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Natural outerjoin has been considered as an important operation in schema integration.
It can be used to define various views in cooperation with other operations.  Due to the exist-
ence of inconsistent data and null values in base relations of multiple databases, the traditional
natural outerjoin cannot be directly applied to schema integration in a multidatabase environment.
In this paper, the effects of execution orders, inconsistent data, and null values  on the resultant
semantics of natural outerjoins are explored.  Because an arbitrary execution order of natural
outerjoins may cause the resultant semantics to be ambiguous, care needs to be taken in speci-
fication of the execution order.  We investigate how to determine the execution order of natural
outerjoins such that the result is desirable.  Moreover, an extension of  traditional natural
outerjoin, called partial natural outerjoin, is proposed to handle null values and  inconsistent
data.  When a user issues a query against the global view, the query is modified to obtain one
which may contain partial natural outerjoins, selections, and projections, based on the defini-
tion of the global view.  A set of equivalence transformation rules is developed to transform a
modified query into one with simpler operations, which lowers the query processing cost.
Moreover, the semijoin technique is applied in query processing.  Therefore, the cost of data
transmission for processing a query can be further reduced, especially in a wide area network
environment.

Keywords: natural outerjoin, multidatabase, inconsistent data, null value, execution order,
semantics analysis, equivalence transformation rule

1. INTRODUCTION

Because of the rapid advances in networking technologies and the requirement of
data sharing among multiple databases, the development of multidatabase systems [6] has
been considered as an important research issue.  One of the important characteristics of a
multidatabase system is that the autonomy of its component databases is preserved; that is,
in a component database, data can be created and manipulated independent of other
databases.

In order to provide a high level of transparency and a uniform interface for users to
retrieve data in a multidatabase system, the schemas of the component databases are usu-
ally integrated to form a global schema.  A variety of approaches to data/schema integra-
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tion have been proposed [11, 13].  Batini et al. surveyed twelve methodologies for database
or view integration in [2].  In [18] and [22], sets of operators were developed for virtual
integration of multiple databases.  To resolve conflicts among component schemas,
DeMichiel [14] proposed an approach to deal with mismatched domains based on the no-
tion of partial values.  A partial value corresponds to a set of possible values in which
exactly one is the true value. Tseng et al. [26] extended the concept of partial values to
probabilistic partial values, by means of which  more informative query results can be
provided.

The outerjoin operator [9] is designed to preserve the information of unmatched
tuples in the participant relations, which has been included in the SQL2 standard draft [1].
A one-sided outerjoin (i.e., left or right outerjoin) preserves only one of the participant
relations while a two-sided outerjoin (or full outerjoin) preserves both of the  participant
relations. Many approaches [3, 15, 16, 19, 24] have been proposed to process queries in-
volving outerjoins. Rosenthal and Galindo-Legaria [24] investigated reassociation rules
for one-sided outerjoins and presented a special class of join/one-sided outerjoin queries
that are freely reorderable.  In [15], simplification and reassociation for queries involving
one- and two-sided outerjoins were studied, and issues concerning extending traditional
optimizers to handle outerjoins were discussed.  Strategies for representing outerjoins as
order-independent disjunctions and their evaluation were explored in [16].  Pirahesh et al.
[23] proposed two specialized algorithms to efficiently process outerjoin queries.  Moreover,
the algorithms were extended to support parallel execution of the outerjoin operation.  Lee
and Wiederhold  [19] developed a mechanism for prescribing inner joins or left outerjoins
for the joins of a query used to instantiate objects from a relational database.  In [4], algo-
rithms that remove redundant outer joins from a query were presented.  Galindo-Legaria
and Rosenthal [17] proposed a theory that allows outerjoin/join queries to be reordered for
the sake of optimization.  A model of hypergraph abstraction and algorithms for reordering
outerjoin queries with complex predicates were proposed by Bhargava et al. [3].  All the
above papers considered outerjoin processing  in a centralized relational database system.

Since an outerjoin preserves information for the participant relations, it can be used
to “union” two semantically related relations/classes in a multidatabase environment.  In
[18], the integration operator OUnion was developed for integrating multiple object
databases.  The function of the operator is similar to that of the outerjoin operator in the
relational model.  However, the issue of query processing involving OUnion was not fur-
ther discussed.  Dayal [10] used outerjoins to construct a generalized entity type over re-
lated entity types from different database systems.  To resolve data conflicts, aggregate func-
tions such as “average,” “maximum” etc. were used for the purpose of attribute derivation.
However, query optimization involving outerjoins and aggregate functions was not for-
mally discussed.

Chen [7] optimized outerjoin processing by using a set of equivalence transforma-
tion rules.  A multidatabase query was modified and transformed into one without any
outerjoins or one containing only one-sided outerjoins.  However, the data conflict prob-
lem was not considered.  Lim et al. [20] considered the entity identification and attribute
value conflict problems in the two-sided outerjoin operation.  For the entity identification
problem, the key-equality comparator was developed to overcome the anomaly caused by
the regular equality comparator in two-sided outerjoins.  For the attribute conflict problem,
the Generalized Attribute Derivation (GAD) operation was defined, which can be used to
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derive new attributes from existing attributes.  Moreover, an algebraic transformation
framework, including two-sided outerjoins and GAD operations, was proposed for
multidatabase queries.  In fact, when the data inconsistency problem is not considered, the
entity identification problem, as shown in [20], can be resolved by means of natural outerjoins
[9].  Furthermore, the GAD operation is similar to the aggregate function presented in [10],
which suffers from the problem of losing informative information from component databases.

The natural outerjoin operation is useful in  schema integration.  A natural outerjoin
is an equi-outerjoin on the common attributes with one set of the common attributes pre-
served in the resultant relation.  For example, consider the integration of relation Student1
(id, name, age, school) in a database and relation Student2 (id, name, age, address) in
another database.  Assume that there is no inconsistent data in these two relations.  In
addition, their key attributes id’s  are semantically equivalent; that is, two tuples having the
same id value are considered to represent the same real-world entity.  We can integrate
Student1 and Student2 to form the view Student (id, name, age, school, address) by the
natural outerjoin of Student1 and Student2.  If a tuple in Student1 and another tuple in
Student2 represent the same real-world entity, then a tuple representing this entity, which
has both school and address information from Student1 and Student2, respectively,  is
obtained when view Student is materialized.  For a real-world entity which is represented
by a tuple in Student1 but no tuple in Student2, the value of the attribute address for this
entity in Student will be filled with a null value denoted as “~” [8].

When the data inconsistency problem is considered, the traditional natural outerjoin
cannot be directly used in schema integration.  For example, assume there are two tuples
(001, John, 25, NTHU)  and  (001, John, 24, KM100) in Student1 and Student2,
respectively. These two tuples represent the same real-world entity since they have the
same id value, but their age values are inconsistent.  When view Student is materialized,
the natural outerjoin of  Student1 and Student2 is performed.  However, these two tuples
cannot be joined into a single tuple in the resultant relation due to their inconsistent age
values.  Therefore, there are two tuples (001, John, 25, NTHU, ~) and (001, John, 24, ~,
KM100) in Student, which will make the user confused about the semantics.

The execution order of left (or right) outerjoins determines the semantics of the re-
sult [12].  However, the effect of the execution order on the resultant semantics of natural
outerjoins has not been explored before.  Because an arbitrary execution order for natural
outerjoins may cause the resultant semantics to be ambiguous, care needs to be taken in
specifying the execution order.  In this paper, the effects of execution orders, inconsistent
data and null values on the resultant semantics of natural outerjoins are discussed.  We
investigate how to determine the execution order of natural outerjoins such that the result-
ant semantics is desirable.  Moreover, we find that  traditional natural outerjoin cannot be
directly applied in defining views when  null values and inconsistent data are considered.
An extension of the  traditional natural outerjoin, called the partial natural outerjoin, is
thus  proposed to handle null values and  inconsistent data.

When a user issues a query against a global view, the query is modified to obtain one
which may contain partial natural outerjoins, selections, and projections, based on the defi-
nition of the global view.  A set of  equivalence transformation rules are developed to
transform a modified query into one with simpler operations, which lowers the query pro-
cessing cost.  Due to the existence of inconsistent data, the selections and projections
cannot always be executed at local sites before transmitting relations to a final site where
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partial  natural outerjoins are performed.  We discuss cases where the selections and pro-
jections can be executed at local sites without affecting the correctness of the query result
and provide the corresponding transformation rules for these cases.  Moreover, the semijoin
technique is applied in query processing.  Therefore, the cost of data transmission for pro-
cessing a query can be further reduced, especially in a wide area network environment.

This paper is organized as follows.  In section 2, the effects of execution orders, null
values and inconsistent data on the resultant semantics of natural outerjoins are discussed.
The partial natural outerjoin is introduced in section 3.  Section 4 presents a set of equiva-
lence transformation rules used to optimize queries involving partial natural outerjoins.
Finally, we conclude with future work in section 5.

2. SCHEMA INTEGRATION BY MEANS OF NATURAL OUTERJOINS

The operators (full) natural outerjoin, left natural outerjoin, and right natural
outerjoin are denoted as NOJ NOJ NOJs s s← →  → ← , , , and where “s” represents the set
of attributes common to the participant relations.  Let R(A1, B1) and S(B1,C1) be two
relations with attributes R.A1, R.B1, S.B1, and S.C1.  Attribute B1 is the common attribute
of these two relations.  Define X as the equi-join of R and S on B1:

X=R><R.B1=S.B1 S.

The natural join of R and S is defined as follows:

X¢ = p(R.A1,R.B1,S.C1) X,

where p(R.A1,R.B1,S.C1) denotes the projection on attributes R.A1, R.B1 and S.C1.  Then we can
state the notion of the antijoin [10, 15] as follows:

Definition 1: The antijoin, denoted as R > S, is defined as {t1 Œ RΩno tuple t2 Œ S satisfies
t1.B1 = t2.B1}.

The natural outerjoin of R and S is defined as

R S X R S S RNOJ
B C A← → = ′ ∪ × ∪ ×{ } { } { }(( ) (~) ) ((~) ( ))1 1 1> > ,

where “(~)F” denotes a relation with the attributes in the set F, which consists of a null
tuple (i.e., a tuple with null values for all the attributes), and “¥” represents the Cartesian
product.  The left natural outerjoin and right natural outerjoin are defined as follows:

R S X R S

R S X S R

NOJ
B C

NOJ
B A

 → = ′ ×

←  = ′ ×

{ } { }

{ } { }

(( ) (~) ),

((~) ( )).

1 1

1 1

U >

U >

The left natural outerjoin preserves information for the left relation of the pair while the
right natural outerjoin preserves information for the right relation.
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Fig. 1 shows example relations in different databases, where the relations R1, R2 and
R3 record information about employees who take part in projects P1, P2 and P3, respectively.
Consider the following example.

Fig. 1. Relations in different databases.

Example 1: Suppose we want to create a view V1(E#, Ename, D#, degree) which contains
all the information about employees who participate in project P1, P2, or P3.  Since the
natural outerjoin operation can combine the information for a real-world entity existing in
different databases, intuitively, view V1 can be defined as the natural outerjoins of R1, R2,
and R3.  (Note that a view is defined after the schema integrator specifies a derivation for
it.)

It is obvious that the execution order of left (or right) natural outerjoins determines
the semantics of the result.  However, the effect of an execution order on the resultant
semantics of (full) natural outerjoins has not been explored.  In the following, we will
investigate the effects of execution orders, null values and inconsistent data on the result of
natural outerjoins using the above example.

2.1 The Effect of Execution Orders on the Result of Natural Outerjoins

In this subsection, inconsistent data and null values in base relations of multiple
databases are not considered.

Consider Example 1. When a schema integrator specifies the natural outerjoins of R1,
R2 and R3 as the definition of view V1, the importance of the execution order for natural outerjoins
can be ignored.  In fact, different specifications for the execution order will produce different
views.   Let  us  consider three possible ways to execute natural outerjoins over R1, R2 and R3:
( ) , ( ),{ #, #} { #} { #, #} { #}R R R R R RNOJ

E D
NOJ

E
NOJ

E D
NOJ

E1 2 3 1 2 3← → ← → ← → ← →  a n d
R R RNOJ

E D
NOJ

E2 1 3← → ← →{ #, #} { #}( ). The results are shown in Fig. 2.
From a semantic point of view, we say that a view is desirable if a real-world entity is

represented by a unique tuple of the view.  The result of materializing view V1 is desirable
if it satisfies the following condition: The employee participating in project A, B, or C is
represented by a single tuple in the result.  It can be seen that the result of
( ){ #, #} { #}R R RNOJ

E D
NOJ

E1 2 3← → ← →  is desirable since the information of each employee is
integrated into a single tuple.  As for the result of R R RNOJ

E D
NOJ

E1 2 3← → ← →{ #, #} { #}( ), it is
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undesirable since employee “E200” appears in two tuples in the result.  That is, the result-
ant tuples (E200,~,~,BS) and (E200,~,D20,~) will make the user confused about the
semantics.  The problem in the execution order is that the tuple (E200,BS) in R3, which has
no match tuple in R2, is preserved with null  Ename and D# values while the preserved tuple
cannot match any tuple in R1 due to null D# value.  Similarly, the result of R NOJ

E D2 ← → { #, #}

( ){ #}R RNOJ
E1 3← →  is also undesirable.

Theorem 1: Assume that inconsistent data and null values are not considered in the base
relations.  Given relations R1, R2 and R3, let s1 be the set of common attributes for R1 and R2,
R' the result of natural outerjoin over R1 and R2, and s2 the set of common attributes for R'
and R3.  Assume R1, R2 and R3 have the same key attribute ak, and they are to be integrated
into a view which contains all the information about entities in R1, R2 and R3.

( )R R RNOJ NOJ
ss1 2 31 2← → ← →  is a desirable view specification if s1   s2.

Proof: Since null values in base relations are not considered, all the tuples in R s RNOJ
1 1 2← →

have non-null values for each attribute in s1.  Let t be a tuple of R3, and let t' be a tuple of R'.
Consider the following two cases:

∑ Case (a): t and t' represent the same real-world entity.
Assume s1   s2.  Since inconsistent data is not considered, for each attribute ai in s2,
t.ai is equal to t'.ai.  Therefore, t and t' will be integrated into a single tuple in the
result of ′ ← →R RNOJ

s2 3 .
∑ Case (b): t and t' represent different real-world entities.

Fig. 2. The results of different execution orders for natural outerjoins over R1, R2 and R3.
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Since ak is the key attribute for R3 and R', ak Œ s2.  Moreover, different entities have
different key values.  Therefore, t.ak is not equal to t'.ak, and entities represented by

t1 and t2 will be preserved by two separate tuples in the result of ′ ← →R RNOJ
s2 3 .

Based on cases (a) and (b), we can conclude that ( )R R RNOJ
s

NOJ
s1 2 31 2← → ← → is a

desirable view specification if s1   s2. o

It is possible that we will not find appropriate sets s1 and s2 from given relations such
that s1   s2.  Consider the following example.

Example 2: Assume relations R4, R5 and R6 in Fig. 3 record the information about employ-
ees who participate in projects P4, P5 and P6, respectively.  Moreover, we want to create a
view V2(E#, Ename, D#, degree, age) which contains all the information for employees
participating in project P4, P5, or P6.

Fig. 3. Relations in different databases.

Let us consider the three possible specif ications for defining view
V R R R R R RNOJ

E D
NOJ

E Ename
NOJ

E D
NOJ

E Ename2 4 5 6 4 5 6:( ) , ( ),{ #, #} { #, ) { #, #} { #, }← → ← → ← → ← →
R R RNOJ

E Ename D
NOJ

E5 4 6← → ← →{ #, , #} { #}( ). These three specifications have the same result
as shown in Fig. 4.  It can be seen that the result in Fig. 4 is desirable, though none of the
three specifications satisfies the containment condition in Theorem 1.

Fig. 4. The same result for ( ){ #, #}R RNOJ
E D4 5← → NOJ

E Ename R← → { #, } 6  and R NOJ
E D4 ← → { #, #}

( ){ #, }R RNOJ
E Ename5 6← → , and R NOJ

E Ename D5 ← → { #, , #}  ( ){ #}R RNOJ
E4 6← → .

Suppose the tuples (E10,Peter,D1) and (E80,Jack,20) are inserted into relations R5

and R6, respectively.  The results of the three specifications will change to those shown in
F ig .  5 .  Note that  ( ){ #, #} { #, }R R RNOJ

E D
NOJ

E Ename4 5 6← → ← →  and R NOJ
E D4 ← → { #, #}

( ){ #, }R RNOJ
E Ename5 6← →  have the same result; however, the result is undesirable since em-

ployee “E80” is represented by two tuples.  Similarly, the result of R NOJ
E Ename D5 ← → { #, , #}

( ){ #}R RNOJ
E4 6← →  is also undesirable since employee “E10” is represented by two tuples.

From the above discussion, it can be seen that if the condition s1   s2 in Theorem 1
does not apply, whether or not the result of ( )R R RNOJ

s
NOJ

s1 2 31 2← → ← →  is desirable de-
pends on the data in relations R1, R2 and R3.



PAURAY S. M. TSAI AND ARBEE L. P. CHEN600

2.2 The Effect of Null Values and Inconsistent Data on the Result of  Natural Outerjoins

In this subsection, inconsistent data and null values in base relations of multiple
databases are considered. We will find that even if the execution order of  natural outerjoins
satisfies the containment condition in Theorem 1, null values and  inconsistent data may
cause the result to be ambiguous.

We replace relation R2 with R'2 as shown in Fig. 6 for the following discussion.  Con-
sider  Example 1 again.  The result of ( ){ #, #} { #}R R RNOJ

E D
NOJ

E1 2 3← → ′ ← → is depicted in
Fig. 7.  It can be seen that the specification ( ){ #, #} { #}R R RNOJ

E D
NOJ

E1 2 3← → ′ ← → satisfies
the containment condition in Theorem 1; however, the execution result is ambiguous since
employees “E100” and “E500” are both represented by two tuples in the result.  This is
because null values and inconsistent data prevent the tuples representing the same employ-
ees from matching in natural outerjoin operations.  For example, observe the tuple (E100,
D10) in R1 and the tuple (E100,John,~) in R'2.  These two tuples represent the same employee,
but the D# value in R'2 is null.  As a result, the condition R1.D# = R'2.D#, which is implied
in the operation R RNOJ

E D1 2← → ′{ #, #} , is not satisfied.  Similarly, the two tuples (E500,D35)
in R1 and (E500,Joe,D20) in R'2 do not satisfy the condition R1.D# = R'2.D# due to their
inconsistent D# values.

Fig. 5. The results for ( ) ,{ #, #} { #, }R R RNOJ
E D

NOJ
E Ename4 5 6← → ← → R NOJ

E D4 ← → { #, #}

( ),{ #, }R RNOJ
E Ename5 6← → and R R RNOJ

E Ename D
NOJ

E5 4 6← → ← →{ #, , #} { #}( ) .

Fig. 6. Relation R'2.

Fig. 7. The result of ( ){ #, #} { #}R R RNOJ
E D

NOJ
E1 2 3← → ′ ← → .
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Null values and inconsistent data  also have similar effects on the results of left
natural outerjoins and right natural outerjoins.  In the next section, we will develop a new
outerjoin operator, called the partial natural outerjoin, to handle problems caused by ex-
ecution orders, null values, and inconsistent data.

3. PARTIAL NATURAL OUTERJOIN

In section 3.1, we will formally define the partial natural outerjoin.  Examples for
illustrating the applications and advantages of the partial natural outerjoin are given in sec-
tion 3.2.

3.1 Definition

First we will introduce the data integration operator, denoted as , which is used in
the definition of the partial natural outerjoin.  The probabilistic technique and our previous
research on probabilistic partial values [26] will be used to deal with value conflicts in
data integration.

Definition 2: A probabilistic partial value, denoted u u ux x
m
xm

1 2
1 2, , , ,L[ ]  is a set of possible

values with a probability assigned to each possible value, in which exactly one possible
value is the true value, where {u1, u2, ..., um} is the set of possible values, xi is the associated
probability of ui and i

m
ix=∑ =1 1.

Note that a definite value, say v, can be expressed as a probabilistic partial value [v1].
Two values are equal only when they have the same definite data value.  The data integra-
tion operator, denoted as , is defined as follows.

Definition 3: Let a and b be two values to be integrated.  a  b is defined as follows:

∑ Case 1: a and b are equal
a   b ∫ a.

∑ Case 2: a and b are unequal
1. a or b is a null value:

a  ~ ∫ a,

b  ~ ∫ b,

~  ~ ∫ ~.
2. a and b are both non-null values:

Assume a and b are u u ux x
m
xm

1 2
1 2, , ,L[ ]   and v v vy y

n
yn

1 2
1 2, , ,L[ ], respectively.  Let r1

and r2 be the reliabilities of u u ux x
m
xm

1 2
1 2, , ,L[ ] and v v vy y

n
yn

1 2
1 2, , ,L[ ], respectively,

and r1 + r2 = 1:

a  b ∫

w u u a b u k r x r y

w u u a w u b u k r x

w

k
i
x

j

y

i
x

j
y

i j i j

k
i
x

i
x

i j
y

j
y

i j i

k

i j i i

i i i i

|( )( )( ( ))

|( )( ( ) ( ) )

|(

∃ ∃ ∈ ∧ ∈ ∧ = = ∧ = × + ×{ }
∃ ∈ ∧ = ∧ = ∈ ∧ = ∧ = ×{ }
∃

υ υ ω υ

υ υ υ

1 2

1

U

U   

υυ υ υ υj

y

j

y

j i
x

i
x

j i j
j j i ib w u u a u k r y)( ( )( ) ) .∈ ∧ = ∧ ∈ ∧ = ∧ = ×{ }   2

E

E
.....
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Note that if both a and b are definite values, then a  b is [ar1, br2].  For the sake of

simplicity, we assume r r1 2

1

2
= =  in the following discussion.

The data integration operator is not the only operator which can be used to resolve
value conflicts.  However, we believe that a notation with quantitative probabilities is more
informative than one with just a single value [10, 20].

Let PNO
S

PNO
S← →  →, , and PNO

s←  represent the operators (full) partial natural
outerjoin, left partial natural outerjoin, and right partial natural outerjoin, respectively,
where the symbol “S” denotes a subset of the common attributes of the participant relations.
Because tuples from different databases, which represent the same real-world entity, may
have different values for their common attributes, the traditional natural outerjoin may fail
to join these tuples to form a single tuple as illustrated in section 2.2.  The  partial natural
outerjoin is developed to allow the user to explicitly specify partial common attributes as
the outerjoin attributes represented by S.  We call the attribute in S an identifying attribute.
In  the partial natural outerjoin operation, two tuples with the same value for each identify-
ing attribute are considered to represent the same real-world entity and are joined.  In other
words, we assume that if an attribute is specified as an identifying attribute, then there is no
data inconsistency in the values of the attribute.  As for those common attributes not in S,
they may have inconsistent data in the participant relations, and the data integration opera-
tor can be used to integrate inconsistent data using the technique of  probabilistic partial
values.

The partial natural outerjoin is defined as follows.  An attribute attr is called a pri-
vate attribute for relation Ri, where i = 1, 2, if attr appears in Ri and is not common to any
attribute of the other relation.  For relations R1 and R2, assume

S is the set of identifying attributes a1, a2, ..., and ak;
Sc' is the set of common but not identifying attributes c1, c2, ..., and cj;
Sp1 is the set of private attributes x1, x2, ..., and xu for R1;
Sp2 is the set of private attributes y1, y2, ..., and yv for R2.

The partial natural outerjoin of R1 and R2 produces a relation with scheme (S, Sc', Sp1, Sp2).
Let t1 and t2 be two tuples in R1 and R2, respectively.  The function PS(t1, t2) is defined as

P t t
true t a t a a S

falses
i i i( , )

.
1 2

1 2=
⋅ = ⋅




if  for each attribute  in 

otherwise
 

Definition 4: The partial natural join of R1 and R2, denoted as R
PNJ

RS1 2 , is defined as

t t t t R t R Ps t t true

t a t a a S

t c t c t c c S

t x t x x S

t y t y y S

i i i

i i i i c

i i i p

i i i p

| )( )( ( , ) " "

( , )

( , )

( , )

( ,

∃ ∃ ∈ ∧ ∈ ∧ = ∧{
⋅ = ⋅ ∈ ∧
⋅ = ⋅ ⋅ ∈ ∧
⋅ = ⋅ ∈ ∧

⋅ = ⋅ ∈

′

1 2 1 1 2 2 1 2

1

1 2

1 1

2

    

22 ))}

R
PNJ

RS1 2

R
PNJ

RS1 2  represents the result of integrating the  tuples in R1 and R2, which have the same
value for each identifying attribute.
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Let R1 and R2 be the sets of extended unmatched tuples in R1 and R2, respectively,
with respect to the partial natural join of R1 and R2:

R t t t R t t R P t t true

t a t a a S

t c t c c S

t x t x x S

t y y S

s

i i i

i i i c

i i i p

i i p

1 1 1 1 2 2 2 1 2

1

1

1 1

2

≡ ∃ ∈ ∧ ∃ ∈ ∧ = ∧
⋅ = ⋅ ∈ ∧
⋅ = ⋅ ∈ ∧
⋅ = ⋅ ∈ ∧

⋅ = ∈

′

{ | )( ( )( ( , ) “ ”)

( , )

( , )

( , )

( “~”, ))}

 

 

 

 

and

R t t t R t t R P t t true

t a t a a S

t c t c c S

t x x S

t y t y y S

s

i i i

i i i c

i i p

i i i p

2 2 2 2 1 1 1 1 2

2

2

1

2 2

≡ ∃ ∈ ∧ ∃ ∈ ∧ = ∧
⋅ = ⋅ ∈ ∧
⋅ = ⋅ ∈ ∧
⋅ = ∈ ∧

⋅ = ⋅ ∈

′

{ | )( ( )( ( , ) “ ”)

( , )

( , )

( “~”, )

( ,

 

 

 

 ))}.))}.

Definition 5: The  partial natural outerjoin of R1 and R2 is defined as

R RPNO
s1 2← → = R

PNJ
RS1 2  » R1

 » R2
.

The left partial natural outerjoin and right partial natural outerjoin are defined as

R RPNO
s1 2←  = R

PNJ
RS1 2  » R2 » R1

.
and

R RPNO
s1 2 → = R

PNJ
RS1 2  » R2 » R2

,

respectively.
The result of performing  partial natural outerjoins may contain probabilistic partial

values.  In [26], we developed a set of extended relational operators for manipulating rela-
tions containing probabilistic partial values.  The partial natural outerjoin operators and the
previously proposed extended relational operators can be combined to support a more pow-
erful set of operations for use in a multidatabase system.

3.2 Examples

The partial natural outerjoin is useful for the schema integrator to define desirable
views.  Consider Example 1 again.  We replace relation R2 with R'2 as shown in Fig. 6 for the
purpose of discussion.  View V1 can be defined as ( ){ #} { #}R R RPNO

E
PNO

E1 2 3← → ′ ← →  whose
result is shown in Fig. 8.  It can be seen that the result shown in Fig. 8 is more desirable than
that shown in Fig. 7.  In other words, the problems caused by inconsistent data and null
values have been resolved by partial natural outerjoins.
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Consider the following case for Example 2.  Assume the tuples (E10,Peter, D1) and
(E80, Jack, 20) are inserted into relations R5 and R6 shown in Fig. 3, respectively.  View V2

can be defined as ( ){ #} { #}R R RPNO
E

PNO
E4 5 6← → ← → , whose result is shown in Fig. 9.  It can

be seen that the result shown in Fig. 9 is more desirable than that shown in Fig. 5 since each
employee is represented by a single tuple in Fig. 9.  In section 2.1, we found that for Ex-
ample 2, whether or not the result of natural outerjoins is desirable is data dependent.  Now
by means of partial natural outerjoins, the problem caused by data dependency can be
resolved.

Fig. 8. The result of ( ){ #} { #}R R RPNO
E

PNO
E1 2 3← → ′ ← → .

Fig. 9. The result of ( ){ #} { #}R R RPNO
E

PNO
E4 5 6← → ← → .

Consider another example.  Assume that relation Teacher(id, name, specialty, age)
in one database records the data of teachers at X University, and that relation Consultant
(id, name, specialty, age, degree) in another database records the data of consultants at Y
Company. The key attributes id in Teacher represent the identification number for teach-
ers while that in Consultant represents the identification number for consultants.  Obviously,
the keys in Teacher and Consultant are incompatible.  If the schema integrator wants to
build a view called Teacher_Consultant, which represents the persons who teach at X
University and consult at Y Company, then the identifying attributes can be used to iden-
tify the same persons. Assume attributes name and specialty are identifying attributes.  The
schema integrator can define view Teacher_Consultant as Teacher PNJ { name, specialty}

Consultant.  That is, if two tuples from Teacher and Consultant have the same values for
attributes name and specialty, then they are considered to represent the same person.  The
handling of  incompatible keys was described in [25].

4. OPTIMIZING PARTIAL NATURAL OUTERJOINS BY MEANS OF
ALGEBRAIC QUERY TRANSFORMATION

Assume the execution order of  partial natural outerjoins has been determined by the
schema integrator.  In query processing, a global query is first modified to obtain a query
which only refers to local relations based on the definition of the global view.  Then, the
modified query is decomposed into subqueries to be executed in local databases.  To en-
hance readability, we will relegate basic rules  (B1), (B2), ..., and (B13) to Appendix A.
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Based on these basic rules, we propose a set of equivalence transformation rules for opti-
mizing queries involving partial natural outerjoins in sections 4.1, 4.2 and 4.3.  The nota-
tions used in the following discussion are described in Table 1.  We assume relations R1, R2,
and R3 reside at different sites.

Let p be a selection predicate of the form “attr op C.”  attr denotes an attribute, op is
an operator, such as “>,” “<“ or “=,” and C is a constant.  The associated attribute of p is
defined as the “attr” component.  Let ai be the associated attribute of p.  Note that R1

and
R2

 represent the sets of extended  unmatched tuples in R1 and R2 with respect to the opera-

tion R
PNJ

Rs1 2 , respectively, as defined in section 3.1.

Based on the fact that the execution cost of R
PNJ

Rs1 2  is less than that of

R RPNO
S1 2 →  and that of R RPNO

S1 2←  , that the execution costs of R RPNO
S1 2 →  and

R RPNO
S1 2←   are less than that of R RPNO

s1 2← → , and that the execution cost of

R RSJ
2 1 →  is less than that of R

PNJ
Rs1 2 , we will discuss the algebraic query transfor-

mation rules in the following section for query optimization.  Note that R RSJ
2 1 →  repre-

sents a semijoin from R2 to R1 on S.

4.1 Simplification of Partial Natural Outerjoins Followed by Selections

Assume the operators have the following precedence order: selection, partial natural
(outer)join, and union.  Two cases will be considered for simplifying partial natural outerjoins
followed by selections.

case 1: ai Œ P1

∑ Rule (1.1): σ σp
PNO

S p
PNO

SR R R R( ) ( )1 2 1 2 → =  →  
  Proof.

σ σ

σ σ σ

σ σ

σ σ

σ

p
PNO

S p
S

p
S

p p

p
S

p

p S p

p

R R R
PNJ

R R R

R
PNJ

R R R

R
PNJ

R R

R
PNJ

R R

R
PNJ

( ) ( ),

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(

1 2 1 2 1 2

1 2 1 2

1 2 1

1 2 1

1

← → =

=

=

=

U U

U U

U

U

by definition

= ,  by distributive law

,  by 

,  by 

B1

B2

SS p

p
PNO

S

R R

R R

2 1

1

) ( ) ( )

( )

U σ

σ

,  by 

,  by definition2

B3

=  → o

Table 1. The notations.
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∑ Rule (1.2): σ σp
PNO

S p
PNO

SR R R R( ) ( )1 2 1 2 → =  →  

  Proof. The proof is similar to thhat of Rule (1.1). o

∑ Rule (1.3):σ σp
PNO

S p SR R R PNJ R( ) ( )1 2 1 2←  =  

  Proof. The proof is similar to that of Rule (1.1). o

For the case where ai Œ P2, similar rules can be derived.

case 2: ai Œ S

∑ Rule (2.1):σ σ σp
PNO

S p
PNO

S pR R R R( ) ( ) ( )1 2 1 2← → = ← →  
Proof.

=

← →

σ σ σ

σ σ σ σ

σ σ σ σ

σ σ

p S p p

p S p p p

p S p p p

p
PNO

S p

R
PNJ

R R R

R
PNJ

R R R

R
PNJ

R R R

R R

( ) ( ) ( )

) ( ) ( ) ( ),

) ( ) ( ),

) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2

U U

U U

U

,  by distributive  law

= ( by 

= ( by 

= ( ,  by definition

(B4)

(B5) (B6)

σ σp
PNO

S p SR R R
PNJ

R R R( ) ( )1 2 1 2 1 2
← → = U U by definition

) (U

,

o
∑ Rule (2.2):σ σ σp

PNO
S p

PNO
S pR R R R( ) ( ) ( )1 2 1 2 → =  →  

   Proof. The proof is similar to that of Rule (2.1). o

∑ Rule (2.2):σ σ σp
PNO

S p
PNO

S pR R R R( ) ( ) ( )1 2 1 2←  = ←   
   Proof. The proof is similar to that of Rule (2.1). o

4. 2 Simplification of Partial Natural Outerjoins Followed by Projections

In the following, three cases will be considered for simplifying partial natural outerjoins
followed by projections.  Let Q be the set of attributes to be projected.  Assume that null
tuples are discarded, and that duplicate tuples are not allowed in a relation.

case 1: Q Õ P1

∑ Rule (3.1):π πQ
PNO

s QR R R( )1 2 1← → =  
   Proof.

π π

π π π

π π

π π

π
π

Q
PNO

S Q S

Q S Q Q

Q S Q

Q Q

Q

Q

R R R
PNJ

R R R

R
PNJ

R R R

R
PNJ

R R

R R

R R

R

( ) ( )

( ) ( ) ( )

( ) ( )

ˆ ~
,

( ˆ ~
)

1 2 1 2 1 2

1 2 1 2

1 2 1

1 1

1 1

← → =

=

=

=

=

U U

U U

U

U

U

,  by definition

= ,  by distributive law

by

by 

 (B9)

(B7) (B8)

11,  by definition

,
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∑ Rule (3.2): π πQ
PNO

S QR R R( )1 2 1 → =  
   Proof. The proof is similar to that of Rule (3.1). o

∑ Rule (3.3): π πQ
PNO

S Q
SJ

SR R R R( ) ( )1 2 2 1←  =  →   
   Proof. The proof is similar to that of Rule (3.1). o

For the case where Q Õ P2, similar rules can be derived.

case 1: Q Õ S

∑ Rule (4.1):π π πQ
PNO

S Q QR R R R( ) ( ) ( )1 2 1 2← → = U  
   Proof.

π π

π π π
π π π π

π π

Q
PNO

S Q S

Q S Q Q

Q Q Q

Q

R R R
PNJ

R R R

R
PNJ

R R R

R R R R

R R

( ) (

(

)

( ) ( ) ( )
ˆ ) ˆ ) ( ) ( ),

ˆ ˆ

1 2 1 2 1 2

1 2 1 2

1 2 1 2

1 2

← → =

=

=

U U

U U

U U U

,  by definition

,  by distributive law

= ( by 

           (Note: 

Q

Q

(B10)

==

=

( ˆ ) ( ˆ ))

( ˆ ) ( ˆ ) (
~

) (
~

),

) ( )

π π

π π π π

π π

Q Q

Q Q Q Q

Q Q

R R

R R R R

R R

1 2

1 2 1 2

1 2

U

U U U

U

 by 

,  by definition

(B11) (B12)

= (

∑ Rule (4.2): π πQ
PNO

S QR R R( )1 2 1 → =
   Proof. The proof is similar to that of Rule (4.1). o

∑ Rule (4.3):π πQ
PNO

S QR R R( )1 2 2←  =  
   Proof. The proof is similar to that of Rule (4.1). o

case 3: S1 Õ P1, S2 Õ S, and Q = S1 » S2

∑ Rule (5.1): π πQ
PNO

S QR R R( )1 2 1 → =  
   Proof. The rule can be derived from Rule (3.2) and Rule (4.2). o

For the case where S1 Õ P2, S2 Õ S, and Q = S1 » S2 , the corresponding rule can be derived.

4.3 Simplification of Multiple Partial Natural Outerjoins

In the following, cases for simplifying multiple partial natural outerjoins will be
considered.

case 1: B « P2  π f
∑ Rule (6.1): ( ) ( )R R R R R RPNO

S
PNO

B
PNO

S
PNO

B1 2 3 1 2 3← → ←  = ←  ← 
   Proof.
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( ) ( )

(( ) )

(( ) ) ( )

R R R R
PNJ

R R R R

R
PNJ

R R R
PNJ

R R

R
PNJ

R
PNJ

R R
PNJ

R R
PNJ

R R

R

PNO
S

PNO
B S

PNO
B

S B

S B B B

1 2 3 1 2 1 2 3

1 2 1 2 3 3

1 2 3 1 3 2 3 3

← → ←  = ← 

=

=

U U

U U U

U U

,  by definition

,  by definition

,  
   by  distributive law

= (( 11 2 3 2 3 3

1 2 2 3 3

1 2 3 3

1 2 3

PNJ
R

PNJ
R R

PNJ
R R

R
PNJ

R R
PNJ

R R

R R
PNJ

R R

R R
PNO

R

S B B

S B

PNO
S B

PNO
S B

) ) ( ) ,

) )

( )

)

U

) (U

U

U U

U

 by 

= ((

,  by definition

= ( ,  by definition

(B13)

= ← 

← 
o

∑ Rule (6.2):( ( )R R R R
PNJ

R RPNO
S B S

PNO
B1 2 3 1 2 3 → PNO← = ← )  

   Proof. The proof is similar to that of Rule (6.1) o

∑ Rule (6.3): ( ) ( )R R PNJ
R R R

PNJ
R

PNO
S B

PNO
S B1 2 3 1 2 3

← → = ← 
   Proof. The proof is similar to that of Rule (6.1) o

∑ Rule (6.4):( ) ( )R R
PNJ

R R
PNJ

R
PNJ

R
PNO

S B S B1 2 3 1 2 3
 → =  

   Proof. The proof is similar to that of Rule (6.1) o

For the case where B « P1  π f , similar rules can be derived.

4.4 An Example

The rules proposed in this paper can be used to simplify query processing using the
procedure shown in Fig. 10.  Consider the following relations:

Procedure P
Step 1: If the query involves multiple partial natural outerjoins,  simplify the

query by rules in section 4.3.
Step 2: If the query involves selections, simplify the query by rules in section

4.1, and basic rules (B2) and (B4).
Step 3: If the query involves projections, simplify the query by rules in sec-

tion 4.2, and basic rules (B7) and (B10).

Fig. 10. The procedure for simplifying queries involving partial natural outerjoins.

R1(E#, project, degree),
R2(E#, Ename, project),
R3(Ename, address, age),
R4(project, manager).

Assume the schema integrator defines a view V as
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(( ) ){ #} { } { }R R R
PNJPNO

E
PNO

Ename project1 2 3← → ←  R4, Consider a query sdegree=PhD(V).  The

query is processed by procedure P as follows:

σ

σ

σ

σ

degree

degree

degree

degree

=

=

=

=

= ← → ← 

 → ← →

← →

PhD

PhD
PNO

E
PNO

Ename project

PhD
PNO

Ename
PNO

E project

PhD Ename
PNO

E

V

R R R
PNJ

R

R R R
PNJ

R

R
PNJ

R

( )

((( ) ) )

(( ( )) )

(( (

{ #} { } { }

{ } { #} { }

{ } {

1 2 3 4

3 1 2 4

3 1

,  by view definition

= ,  by rearrangement

= ##} { }

{ #} { } { }

deg { #} { } { }

{ #}

)) )

((( ) ) ),

((( ) ) ),

(( )

R
PNJ

R

R R
PNJ

R
PNJ

R

R R
PNJ

R
PNJ

R

R R
PNJ

project

PhD
PNO

E Ename project

ree PhD
PNO

E Ename project

PhD
PNO

E

2 4

1 2 3 4

1 2 3 4

1 2

,  by rule 

 by rearrangement

= by rule 

(6.4)

(6.3)

=

= ((

σ

σ

σ

degree

degree

=

=

=

← →

← 

←  {{ } { }

{ #} { } { }

deg { #} { } { }

)) ),

(( )) ) ),

) ) ) ),
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PhD
PNO

E Ename project

ree PhD E Ename project

R
PNJ

R

R R
PNJ

R
PNJ

R

R
PNJ

R
PNJ

R
PNJ

R

3 4

1 2 3 4

1 2 3 4

by basic rule 

by basic rule 

by rule 

(B2)

(B2)

(1.3).

= (((

= ((((

σ

σ

degree =

=

← 

The resultant query is one with a lower processing cost.

5. DISCUSSION AND FUTURE WORK

The contributions of this paper are summarized in the following:

1. The effect of the  execution order on the resultant semantics of traditional natural outerjoins
has been discussed.  Theorem 1 has been proposed to help the user specify the execu-
tion order of natural outerjoins in order to obtain a desirable result.

2. We find that the  traditional natural outerjoin cannot be directly applied to schema inte-
gration when null values and inconsistent data are considered in a multidatabase
environment.  An extension of the traditional natural outerjoin, called the partial natu-
ral outerjoin, has been proposed to handle this case.  In the partial natural outerjoin
operation, we use probabilistic partial values to resolve value conflicts.  Of course, this
is not the only possible method for resolving this problem.  However, we believe that a
notation with quantitative probabilities is more informative than one with only a single
value based on traditional aggregate functions [10, 20].  Moreover, for non-numerical
value conflicts, traditional aggregate functions, such as “average,” “maximum” etc., are
unable to deal with this case while the approach with  probabilistic partial values still
works well.

3. A set of  equivalence transformation rules has been developed for optimizing queries
involving partial natural outerjoins.  The transformation rules transform a query into
one with simpler operations, which lowers the query processing cost.  We have also
discussed the cases in which the selection and projection operations can be executed at



PAURAY S. M. TSAI AND ARBEE L. P. CHEN610

local sites without affecting the correctness of the query result, and we have provided
the corresponding transformation rules for these cases.  Moreover, the semijoin tech-
nique has been applied in query processing.  Therefore, the cost of data transmission for
processing a query can be reduced, especially in a wide area network environment.

In addition to simplification, the reordering of operations is considered to be an im-
portant technique for query optimization.  However, reordering is difficult to use in ap-
proaches that use probabilistic partial values or aggregate functions to resolve value con-
flicts in a multidatabase environment.  Consider the relations shown in Fig. 11 and the
following two cases:

Fig. 11. Example relations.

Fig. 12. The results of ( ){ #} { #}R R RPNO
E

PNO
E1 2 3← → ← →  and

∑ Case 1: Partial natural outerjoins ( ){ #} { #}R R RPNO
E

PNO
E1 2 3← → ← → are used to combine

the information for employee “E10” in R1, R2 and R3.
( ){ #} { #}R R RPNO

E
PNO

E1 2 3← → ← → will produce a single tuple for “E10.”  Another execu-
tion order R R RPNO

E
PNO

E1 2 3← → ← →{ #} { #}( ) produces a single tuple for “E10” as well.
H o w e v e r ,  ( ){ #} { #}R R RPNO

E
PNO

E1 2 3← → ← →  i s  n o t  e q u i v a l e n t  t o
R R RPNO

E
PNO

E1 2 3← → ← →{ #} { #}( ) as shown in Fig. 12.  This is because the data integra-
tion operator  is not associative.

R R RPNO
E

PNO
E1 2 3← → ← →{ #} { #}( )

∑ Case 2: The Generalized Attribute Derivation (GAD) operation \cite{lim} is used to

integrate relations R1, R2 and R3.
In this case, an attribute derivation function, say Fsalary, is used in the GAD operation to

integrate the values of attribute salary in R1, R2 and R3, where F x y
x y

salary ( , )
( )= +

2
.  If R1

and R2 are first integrated into a temporary relation, then the value of salary for “E10” is
110.  Then the temporary relation and R3 are integrated, and the final value of salary for
integrated tuple “E10” is 105.  On the other hand, if R2 and R3 are first integrated into a
temporary relation, then the value of salary for “E10” is 100.  Then R1 and the temporary
relation are integrated, and the final value of salary for integrated tuple “E10” is 110.
These two orders for integrating relations R1, R2 and R3 produce different results since
the attribute derivation function Fsalary is not associative.

From the above discussion, we find that reordering is difficult in approaches that use proba-
bilistic partial values or aggregate functions.  However, this problem is both interesting and
important, and deserves further research.
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Another important issue in future research is semantics analysis of identifying at-
tributes in multiple partial natural outerjoins.  For example, consider relations R1(E#,
nickname, address), R2(E#, Ename,age) and R3(Ename, nickname, phone) shown in Fig.
13, which record information about employees at a company participating in projects A, B
and C, respectively.  The key attributes for R1, R2, and R3 are {E#}, { E#}, and Ename,
nickname, respectively.  We assume that the single attribute E# and the attributes {Ename
and nickname} can be used to uniquely identify an employee in the company.  Suppose R1,
R2, and R3 are integrated as a view V(E#, Ename, nickname, address, age,phone), which
contains information about employees participating in project A, B, or C.  Intuitively, view
V can be materialized by means of partial natural outerjoins over R1, R2, and R3.  The sets of
possible identifying attributes for the pairs <R1, R2>, <R2, R3>, and <R1, R3> are {E#},
{ Ename}, and {nickname}, respectively.  There are three possible ways to execute the
p a r t i a l  n a t u r a l  o u t e r j o i n s :  ( ) ,{ #} { , }R R RPNO

E
PNO

Ename nickkname1 2 3← → ← →
( ) ,{ } { #}R R RPNO

Ename
PNO

E2 3 1← → ← → and ( ){ } { #}R R RPNO
nickname

PNO
E1 3 2← → ← → .  The re-

s u l t s  a r e  s h o w n  i n  F i g .  1 4 .   I t  c a n  b e  s e e n  t h a t  t h e  r e s u l t  o f
( ){ #} { , }R R RPNO

E
PNO

Ename nickname1 2 3← → ← →   is desirable since the information for each em-
ployee is integrated into a single tuple.  The result of ( ){ } { #}R R RPNO

Ename
PNO

E2 3 1← → ← →
is undesirable because employees “E50” and “E60” are both represented by two tuples in
the result.  We also find that the second and third tuples in the result have incorrect nick-
name and phone values for “E50” and “E60,” respectively.  This is because Ename is not a
key, which causes the result of R RPNO

Ename2 3← → { }  to contain erroneous data.  Similarly,
the result of ( ){ } { #}R R RPNO

nickname
PNO

E1 3 2← → ← →  is also undesirable.  Therefore, the par-
tial natural outerjoin with the key attributes as the identifying attributes should be per-
formed first.  The analysis helps the user specify the execution order of partial natural
outerjoins.  Moreover, the assignment of reliabilities used in the data integration operator
deserves further research.  Finally, efficient implementations of partial natural outerjoins
on a multidatabase system and equivalence transformation rules for a query optimizer are
also important issues for future research.

Fig. 13. The relations R1, R2, and R3.

APPENDIX A: BASIC RULES

Let ai be the associated attribute of selection predicate p.  Consider the following two
cases with respect to the selection.
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case 1: ai Œ P1

∑ Basic rule (B1): sp( R2
)= f

Proof. Since ai is a private attribute of R1, the tuples in R2
have null ai values which

cannot satisfy predicate p. o

∑ Basic rule (B2):σ σp S p SR
PNJ

R R
PNJ

R( ) ( )1 2 1 2=  
Proof. Since ai is a private attribute of R1, selection predicate p can be locally
performed on R1 before the partial natural join is executed, which reduces the size
of R1 to be transmitted to the site of R2. o

∑ Basic rule (B3): σ σp pR R1 1= , where σ p R1  represents the set of extended un-

matched tuples in spR1 with respect to ( )σ p SR
PNJ

R1 2
.

Proof. Let r1 be the set of tuples which do not satisfy p in the result of  R
PNJ

RS1 2

and let r2 be the set of tuples which do not satisfy p in R1
.  The set of tuples

representing the real-world entities which do not appear in the result of sp

(R
PNJ

RS1 2
) in R1 is

U1 = r1 » r2 » (spR1
).

 r2 » (spR1
) is the set of tuples in R1

.  Moreover, the set of tuples representing the

real-world entities which do not appear in the result of  ( )σ p SR
PNJ

R1 2, in R1, is

U2 = σ σp pR R1 1=

Fig. 14. The results of different execution orders for performing partial natural outerjoins over R1, R2

and R3.
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r1 » r2 is the set of tuples representing the real-world entities which do not satisfy
predicate p, in R1.  By rule (B2), U1 must equal U2.  Therefore, σ σp pR R1 1= . o

For the case where ai Œ P2, similar rules can be derived.

case 1: ai Œ S
∑ Basic rule (B4): σ σ σp S p S p

R
PNJ

R R
PNJ

R( ) ( ) ( )1 2 1 2=
Proof. Since ai is a private attribute, the tuples of R1 and R2 which can be joined
must have the same ai values.  Therefore, selection predicate p can be locally per-
formed on R1 and R2 before the partial natural join is executed, which reduces the
sizes of R1 and R2. o

Note that if ai Œ Sc', then rule (B4) does not apply.  For example, consider the query

σ D D ER
PNJ

R# { #}( )= ′10 1 2
, where relations R1 and R'2 are shown in Fig. 1 and Fig. 6,

respectively.  The query result of σ D D ER
PNJ

R# { #}( )= ′10 1 2
 is (E100,John,D10) while

that obtained by executing the modified query  is empty.  Therefore, the modified

query ( ) ( )
# { #} #σ σ

D D E D DR
PNJ

R= = ′10 1 10 2
 is not equivalent to the original one.  This is

because the tuple (E100,John,~) in R'2 is eliminated by the subquery ( )#σ D D R= ′10 2 ,
which causes the information about employee E100 to be lost.

∑ Basic rule (B5): σ σp pR R1 1=
Proof. The proof is similar to that of rule (B3). o

∑ Basic rule (B6): σ σp pR R2 2= , where σ p R2  represents the set of extended un-

matched tuples in spR2 with respect to R
PNJ

RS p1 2( )σ .

Proof. The proof is similar to that of rule (B3). o

Let Q be the set of attributes to be projected.  Assume that null tuples are discarded,
and that duplicate tuples are not allowed in a relation.  Consider the following two
cases with respect to the projection.

case 1: Q Õ P1

Let R̂1
 be the set of tuples in R1 which match the tuples of R2 with respect to the operation

R
PNJ

RS1 2
 and ~R1

 be R R1 1− ˆ .   R̂2
 and ~R2

 are defined similarly.  The operation R RSJ
S2 1 →

is a semijoin from R2 to R1 on  S, which can be implemented by projecting R2 on all the
attributes in S, shipping the projection to the site where R1 is located and performing a
natural join with R1.

∑ Basic rule (B7): π π πQ S Q Q
SJ

SR
PNJ

R R R R( ) ˆ ( )1 2 1 2 1= = →
Proof. Since all the attributes to be projected are private attributes of R1, and since

the unmatched tuples of R1 are not preserved, the operation π Q SR
PNJ

R( )1 2
 can

be reduced to π Q R̂1. Moreover R̂1
,  can be obtained by  R RSJ

S2 1 → . o
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∑ Basic rule (B8): π πQ QR R1 1= ~

Proof. Since all the attributes to be projected are private attributes of R1, the private
attributes of R2 in R1

 can be ignored.

∑ Basic rule (B9): π φQ R2 =
Proof. Since the unmatched tuples of R2 are preserved with null values in the pri-

vate attributes of R1, π Q R2  is empty. o

For the case where Q Õ P2, similar rules can be derived.

case 2: Q Õ S

∑ Basic rule (B10): π π πQ S Q Q
SJ

SR PNJ
R R R R( ) ˆ ( )1 2 1 2 1= =  →

= =  →π πQ Q
SJ

SR R Rˆ ( )2 1 2

 Proof. Since all the attributes to be projected are identifying attributes in S, the

operation π Q SR
PNJ

R( )1 2  can be reduced to π Q R̂1or π Q R̂2 .  Moreover, ̂R1
 and R̂2

can be obtained by R RSJ
S2 1 →  and R RSJ

S1 2 → , respectively, according to the
definition.

o

Note that if Q ScI ′ ≠ φ , then rule (B10) does not apply.  For example, consider the

query, π E D ER
PNJ

R#, # { #}( )1 2′  where R1 and R'2 are shown in Fig. 1 and Fig. 6,

respectively.  The query result of π E D ER
PNJ

R#, # { #}( )1 2′  is not equivalent to that of

the modified query π E D
SJ

ER R#, # { #}( )′  →2 1  or π E D
SJ

ER R#, # { #}( )1 2 → ′  as shown
in Fig. 15.  The reason is that the tuples representing the same employee may have
different D# values which cannot be integrated in the processing step for the modi-
fied query.

o

∑ Basic rule (B11):π πQ QR R1 1= ~
 

Proof. Since all the attributes to be projected are identifying attributes in S, the
private attributes of R2 in R1

can be ignored. o

∑ Basic rule (B12): π πQ QR R2 2= ~

Fig. 15. The results of and π πE D E E D
SJ

ER
PNJ

R R R#, # ( #} #, # { #}( ), ( )1 2 2 1′ ′  →
and π E D

SJ
ER R#, # { #}( )1 2 → ′ .
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Proof. The proof is similar to that of rule (B11). o

We consider the case with more than one partial natural outerjoin in the following:

∑ Basic rule (B13): If   B P R
PNJ

RBI 2 1 3≠ =φ φ,
Proof. Since there is at least one private attribute of R2 in B, and since the un-
matched tuples of R1 are preserved with null values in the private attributes of R2,
the tuples in R1

do not match any tuple in R3. o

Similarly, if B P R
PNJ

RBI 1 2 3≠ =φ φ, .
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