidatabase.

4. Distributed Query Processing

After query modification, four operators may exist in a query.
They are select, project, join and outerjoin. We will emphasize
the optimization of the outerjoin processing to reduce query
processing and data transmission costs.

4.1 Assumptions and definitions

To simplify the discussion, a multidatabase system consisting
of two databases is used to illustrate the concepts. Each
database contains a set of relations, and is assumed to reside at
a site. There exists at least one relation in each database which
is involved in the integration of the two databases. The
integration of two relations is by defining a global relation
scheme as an outerjoin over the common attributes of these
two relations. Based on the schemas, some definitions are as
follows:

Ryj: local relation i at site j.

A;j: attributes of R;;.

C;: the common attributes of R;; and R;,, where R;; and R;y
are semantically related.

C: the union of all C;’s in the multidatabase.

R;: the global relation produced by outerjoining R;; and R;».
Qy: attributes in A; - C;, which are common to some
attributes in relation Ry, where s # i and t #j (i.e., Q;; = (4;; -
Ci)NAg).

Pj;: local attributes of R;j, which are not common to any
at;ributes in other databases; P;; =.A,-j -Ci - Qij.

PJ: all local attributes at site j; P/ = Y Pjj.

Notice that we use single subscript for information regarding a
global relation, and single superscript for a site. Also, A;; is
divided into three segments. One contains the outerjoining
attribute which is used for constructing global relations;
another contains other common attributes with attributes in
other databases for possible join operation; and the other

contains local attributes which are not common to attributes in
other databases. Based on the user query, some more
definitions follow.

The select clauses considered are of the form: "Y constant,”
where Y is called a select attribute and 0 represents any valid
scalar comparison operator.

S: the set of select attributes in a query.
T: the set of target attributes in a query.

Example 2: Assume database 1 at site 1 contains two relations:

R11(, 7, K), where I is the key
R21(L, I, M), where L is the key

and database 2 at site 2 contains:

R 121, S), where I is the key
R (L, S, K), where L is the key

R 1y and R 3 can be integrated to form a global relation R (1, J,
K, S). Similarly, Ry; and Ry, can be integrated to form R (L,
LM,S5,K). ThenCy=({I},Cy={L},Q11=02xn=1{K},0xn
={I},P1=(J,M} and P2 = {S}.

Notice that I and S in database 1 and database 2, respectively,
can be used to join the two relations in the database. These
attributes also exist in both global relations R and R, and
thus can be used for join operations. Moreover, by integrating
the two databases, attribute K is identified as a common
attribute between R1; and R,j, which can therefore also be
used to join the two global relations.

4.2 Query processing strategy

Define answer tuple identifiers as the values of the global
relation identifier in the tuples which contain values for the
answer. The query processing strategy for queries with
qualification clauses consists of two steps (queries without
qualification will be discussed in Section 4.4):

Multidatabase Query Processing Algorithm:

Step 1: Compute the answer tuple identifiers.
Step 2: Based on the answer tuple identifiers, compute
the answer.

The answer tuple identifiers can be computed by processing the

qualification clauses (i.e., selects and joins) in the query. Based
on the distribution of the target attributes in the local relations,
outerjoins and data concatenation may be required to get the
answer after the answer tuple identifiers are computed.
ORION’s query processing strategy [2] also follows this two-
step strategy, i.e., it retrieves object UID’s (unique identifiers)
first then based on the UID, it retrieves the values of interest
from the object.

In the following, the query processing is discussed based on
the distribution of the target attributes in the segments of local
relations. In Section 4.3, all the target attributes are assumed
local attributes at a site. In Section 4.4, we assume that all the
target attributes are contained in the outerjoining attributes. For
these two cases, we assume there exist qualification clauses in
the query. We discuss other situations in Section 4.5, which
include queries with other target attribute distributions and
queries which do not have any qualification clause. A property
which is useful for the discussion follows:

Property 1: For a query with qualification clauses, if a local
relation R;; does not contain select or join attributes, and it
either contains target attributes in C; or does not contain any
target attribute, then it need not be involved in the query
processing for producing the answer.

Proof: Since R;; does not contain select or join attributes, none
of the answer tuple identifiers could be obtained from R;;.

214

That is, step 1 of the multidatabase query processing algorithm
does not apply on R;;. If R;; does not contain target attributes,
then step 2 does not apply either. Now, assume that C;
contains target attributes. In the global relation R;, the tuples
which have the values of C; in R;;.C; - Ry.C;, where k # j,
have null values for the select or join attributes (a global
relation must contain either select or join attributes). This is
because R;; does not contain select or join attributes. Since the
MAYBE_SELECT and MAYBE_JOIN are not supported,
these tuples have no effects on the answer. That is, R;; need
not be involved in the query processing. [

4.3 Target attributes are local attributes

Assume all the target attributes are local attributes at site 1,
that is, T < P . The processing of select and join clauses will
be discussed separately. When there exist select and join
clauses, select processing can be considered first then join
processing.

4.3.1 select processing

Select is a unary operation. That is, only one relation is
involved in a select operation. T < P! implies T ¢ P;; when
R; is the relation which contains the select attributes. We
discuss the select processing for the following cases.

e SCP1UQ

By Property 1, R;, is not involved in the processing of this
query. Therefore, the query can be processed at site 1, and
no outerjoin processing is needed. The query
transformation for queries with a single select clause is as
follows. For queries with more than one select clauses, it is
easy to extend the transformation process.

T Op, uQ; OJ ¢ (Ri1 Ri2)
=TT Op, uQy Rit

where Op, q, denotes the select clause with the select
attribute in P;; U Q;1.

SCcPiau@in

The select attribute is in Pj» U Q;; while the target
attributes are in P;;. The global relation identifier C;
relates them in the local relations R;; and R;5. (Actually,
the common key, which is contained in C;, is enough for
relating the select attribute and the target attributes;
however, we use C; for the consistency of the discussion
for other cases.) To process this query, in step 1 we
perform select at site 2 over R;; to obtain the answer tuple
identifiers. These answer tuple identifiers are then used in
step 2 for a one-side outerjoin with R;; to get the answer.
This outerjoin generates null target attribute values for
those answer tuple identifiers which do not match with the
values in R;1.C;. These null values represent the existence
of tuples in R;5, which satisfy the select qualification but do
not have the target attribute values (since T < P;1).

The query transformation is shown as follows. This
transformation saves both transmission cost and processing
cost. Instead of transmitting a relation, only the answer

wuple identifiers need to be transmitted. Also, instead of
processing an outerjoin of two relations, only one-side
outerjoin of one relation and the outerjoining attribute in
the other relation is needed.

nr Op,uQ, OJ ¢ Rir, Ri2)

=nr LOJ ¢, (nc, Op,, L Q, Riz, Ri1)

Scd

In this case, the select is performed in parallel at both sites.
R;i2.C; is then projected and sent to site 1 for outerjoin
processing. Notice that this outerjoin is not a one-side
outerjoin as in the above case since the select is on C; and

thus the answer tuple identifiers could exist at both sites.
The query transformation is shown in the following.

T O¢; 0J (o Ri1, Ri2)
=nr OJ ¢, (Oc; Ri1, Tc; Oc; Ri2)

4.3.2 join processing

A join clause joins two relations on the joining attributes.
Based on where the joining attributes reside, the join
processing is discussed. Denote J;; as the joining attribute in

. When the joining attribute is in C;, it is denoted J;. Also,

assume that R; and R; are both global relations formed by
integrating local relations in the two databases.

i1, Jj1€ P!

By Property 1, only R;; and R;; are involved in the query
processing. That is, the query can be processed at site 1,
and no outerjoin processing is needed. The query
transformation is as follows.

nr Jp1 (O ¢; (Rix, Ri2), OJ ¢; (Rj1, Rj2))
=nr Jp: (Ri1, Rj1)

where Jp:1 denotes the join clause with the joining
attributes in P1.

JizJj2 € P2

The joining attributes are in P2, but the target attributes are
in P1. Similar to the select processing, in step 1 the join is
processed at site 2 to get the answer tuple identifiers. The
answer tuple identifiers may come from C; if the target
attributes are in P;; or from C; if the target attributes are in
Pjy or from C; and C; if the target attributes are in both P;
and Pj1. In step 2, one-side outerjoin is processed at site 1
to compute the answer based on these answer tuple
identifiers. If the target attributes are in both P;; and Pjy,
two one-side outerjoins are needed, one for each relation.
Concatenation of the target attributes from the results will

produce the answer. The concatenation of two attributes
with the same cardinality is done by concatenating the
values in the two attributes tuple by tuple. The query
transformation is shown as follows.

nr Jp2 (0 ¢; Ri1, Rio), OJ ¢; (Rj1, R;2))
=nr Ap, LOJ ¢, (e, Jp2 (Riz, Rj2). Ri1)
Il 7r A b, LOJ ¢y (nic; Jp2 (Riz, Rj2), Rj1)

where || denotes concatenation. Notice that when T N Py =
@, k =i or j, the evaluation of the associated outerjoin is
not needed.

Jile Q"l,fj € Cj

By Property 1, R;, is not involved in the query processing.
R;2.C; which contains the joining attribute Rj,.J; is sent to
site 1 and unioned with R;1.C; for the join processing. The
resultant C; is then outerjoined with R;j; when the target
attributes are in P;y. If the target attributes are in both P;
and P;; then the concatenation of the target attributes is
needed. The transformation is shown in the following.

nr J¢, (OJ ¢, (Ri1, Rin), OJ ¢; (Rj1, R;2)
=71 AP, Iy Rits U (g Rj1, gy Rj2))
i mr ~p, LOJ ¢, (nc; Iy Rit, Y (e, Rj1, Tigy Rj2): Rj1)

Notice that when all the target attributes are in R;q, no
outerjoin is needed. However, when the target attributes are
in both relations the query processing strategy may
generate execution plans which need more processing time.
Similar situations can be seen in other cases. The goal of
this approach is to identify conditions where outerjoin can
be optimized.

Jige Qi2s~,j € Cj

Similar to the above case, R;1.C; can be sent to site 2 for
the join processing. The resultant answer tuple identifiers
C; and/or C; are then sent back to site 1 for one-side
outerjoin processing. Whether to send C¢, k =i or j,
depends on the existence of the target attributes in Ry;.
Concatenation of the outerjoin results is needed when the
target attributes are in both P;; and P;. The transformation
is shown in the following.

nr J¢; (OJ ¢, (Rin, Rin) OJ ¢; Rj1, R;2)

=7t AP, LOJ ¢, (e, J¢; Riz, U (Re; Rj1, Tic; Rj2)), Riv)
I wr ~py, LOJ ¢, (e, J o (Ria, © (mey Rjy, ey Rj2)), Rj1)

JieCi,JjeCj

This query can be processed by sending R;».C; and R;2.C;
to site 1 for the join processing. The resultant answer tuple
identifiers C; and/or C; are then used for one-side outerjoin
processing. Concatenation of the outerjoin results is needed
when the target attributes are in both P;; and Pj;. The
transformation is shown in the following.

nr J¢, (OJ ¢, (Ri1, Riz), OJ ¢; (Rj1, R;j2))

=7t AP, LOJ ¢, (fic, T, (U (g, Riy, T, Rio),
U (nc; Rj1, Tic; Rj2)), Rit)

7T ~p, LOJ ¢, (nic; J ¢ (W (e, Ri1, Wi, Ri2)s
U (i, Rj1, Tic; Rj2)), Rj1)

e Jire O, Jj2€ Q2

This query can be processed by sending R;.J;5 to site 1 for
the join processing. If P;; contains target attributes then
Rj2.C; has to be sent with R;3.J;2 for computing the
answer tuple identifiers to perform the one-side outerjoin
with R;;. Concatenation of the results is needed when the
target attributes are in both P;) and P;,. The transformation
is shown in the following.

nr JQ, (OJ ¢, (Ri1, Ri2), OJ¢; (Rj1, R;j2)

=TT APy J @y Rits Tic;,Q Rj2)

I 1 AP, LOJ ¢; (nic; Jq, (Rit, e, Rj2) Rj1)
4.4 Target attributes are contained in outerjoining

attributes

We consider T < C in this subsection. As in Section 4.3, the
select processing and join processing are discussed in cases.

4.4.1 select processing
¢ SCPiu0i.

By Property 1, R;; is not involved in the processing of this
query. Therefore, the query can be processed at site 1, and
no outerjoin processing is needed. The query
transformation is as follows.

T Op, uQ, 0J ¢, Ri1, RiD)
=TT Op, UQ; Riy

SCPiruQir.

By Property 1, R;; is not involved in the query processing.
The query can be processed at site 2. No outerjoin is
needed.

SgC,-

In this case, only C; is involved in the query processing.
Outerjoin can be replaced by a union. The query can be
processed by performing select and project in parallel at
both sites, then unioning the results. The query
transformation is as follows.

nr oc, OJ ¢, Ri1, Ri2)
=\ (rr Oc, Ri1, ot Oc, Ri2)
4.4.2 join processing

® Jii, J j1€ Pl
The query can be processed at site 1, by Property 1. No
outerjoin is needed.

o Jis,Jjae P 2
This case is similar to the above one. The query can be
processed at site 2. No outerjoin is needed.

e Jiie 0i,Jj e Cj
By Property 1, R;3 is not involved in the query processing.

To process this query, we send R;,.C; to site 1, perform a
union with R;,.Cj, join the result of the union with R;q,

216

then project on the target attributes to get the answer. No
outerjoin is needed. The query transformation is as follows.

nr J¢, (OJ ¢, (Ri1, Ri2). OJ ¢; (Rj1. Rj2))
=7t Jc; Ri1, Y (%¢; Rj1, Tic; Rj2)

e Jize 0i2,Jj e C;

The query processing is similar to the above case. No
outerjoin is needed.

o JieC;,Jje(j

The query processing is similar to the case with the same
condition on the joining attributes in Section 4.3.2.
However, no outerjoin is needed here since the target
attributes are in C.

e Jiie Qi Jj2€ Q)2

Again, the query processing is similar to the case with the
same condition on the joining attributes in Section 4.3.2.
Since the target attributes are in C, no outerjoin is needed.

4.5 Other queries
4.5.1 queries with qualification clauses

The same query processing algorithm can be applied for
queries with other target attribute distributions. The answer
tuple identifiers are computed in step 1 by processing the
qualification clauses. Then, in step 2, these identifiers are used
for outerjoin operations. Concatenation of the results is needed
when the target attributes span more than one local relations in
either the same database or different databases.

4.5.2 queries without qualification

If the target attributes are in Py U Qu, k = 1 or 2, then only
one site is involved in the query processing. If the target
attributes are in C; then the target attribute values from both
Ci1 and C;; need to be retrieved and unioned. In other cases,
outerjoin is needed.

5. Conclusions

We have described query processing strategies in a relational
multidatabase system. Outerjoin is used to integrate local
relations in different databases to form a global relation. A
query has to be modified from against the global schema to the
local schemas for processing. Outerjoin thus exists in the
modified query. The processing of outerjoin is expensive since
it combines two relations. However, in some cases, it need not
be processed for producing the answer for the query.

An approach to optimize outerjoin processing was proposed.
Attributes in a local relation are divided into three segments.
One contains the outerjoining attribute which is used for
constructing global relations; another contains other common
attributes with attributes in other databases for possible join
operation; and the other contains local attributes which are not
common to attributes in other databases. Based on the
allocation of the target attributes, select attributes and joining
attributes in these segments, the multidatabase query is
processed. The query processing strategy computes the answer

tuple identifiers first by processing the qualification clauses in
the query. Outerjoin is then performed when needed to
compute the answer based on these answer tuple identifiers.

Concatenation of the results from outerjoins is needed when
the target attributes span more than one local relations in either
the same database or different databases.

The situations in which local query processing cost and data
transmission cost can be reduced were identified by this
approach. When all the target attributes are contained in the
outerjoining attributes, no outerjoin processing is needed.
When all the target attributes are local attributes at a site then
in some cases outerjoin processing can also be avoided. When
it is needed, it may be changed to a one-side outerjoin of a
relation and the outerjoining attribute of the other relation,
which requires less processing costs.

Some research issues are currently under investigation,
including consideration of data inconsistency, data
fragmentation, and MAYBE_SELECT and MAYBE_JOIN
operations, incorporation of semijoin strategy with the two-
step strategy, and derivation of a general algebraic framework
for outerjoin optimization.

Acknowledgement: 1 am grateful to the reviewers, Arnie
Rosenthal and Gomer Thomas for many useful suggestions.

REFERENCES

[1] Apers, P., A. Hevner, S.B. Yao, "Optimization algorithm
for distributed queries," IEEE Transactions on Software
Engineering, January 1983.

{2] Banerjee, J., W. Kim, K.C. Kim, "Queries in object-
oriented databases," Proc. IEEE International Conference on
Data Engineering, 1988.

[3] Bernstein, P. and D.M. Chiu, "Using semi-joins to Solve
relational queries,” JACM, January 1981.

[4] Bernstein, P., N. Goodman, E. Wong, C. Reeve, J. Rothnie,
"Query processing in a system for distributed databases (SDD-
1)," ACM Transactions on Database Systems, December 1981.

[5] Breitbart, Y., P. Olson and G. Thompson, "Database
integration in a distributed heterogeneous database system,"
Proc. IEEE International Conference on Data Engineering,
1986.

[6] Ceri, S. and G. Pelagatti, Distributed Databases: Principles
and Systems, McGraw-Hill, 1984.

[7] Chen, A.L.P., "A localized approach to distributed query
processing," to appear in Proc. EDBT 90 (Extending Data Base
Technology).

[8] Chen, AL.P., D. Brill, M. Templeton and C. Yu,
"Distributed query processing in a multiple database system,"
1EEE Journal on Selected Areas in Communications, special
issue on Databases in Communications Systems, Apr. 1989.

[9] Chen, A.L.P. and V.O.K. Li, "Optimizing star queries in a
distributed database system," Proc. VLDB, 1984.

217

[10] Chen, A.L.P. and V.O.K. Li, "Improvement algorithms for
semijoin query processing programs in distributed database
systems,”" IEEE Transactions on Computers, November 1984.

[11] Chen, A.L.P. and V.OK. Li, "An optimal algorithm for
processing distributed star queries," IEEE Transactions on
Software Engineering, October 1985.

[12] Chiu, D.M., P. Bemstein, Y.C. Ho, "Optimizing chain
queries in a distributed database system," SIAM J. Comput.,
February 1984.

[13] Codd, E.F., "Extending the database relational model to
capture more meaning," ACM TODS, December 1979.

[14] Czejdo, B., M. Rusinkiewicz and D. Embley, "An
approach to schema integration and query formulation in
federated database systems,” Proc. IEEE International
Conference on Data Engineering, 1987.

[15] Date, C.J., "Null values in database management,” Proc.
Second British National Conference on Databases, 1982.

[16] Date, C.J., "The outer join," Proc. Second International
Conference on Databases, 1983.

[17] Dayal, U., "Query processing in a multidatabase system,"
Query Processing in Database Systems, Kim, Reiner and
Batory (editors), 1985.

[18] Dayal, U. and H. Hwang, "View definition and
generalization for database integration in multibase: a system
for heterogeneous distributed databases,” IEEE Trans. Softw.
Eng., Nov. 1984.

[19] Deen, S., R. Amin and M. Taylor, "Data integration in
distributed databases," IEEE Trans. Softw. Eng., Jul. 1987.

[20] Gamal-Eldin, M., G. Thomas and R. Elmasri, "Integrating
relational databases with support for updates,” IEEE Proc.
International Symposium on Databases for Parallel and
Distributed Systems, 1988.

[21] Hammer, M. and S. Zdonik, "Knowledge-based query
processing,” Proc. VLDB, 1980.

{22] Hwang, H., U. Dayal and M.G. Gouda, "Using
semiouterjoins to process queries in multidatabase systems,"
Proc. ACM PODS, 1984.

[23] King, J., Query Optimization by Semantic Reasoning,
UMI Research Press, 1984,

[24] Shenoy, S.T. and ZM. Ozsoyoglu, "A system for
semantic query optimization," Proc. ACM SIGMOD, 1987.

[25] Smith, J. et al., "Multibase - Integrating heterogeneous
distributed database systems," Proc. AFIPS NCC, 1981.

[26] Smith, J. and D.C.P. Smith, "Database abstractions:
aggregation and generalization," ACM TODS, 1977.

[27] Stonebraker, M., "Implementation of integrity constraints
and views by query modification," Proc. ACM SIGMOD,
1975.

[28] Templeton, M., D. Brill, A.L.P. Chen, S. Dao, E. Lund, R.
MacGregor, P. Ward, "Mermaid - a front-end to distributed
heterogeneous databases,” Proceedings of the IEEE, May,
1987.

[29] Yu, C.T., C.C. Chang, M. Templeton, D. Brill, E. Lund,
"On the design of a query processing strategy in a distributed
database environment," Proc. of ACM SIGMOD, 1983.

[30] Yu, C.T., C.C. Chang, M. Templeton, D. Brill, E. Lund,
"Query processing in a fragmented relational distributed
system: MERMAID," IEEE Transactions on Software
Engineering, August 1985.

[31] Yu, C.T., K. Guh, D. Brill, AL.P. Chen, "Partition
strategy for distributed query processing in fast local
networks," IEEE Trans. on Software Engineering, June 1989.

[32] Yu, C., K. Guh and A.L.P. Chen, "An integrated algorithm
for distributed query processing," Proc. IFIP Conference on
Distributed Processing, 1987.

331 Yu, C.T,, L. Lilien, K. Guh, M. Templeton, D. Brill,
A.LP. Chen, "Adaptive techniques for distributed query
optimization," Proc. IEEE International conference on Data
Engineering, 1986.

218

