780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. IS, NO. 6. JUNE 1989

Partition Strategy for Distributed Query Processing
in Fast Local Networks

CLEMENT T. YU, KEH-CHANG GUH, MEMBER, IEEE, DAVID BRILL,
aND ARBEE L. P. CHEN, MEMBER, IEEE

Abstract—A partition and replicate strategy for processing distrib-
uted queries referencing no fragmented relation is sketched. An algo-
rithm is given to determine which relation and which copy of the re-
lation is to be partitioned into fragments, how the relation is to be
partitioned and where the fragments are to be sent for processing. Sim-
ulation results show that the partition strategy is useful for processing
queries in fast local network environments. The results also show that
the number of partitions does not need to be large. The use of semi-
joins in the partition strategy is discussed. A necessary and sufficient
condition for a semijoin to yield an improvement is provided.

Index Terms—Distributed database, fast local network, partition and
replicate, query optimization, relational database.

I. INTRODUCTION

ISTRIBUTED query processing is an important fac-

tor in the overall performance of a distributed data-
base system. Surveys on distributed query optimization
have been given in [22], [42]. Many distributed query
processing algorithms [1]-[4], [6], [81-[17], [19]-[21],
[24], 126], {38]-[41], [43], [47], [49]-[51] have been
proposed. Most of these algorithms assume that the data
communication cost is dominant in long-haul networks
where data communication costs are high and make use
of semijoins to reduce the amount of data transfer. While
such an assumption is reasonable for long-haul networks,
it may not be valid for fast local networks. In contrast,
the “‘fragment and replicate’’ query processing strategy
was used in distributed Ingres [17]. The strategy requires
that a relation to be fragmented and placed in a number
of sites, while other relations are replicated at the sites of
the fragmented relation. The user query is decomposed
into the same number of subqueries and each subquery is
processed at one of these sites. Its main feature is to have
parallel processing at the different sites to improve re-
sponse time. Several other algorithms also take advantage
of fragmentation to process queries [18], [31], [34], [46],
[48].

Manuscript received September 4, 1987; revised January 10, 1989.

C. T. Yu is with the Department of Electrical Engineering and Com-
puter Science, University of Illinois at Chicago, Chicago, IL 60680.

K. C. Guh is with the Department of Electrical Engineering and Com-
puter Science, University of Wisconsin—Milwaukee, Milwaukee, WI
53201.

D. Brill is with Information Science Institute, University of Southern
California, Marina del Rey, CA 90292.

A. L. P. Chen is with Bell Communications Research, 444 Hoes Lane,
Piscataway, NJ 08854.

IEEE Log Number 8927389.

A performance analysis for the semijoin algorithm [44]
and the replicate algorithm [46] was done by [7], [36]. It
was found that the replicate algorithm outperforms the
semijoin algorithm in a fast local network environment.
Although one algorithm may not outperform the other al-
gorithm in all local networks, it is of interest to investi-
gate further the usefulness of the fragment and replicate
algorithm. In this paper, we concentrate on the situation
where a query references several relations, but none of
the relations is fragmented. In order to use the fragment
and replicate algorithm, it is necessary to decide the re-
lation and its copy (if multiple copies exist) to be parti-
tioned into fragments, how the relation is to be partitioned
and where the fragments are to be sent for processing [45].
This is the subject of this paper.

Relation partitioning has been used as a strategy for data
allocation [32], [39], or dynamic query processing [17],
[33], [45], to achieve a high degree of parallelism among
processing units and to improve response time. In [33],
two relations are dynamically partitioned into fragments
for natural join. Complete processing of a query referenc-
ing more than two relations may need the replication of
all other referenced relations in all processors or repeated
partitioning of the relations. In [17], one of the relations
referenced by a query is partitioned into equal-sized frag-
ments, each fragment is sent to a computer processor, and
all other relations are replicated in all computer proces-
sors. Since different computer processors may have dif-
ferent processing speeds and/or different access methods
for accessing required data, equal-sized fragments may
not balance the load of computer processors. This is con-
sidered in [45] to partition a relation into unequal-sized
fragments for load balancing. However, in [45], a partic-
ular set of cost functions is used to develop the partition
strategy. In this paper, we generalize the partition strat-
egy for more general cost functions. Sensitivity analyses
are provided to show the feasibility of the strategy in fast
local networks. Furthermore, a necessary and sufficient
condition for a semijoin to be capable of reducing re-
sponse time when used in conjunction with the partition
algorithm is given.

The organization of this paper is as follows. In Section
11, the partition problem is described. The general parti-
tion strategy is given in Section III. In Section IV, the
complexity of the partition strategy is discussed. In Sec-

0098-5589/89/0600-0780$01.00 © 1989 IEEE

YU er al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

tion V, sensitivity analyses are given and discussed. We
then give a necessary and sufficient condition for using a
semijoin in partition strategy in Section VI. The conclu-
sion is given in Section VII.

II. PARTITION PROBLEM

Before we describe the partition problem, an example
is given to illustrate how a fragment and replicate strategy
achieves parallel processing and improves response time.

Example 2.1: Let a query reference two relations R,
and R,, which are both fragmented at sites S, and S, as
shown below. Fj; is the fragment of R; at site j. For sim-
plicity, we assume that both sites have equal processing
speeds.

Distribution of Relations for Example 2.1

Relation Total Tuples S, M
R, 11 000 F1(6000) F,,(5000)
R, 5000 F,(3000) F»,(2000)

If the query is processed only at site S, the response
time is the sum of the times taken to bring the remote
fragments Fy, and F; to site S| and to join Fy; U F), with
F;; U F5,. This is time consuming, since there is no par-
allel processing and there is significant data transfer. Sim-
ilarly, if the query is processed only at site S, then the
response time will also be high.

Now, if R, is left fragmented, then the processing can
be done at both sites. Site S; will need to get fragment F,,
from site S, and site S, will need to get fragment F,, from
site S}, so that R, is replicated at both sites. After the data
transfer, both sites can work in parallel. Site S; will per-
form the join between F|, and R,, while site S, will per-
form the join between F), and R,. The response time will
be the maximum of the times spent at the two sites. The
time spent at site S; can be shown to be smaller than that
of the earlier strategy because the fragment F;, does not
need to be transferred and processed at ;. Similarly, the
time at site S, can be shown to be smaller than single site
processing. Thus, the response time if R, is left frag-
mented will be smaller than that in which either all pro-
cessing takes place in site S| or all processing takes place
in site S,. U

Example 2.1 shows that fragment and replicate strategy
can be used to improve response time. But if none of the
relations referenced by a query is already fragmented, at
least one relation should be partitioned into fragments in
order to use the strategy. We use Example 2.2 to illustrate
the situation.

Example 2.2: Let a query reference two relations R,
and R,, which are not fragmented and distributed among
3 sites as follows.

Distribution of Relations for Example 2.2

Relation Total Tuples S, S, S,
R, 11 000 R,
R, 10 000 R, R,

781

Suppose that S; is slightly faster than S, but much faster
than S,. A possible strategy without partitioning any re-
lation is to send R, from §, to S; and process the query at
site S;. This strategy processes the whole relations R, and
R, at site S;. Suppose we partition R, into two fragments
with the fragment containing 5000 tuples and that con-
taining 6000 tuples sent to S, and Sj, respectively. Since
only portions of R, are processed at S, and Ss, the times
incurred at S, and S; are smaller than those of the earlier
strategy. Processing at sites S, and S; take place in par-
allel. Thus, partitioning a relation for parallel processing
could be a useful strategy. U

Example 2.2 shows that R, is partitioned into 2 frag-
ments of unequal sizes and the fragments are sent to dif-
ferent sites for processing. In general, we need to deter-
mine which relation to be partitioned, how it is
partitioned, what are the processing sites, etc. We de-
scribe the partition problem in the rest of this section.

Definition: A relation R; is horizontally partitioned into
d disjoint fragments (subsets of the relation) {Fj;}, 1 <
J=d,ifR = U< Fjand F; N Fy = @ ifj # k.

Suppose that {R,, - -+ , R,} are the relations refer-
enced by a query Q and none of them is fragmented. One
of them, say R, will be chosen to be horizontally parti-
tioned into d disjoint fragments, for some integer d. Then,
the fragments will be assigned to a set of d sites, called
processing sites, with each fragment assigned to one site.
The other relations, if not present at each of the d sites,
will be sent to those sites, so that after the sending, each
of the d sites will have a fragment of R and a copy of each
of the other relations. A relation may have several copies
with each copy situated at a site. If there exists a copy at
a processing site, this copy is used at this site. At each
processing site, a subquery, which is the same as the query
Q but referencing the fragment of R that is assigned to
this site and all other relations referenced by the query Q,
is executed. The answer to the query Q is the union of the
results to the subqueries at the d sites. The problem is to
decide 1) the relation to be partitioned, i.e., R, 2) the
number of fragments the relation is to be partitioned, i.e.,
d, 3) the size of each of the d fragments, 4) the set of sites
where the fragments are to be assigned (i.e., processing
sites), and 5) the copy of the partitioned relation to be
used, if multiple copies exist, such that the response time
(in terms of both local processing cost and communication
cost) is minimized.

Let the copy of relation R at site s be chosen to be par-
titioned into 4 fragments. We say this is a d-partition of
relation R and the partition is denoted by PT(PS(R, d,
s)), where PS(R, d, s) is the set of processing sites, each
of which is assigned one fragment of R. The fragment that
is assigned to site p due to this d-partition is denoted by
F(R, d, s, p). (When there is no ambiguity, arguments
R, d, s, and/or p may be dropped, e.g., F(p) may be used
to denote the fragment assigned to p.) At each processing
site p, a subquery q(R,, * -+ , F(R,d,s,p), -+ , R))
which references the fragment F(R, d, s, p) and the other
relations will be processed. The answer to the query Q is

782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 6. JUNE 1989

the union of the answers to the subqueries. We use Cost
(q(R,, -+ ,F(R,d,s,p), "+ ,R,), p)orsimply Cost
(F(p)) to denote the total cost (time) to process the
subquery at site p. This cost includes the delay due to the
partitioning of the relation R at site s, the communication
delay of transmitting the fragment F and all other relations
referenced by the query which are not at site p to site p,
and local processing cost for the subquery at site p. The
response time to process query Q is RT(Q(R), d, 5) =
MaX,eps(R.d.s) {Cost (F(p))}. We are interested in min-
imizing RT(Q(R), d, s5).

The advantage to partition a relation into fragments and
process each subquery at a different site is that each
subquery can be processed in parallel and the size of data
involved in processing is smaller. Since only one relation
is partitioned, the gain due to this partition may not be
significant when the number of relations referenced by a
query is large. However, in practice, most queries refer-
ence only a few relations. In those situations, the partition
strategy is useful. More detailed information on situations
where the partitioning strategy is beneficial will be given
in Section V.

III. PARTITION STRATEGY

A. Cost Model

The total cost of processing a subquery at a site p con-
sists of the cost of partitioning a relation at site s, the data
communication cost and the local processing cost for the
subquery at site p. These costs are described as follows.

Data communication cost is assumed to be a monoton-
ically increasing (nondecreasing) in the amount of data
transferred. It is assumed to be the same between any pair
of sites. These assumptions are consistent with those used
in earlier query processing algorithms.

The local processing cost for processing the subquery
at a site depends on the processing speed of the site,
whether the join is supported by fast access paths such as
indexes, and the sizes of the relations participating in the
join. The cost is assumed to be monotonically increasing
in the size of each of the relations to be processed and
monotonically decreasing in the processing speed of a site.
The cost to process an operation involving a relation with
fast access paths is less than that without fast access paths.

Partitioning a relation consists of retrieving the relation
from secondary memory, dividing it into fragments, and
assigning buffers for the data to be sent to other sites. The
partitioned relation needs to be transferred from second-
ary memory to the buffers only once. Dividing the relation
into fragments can be performed by scanning the relation
once. Thus, the partitioning cost is assumed to be mono-
tonically increasing in the size of the relation to be par-
titioned and monotonically decreasing in the processing
speed of the site where the relation is to be partitioned,
but is independent of the number of partitions.

The total cost of processing a subquery at a site, Cost
may be the sum of the partitioning cost, PC, the data com-
munication cost, DC, and the local processing cost, LC,

if the three processes do not overlap, i.e,
Cost = PC + DC + LC. (1)

In the situations where the processes overlap (the parti-
tioning process is likely to overlap partly with the data
communication process, which is likely to overlap partly
with the joining process), we may express

Cost = BPC + aDC + LC forsome 0 < o, B < 1.

(2)

In other words, (1 — 8)PC and (1 — o) DC are the time
overlapped between the partitioning process and the data
communication process and that between the data com-
munication process and the joining process. Since the lo-
cal processing cost for joining is likely to be dominant, it
is left to be the same in the above equations (i.e., LC).
Since data communication cost, partitioning cost, and lo-
cal processing cost are monotonically increasing in rela-
tion sizes and total cost can be assumed to be monotoni-
cally increasing in each of the three costs by (1) or (2),
total cost is monotonically increasing in relation sizes.

In addition to the monotonically increasing property,
we assume that the relation to be partitioned is infinitely
divisible, and the cost is a continuous function of the re-
lation size. However, in practice, the relation can only be
partitioned into fragments having integral number of tu-
ples. Since the practical solution with integral number of
tuples and the theoretical solution with possibly noninte-
gral number of tuples differ by negligible number of tu-
ples and the total cost is a continuous function of relation
size, the theoretical solution is a good approximation.

Our analysis to be presented in later sections only re-
quires that the total cost function is continuous, has the
monotonically increasing property and the relation to be
partitioned can be infinitely divisible. Thus, our result is
applicable to a reasonably large class of cost functions.

Our solution is outlined as follows. In Section III-A,
we will determine the processing sites and the number of
fragments to yield the minimum response time for a given
copy of a relation to be partitioned. Then, in Section
I1I-B, based on the result obtained in Section III-A we
will determine which copy of a relation should be parti-
tioned to yield the best response time. The above method
can be repeated for every relation to determine which re-
lation and which copy should be partitioned. The com-
plete algorithm is given in Section III-C.

B. Determine the Optimal Processing Sites

Given a relation and its copy to be partitioned, we want
to determine 1) the processing sites (and therefore the
number of partitions) and 2) how the relation is to be par-
titioned and assigned to the processing sites, such that the
response time is minimized.

We first define a quantity which characterizes whether
a site should be used as a processing site for a query Q.
The total cost to process a subquery at a site p is denoted
by Cost (F(p)). We define the partition weight at site p,

YU e al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

denoted by PW(R, s, p), to be limitg,, .o Cost (F(p)),
where F(p) is the fragment of R assigned to site p. Thus,
the partition weight is the overhead for partitioning R and
the cost for transferring and processing other unfrag-
mented relations for the processing of the subquery at the
site. Intuitively, the partition weight is the minimum total
cost that a site can complete a subquery no matter how
small a partitioned fragment, say in practice an artificial
fragment having a tuple, may be assigned to this site.
Thus, if site p is to be used as a processing site, it will
incur a total cost greater than its partition weight. Since
the partitioning cost is assumed to be monotonically in-
creasing in the size of the partitioned relation and mono-
tonically decreasing in the processing speed of the site
where the relation is to be partitioned, but is independent
of the number of partitioned fragments, we have PW (R,
s,p) = PW(R, v, p)if Sp(s) = Sp(v) (assuming there
exists copies of R at both sites s and v), where Sp(x) is
the processing speed of site x.

Proposition 1 below shows that an optimal way to as-
sign fragments to a given set of processing sites is in such
a way that each processing site will have the same total
cost. Thus, it remains to determine the processing sites.
We will show in Propositions 2 and 3 that 1) if a site is
not used as a processing site, then those sites with parti-
tion weights higher than or equal to that of the site should
not be used as processing sites and 2) if a site is used as
a processing site, then those sites with partition weights
smaller than or equal to that of the site should be used as
processing sites. Based on results 1) and 2) all sites are
arranged in ascending order of partition weight. Consider
site ¢; if site ¢ is not a processing site, then sites (¢ + 1)
to the last site need not be considered; otherwise, site 1
to site 7 and possibly the next few sites will be processing
sites. A binary search technique will be used to determine
t such that site 1 to site ¢ (and no other sites) are the pro-
cessing sites.

In the following proposition, the copy of a relation R at
site s is partitioned into d fragments and each fragment is
assigned to a site of the set of processing sites PS.

Proposition 1: Let RT and RT, be the response times
obtained by the d-partitions PT(PS) and PT,(PS) of re-
lation R, respectively. If the d-partition PT(PS) satisfies
Cost (F(p)) = Cost (F(j)) for every pair of processing
sites p, j € PS, then RT < RT,.

Proof: Let Cost (F(p)) (Cost (F,(p))) be the total
cost by assigning a fragment F(p)(F,(p)) to site p by
the d-partition PT(PS) (PT,(PS)).

It is impossible that the size of F,(p) is smaller than
the size of F(p) for all p, p e PS, since

PP = 2 |F(p)| = |RI,

where |X| denotes the size of relation or fragment X.
Therefore, there exists at least one site j with F;(j) =
F(j). We have Cost (F|(j)) = Cost (F(j)) since
Fi((j) = F(J). Thus, we have

783

RT, = ma); {Cost (F,(p))}

= Cost (Fy(j)) = Cost (F(j)) = RT,

since Cost (F(j)) = Cost (F(p)) for every pair p, j €
PS. U

Proposition 1 says that the best partition of a relation is
to make every site complete its processing at the same
time.

Definition: OS is an optimal set of processing sites for
the copy of relation R at site s if the copy is partitioned
into fragments and assigned for processing at each of the
sites in OS to yield the optimal response time. Each site
tin OS is an optimal processing site.

In Lemma 1, we show that if the partition weight of a
site j is smailer than the response time obtained by a
d-partition and j is not one of the processing sites used by
this d-partition, then there always exists a (d + 1)-par-
tition, including j as a processing site, that will yield a
smaller response time. This result will be used to prove
that if the partition weight of a site j is smaller than that
of an optimal processing site, then site j should also be an
optimal processing site (see Proposition 2).

Lemma 1: Let RT be the response time obtained by the
d-partition PT(PS) of relation R by using the copy at site
s.

If PW(R, s, j) < RT, and j is not in PS, then there
exists a (d + 1)-partition, PT(PS,), such that RT, < RT,
where RT) is the response time obtained by including site
J as a processing site.

Proof: Let PS; = PS U { j}. Since PW(R, s, j) is
smaller than RT, we can assign a fragment F,(j) to site
J such that the fragment is obtained by taking a small piece
of data of size Delta (p) from each fragment F(p) in the
original d-partition and Cost (F,(j)) < RT. More spe-
cifically, the new fragment F\(p) at site p has size
|Fi(p)| = |F(p)| — Delta (p) for every site p, p € PS,
where F(p) is the original fragment at site p by the
d-partition PT(PS), and Delta (p) > 0 and L,cps Delta
(p) = [Fi(j)l.

We have Cost (Fi(p)) < Cost (F(p)) forallp, pe
PS, since Fi(p) < F(p). Therefore, RT, = max,eps,
Cost (Fi(p)) < RT. O

Note: It is assumed in the proof that the function Cost
is a continuous function and therefore whenever the in-
equality is satisfied for site j, there is always a small frag-
ment that can be assigned to the site while preserving the
inequality. However, in practice, if the inequality is mar-
ginally satisfied, the site will not be used and the solution
will differ from the ‘‘optimal solution’’ by at most a small
amount.

Proposition 2: If site p is an optimal processing site
and site j satisfies PW(R, s, j) < PW(R, s, p), then site
J is also an optimal processing site.

Proof: We know that Cost (F(p)) > PW(R, s, p)
for F(p) > 0.

Let the optimal response time be OP. Then, since site

784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

p is an optimal site,
OP > PW(R, s,p) = PW(R, s, j).

Suppose that j is not a processing site. By Lemma 1, we
can find a (d + 1)-partition which includes site j as a
processing site and yields a smaller response time. This
contradicts that site p is a processing site with optimal
response time. U

Proposition 3: 1f site p is not an optimal processing site
and site j satisfies PW(R, s, j) = PW(R, s, p), then site
j is not an optimal processing site, either.

Proof: We have PW(R, s, j) = PW(R, s, p). Sup-
pose that site j is an optimal processing site. By Propo-
sition 2, site p is also an optimal processing site, a
contradiction.]

Suppose that R is the relation to be partitioned. After
the sites are arranged in ascending order of partition
weight, the best solution is obtained by assigning the frag-
ments of R using Proposition 1 to the first 4 sites, for
some integer d. We now seek to determine d.

One simple-minded way is to compute the response time
for a given d by assigning the fragments of R to the first
d sites using Proposition 1. Then, d is increased by 1 and
the process is repeated until an increase in the number of
sites yields an increase in the response time or the total
number of sites m is reached. For a given 4, finding the
response time for the first d sites takes O (d) time (assume
that the Cost can be computed in constant time at every
site). Since the process may be repeated up to m times,
the time complexity is at most O (m’).

A more efficient process is as follows. We first consider
the middle site, the (m/2)th site. If this is not an optimal
processing site (determined by Proposition 4 below), then
it is sufficient to consider the first (m/2 — 1) sites. We
then repeat the process by checking the (m/4)th site. If
the (m/2)th site is an optimal processing site, then the
(3m /4)th site will be examined. In other words, a binary
search is performed on the set of sites. Suppose that the
process of determining whether the ith site is an optimal
processing site can be determined in O(i) time (this is
dependent on cost model), the time complexity for deter-
mining the optimal number of sites is at most O(m log
m), since the binary search process is an O(log m) pro-
cess. It remains to determine whether a given site is an
optimal processing site.

Suppose the given site is the ith site. Even if this given
site is assigned a fragment of size zero (i.e., the site is
not a processing site), the partition weight (i.e., the min-
imum cost) incurred at this site is 7 = PW(R, s, i). Sup-
pose all tuples of R are assigned to the preceding (i — 1)
sites (the parts of R assigned to the sites need not be dis-
joint) such that each of the (i — 1) sites has response time
T. The next proposition states that site i is not an optimal
processing site if and only if the sum of the sizes of the
fragment of R assigned to the first (i — 1) sites is greater
than or equal to the size of R.

Proposition 4: Suppose size (j) is the size of the part
F; of R assigned to site j such that the total cost of site j,

Cost (F}) = PW(R, s, i) foreachsite] =j <1i— 1.
Then site i is not an optimal processing site if and only if
i—1

size = 25 size (j) = size (R) (3)
j=1

where size (R) is the size of relation R.

Proof: Suppose (3) is satisfied. Then, we can take
away a small portion Del (j) from the part assigned to
site j, | < j < i — 1, such that the sum of the sizes of
the parts assigned to the first (i — 1) sites is exactly size
(R), i.e., the part assigned to site j is changed to F} hav-
ing size’ (j) = size (j) — Del (j) with

i—1

2 Del (j) = size — size (R).
j=1

The new assignment is clearly a partition of R, with new
total cost equal to Cost (Fj) =< Cost (F;) = PW(R, s, i)
which is strictly less than the total cost of site i for any
assignment of a fragment of nonzero size.

Suppose that (3) is not satisfied. Let a partition of R
consist of assigning a fragment F' of R of size size” (j)
to site j, 1 = j < i — 1. There must exist a site u such
that size” (u) > size (u), otherwise,

i—-1 i—1

'Zl size” (j) = _Zl size (j) < size (R),
j= j=

implying that R is not partitioned.

Let w be the site with the largest cost, i.e., Cost (F})
= Cost (F"). Cost (F}\) = Cost (F!) > Cost (F,) =
PW(R, s, i). Thus, we can reallocate part of the fragment
assigned to w to site i to obtain a decrease in response
time. (If there is another site v with the same cost as w,
then we should do the reallocation to site v as well.) This
shows that any partitioning of R using (no more than) the
first (i — 1) sites is not optimal. Since optimal response
time is obtained by using the first ¢ sites for some ¢ (by
Propositions 2 and 3) and + > i — 1, site i is an optimal
processing site. UJ

The process of determining the last processing site is
given as follows.

BINSEARCH (low, high, result)

/* The relation to be partitioned is R; the copy of R to
be partitioned is at site s. The optimal set of processing
sites is 1 to result. */

If (low > high) then result = high

else {
MID = (low + high)/2; MID1 = MID - 1,
Fori:= 1to MIDI
{
Assign part F/ of R with size (i) to site i such
that

Cost (F!) = PW(R, s, MID) }
If ZMD 1 size (i) = size (R)
then BINSEARCH (low, MID — 1, result) /*search
left half */

YU et al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

else BINSEARCH (MID + 1, high, result) /*search
right half*/

} 0

Given a relation and its copy to be partitioned, algo-
rithm BINSEARCH determines the optimal processing
sites and hence the number of fragments into which the
relation should be partitioned.

A result for scheduling jobs, allowing preemption but
without considering set-up time was given in [29], [30].
In our problem, the partition weight may be considered
as the set-up time for a job. Whether our problem can be
couched as a job-scheduling problem with a known solu-
tion remains to be seen.

C. Determining the Copy of the Relation to Be
. Partitioned

When there is more than one copy of the relation to be
partitioned, we need to determine which copy should be
used, to obtain the best response time. Suppose that we
use the copy CO, at site u that has the fastest processing
speed among the sites that have a copy of the relation. Let
the set of the optimal processing sites and the optimal re-
sponse time for this copy be PS, and OP,, respectively.

Suppose there is a copy of the relation to be partitioned,
CO, at site v. Proposition 5 below states that if the par-
tition weight of site v using the copy CO, is greater than
or equal to OP,, then CO, cannot yield a better response
time than OP, and therefore should not be chosen for par-
titioning.

Lemma 2 below states, if the set of the optimal pro-
cessing sites obtained for CO, is not a subset of the union
of PS, and { v}, then the response time obtained by using
CO, cannot be less than OP,. As a result, we do not need
to consider any site outside PS, and v as a processing site
for copy CO,. Furthermore, site v should be a processing
site for copy CO,,, otherwise, no better response time can
be obtained. Thus, Lemma 2 can be used to restrict the
processing sites, if a copy other than CO, is used.

Lemma 2: Let RT, and RT, be the optimal response
times obtained by the optimal partitions PT(PS,) and
PT(PS,) of relation R, respectively, by using the copies
CO, and CO, of R at sites u and v, respectively. If 1) the
processing speed Sp (u) of site u is faster than or equal to
the processing speed Sp () of site v and 2)-a) PS,. is not
a subset of the union of PS, and {v}, or b) v is not in
PS,, then RT, < RT,.

Proof: First, we prove for the case involving condi-
tions 1) and 2)-a). Since PS, is not a subset of the union
of PS, and { v}, there must exist a site j, j # v, such that
J is in PS, but is not in PS,. By Lemma 1, since j is not
in PS,, the partition weight PW(R, u, j) = RT,. There-
fore,

RT, = Cost (F(v, j)) (by Proposition 1)

1

= PW(R, v, j) (by the definition of PW)
PW(R, u, j) (since Sp(u) = Sp(v)and v # j)
RT,

u»

v

v

785

where F (v, j) is the fragment assigned to site j by parti-
tion PT(PS,).

Now, we prove for the case involving conditions 1) and
2)-b). Suppose we use the copy CO,, partition it exactly
the same way as we partition CO, and assign the frag-
ments to PS, exactly the same way as for copy CO,, i.e.,
|F(u,j)| = |F(v, j)| for every j € PS,. Since Sp(u)
= Sp(v)and v # j, we have PW(R, u,j) = PW(R, v,
J)and hence Cost (F(u,j)) < Cost(F(v,j)), forevery
J € PS,.. The response time obtained for this partition is
RT, = maXx;cps, { Cost (F(u,j)} < RT,. But RT, is the
optimal response time obtained for copy CO,. Thus, RT,
< RT, < RT,. U

In the proof of Lemma 2 and the following Proposition
5, we make use of the assumptions that partitioning cost
is monotonicaily increasing in the size of the partitioned
relation, monotonically decreasing in the processing speed
of the site where the relation is to be partitioned, but is
independent of the number of partitioned fragments and
how the relation is accessed. If different access paths and
other factors are taken into consideration for determining
the partitioning cost, we can modify Lemma 2 and Prop-
osition 5 as given in the Appendix.

Proposition 5: Let RT, and RT, be the optimal re-
sponse times obtained by the optimal partitions PT(PS,,)
and PT(PS,) of relation R, respectively, by using the
copies CO, and CO, of R at sites u and v, respectively.
If Sp(u) = Sp(v) and the partition weight PW (R, v, v)
= RT,, then RT, < RT,.

Proof: 1f vis not in PS,, then this is a case of Lemma
2. If visin PS,, then RT,, = PW(R, v, v) = RT,. [l

When there is more than one copy of the relation to be
partitioned, one method to choose which copy to be par-
titioned is to first use the copy at the site that has the fast-
est processing speed among the sites that have a copy of
the relation, then discard some unnecessary copies by ap-
plying Proposition 5. The remaining copies are processed
in descending order of processing speed of their residing
sites. For each such copy, the processing sites will be re-
stricted to be the intersection of the processing sites of the
previous copies, plus the site where the copy resides,
since, by Lemma 2, no copy can yield a better response
time by using any site outside the processing sites of a
previous copy except possibly the site having the copy to
be partitioned. Furthermore, the site having the copy to
be partitioned should be included in the processing sites.
We then compare all such cases and the copy yielding the
least response time is chosen. Thus, given a relation to be
partitioned, we can determine the optimal copy to be par-
titioned and the optimal processing sites.

A good heuristic, to determine which copy to be parti-
tioned, is to choose the copy CO, at the site u that has the
fastest processing speed among the sites that contain a
copy of the relation to be partitioned. Suppose that CO,
is chosen and the response time is obtained for this copy.
Let the size of the fragment assigned to site j, where a
copy CO; of the relation exists, be F;. (If no copy of the
relation can yield a smaller partition weight for the site

786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

using its copy at the site to be partitioned, than the re-
sponse time obtained using CO,, then, by Proposition 5,
the optimal solution for the relation is obtained.) If we
choose CO; to be partitioned, we incur some additional
time at each processing site due to the partition delay by
a slower processing site j, but we save transmission cost
for site j because F; is already at site j. If the copy CO; is
chosen to be partitioned, we can reduce the response time
by at most the difference of the above two costs. In fast
local area networks, the transmission cost is supposed to
be small in comparison with processing cost. Thus, the
copy at the site with the fastest processing speed should
be a good choice.

We choose only one copy of a relation to partition.
Fragmenting more than one copy and distributing one
fragment from one copy and another fragment from an-
other copy may save some cost. However, that approach
is not practical, because a fragment in our environment is
not defined by a predicate. Only the number of tuples of
the fragment is of significance. Arbitrarily choosing some
tuples from a copy to form a fragment and some tuples
from another copy to form another fragment, etc., may
not give a partition of a relation.

D. A Partition Algorithm

In previous subsections, a method is provided to deter-
mine the optimal copy to be partitioned and the optimal
processing sites for a given relation. The above method
is applied to each relation referenced by the query and the
relation yielding the least response time is chosen. This
forms an algorithm to find an optimal partition strategy.
Let R(Q) be the set of relations referenced by query Q.
Let RS(Q) be the set of referenced sites which contain at
least a copy of some relation referenced by @, and
NRS(Q) be the set of nonreferenced sites which contain
no relations referenced by Q. The set of sites S = RS(Q)
U NRS(Q), i.e., the union of the referenced and non-
referenced sites of Q. Among the nonreferenced sites,
NRS(Q), let ¢ be the site having the fastest processing
speed.

In the following algorithm PARTITION, the best single
site processing strategy is determined at step 1). At step
2), the partition strategy is applied to each relation to de-
termine the copy to be partitioned, the processing sites,
and the response time. All the relations are considered
and the one yielding the best response time is chosen to
be partitioned if the strategy using it is better than the
single site strategy obtained at step 1). The chosen rela-
tion, copy, and processing sites are identified by R,
COPY, and PS, respectively.

We use CS,. to denote an ordered list (set) of sites which
are arranged in the ascending order of their partition
weight. We also use first (CS,), last (CS,.), and ¢ (CS,)
to denote the first, last, and the position of the site con-
taining CO,. in the ordered list of sites CS,..

Algorithm Partition:

1) Estimate the total time if the query is processed in a
single site k, k € RS(Q) U {r}.

Set Bound = the best estimated response time ob-
tained at some site p.

Processing site PS = {p}.

2) For every relation R;, 1 < i < n, referenced by the
query Q.

2.1) Arrange all sites p in ascending order of parti-
tion weight PW(R;, s, p), where s is the site having the
fastest processing speed among the sites that contain a
copy of R;.

2.2) Discard those sites p with partition weight
greater than or equal to Bound.

2.3) Use binary search to determine the optimal pro-
cessing sites for the copy of R; at site s.

low = 1; high = the number of sites remained after
step (2.2).
BINSEARCH(low, high, result)

2.4) Compute response time RT using the processing
sites 1 to result, denoted by CSy = {1 - « - result}.

2.5) Order the remaining copies of R; that can yield
smaller partition weight than RT for their residing sites
using the copies for partitioning in descending order of
processing speeds of their residing sites. (Let r; be the
number of these remaining copies.) Let the arranged cop-
iesbe CO,, 1 = v = r;.

Forv =1tor;
{if (PW(R,, site (CO,), site (CO,)) < RT)/
* By Proposition 5, if the partition weight is not
less than RT, it cannot yield a response time
better than RT */
{ CS, =CS,_, U {site (CO,)}
low = v(CS,); high = last (CS,.)
BINSEARCH (low, high, result,)
Compute the response time RT, for the pro-
cessing sites 1 to result,.

If (RT, < RT)

{ RT = RT,; COPY; = CO,;
PS; = {1 - - - result,}

}

cs, = CS,_, N {1 - result,} /*Only
those sites in the previous processing sites will
be considered for the next copy*/

}

}

2.6) If (RT < Bound)
{ Bound = RT

R = R, /* partitioned relation */
COPY = COPY; /* chosen copy*/
PS = PS; /* processing sites*/
}]

E. Determine the Sizes of the Fragments

Given the relation R, and its copy at site s, to be par-
titioned and the optimal processing sites, we determine
the sizes of the fragments to be assigned to the sites as
follows. By Proposition 1, the optimal assignment is to
make each processing site have the same total cost. Thus,

YU er al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

for each optimal processing site i,
Cost (F(i)) = ¢

where c is the total cost (and hence the response time) to
be determined and F(i) is the fragment of R to be as-
signed to site i. Therefore,

F(i) = Cost™' (c). (4)

Since L; | F(i)| = | R|, we can solve for ¢ by substituting
(4) into it and therefore F (i) can be solved. Suppose that
we can solve (4) for F(i) as a function of ¢ in constant
time. We need to repeat this for d fragments. Thus, ¢ can
be solved in O(d) if the relation is partitioned into d frag-
ments and the sizes of fragments can also be computed in
0(d).

IV. TiME COMPLEXITY FOR PARTITION ALGORITHM

The time complexity to estimate the Cost (F(p)) de-
pends on the cost functions used. Since we do not assume
any cost function, we will use sq to denote the time to
estimate the total cost of a subquery. Thus, the following
complexity analysis will be adjusted according to the cost
model given.

In the algorithm PARTITION, it repeats for every ref-
erenced site and one nonreferenced site to obtain the best
response time for Step 1). Thus, it takes O(|RS(Q)|sq).
At Step 2.1), it will take O(m(pw + log m)) to arrange
sites in ascending order of partition weight, where m is
the number of sites, pw is the time to estimate partition
weight. The sites with partition weight greater than or
equal to Bound can be determined in O(log m) in Step
2.2). Let the number of sites after Step 2.2) be m’. It takes
O(m’ log m') for the BINSEARCH algorithm for Step
2.3) (by the assumption that the sizes of fragments can be
solved in O(m")). At Step 2.4), it takes O(m'). Thus,
the time complexity for Steps 2.1)-2.4) is O(m(pw +
log m)). Suppose that there are v; copies of relation R,.
At Step 2.5), Steps 2.1)-2.4) are repeated at most v, times
with O(v;m(pw + log m)). We will repeat this process
for every relation. Thus, it needs (N,m(pw + log m) +
msq) for the algorithm PARTITION, where N, is the total
number of the copies of all the relations.

V. SENSITIVITY ANALYSES

In order to study 1) whether an optimal partitioning
strategy has significant improvement over the best single
site processing strategy in which all data are sent to one
site and processed at this single site to answer a query and
2) how the performance of the partition algorithm is af-
fected by different parameters, the following simulations
are conducted.

In the simulations, the total cost at each processing site
is the sum of the partitioning cost, data transmission cost
and the local processing cost at that site as stated in (1)
in Section II. The case where the three processes overlap
is given by (2) and may be visualized as follows. Com-
paring (1) and (2), we observe that the partitioning cost
component and data communication component in (2) are

787

smaller than the corresponding components in (1). In other
words, if the partitioning process and the data communi-
cation process overlap, then this can be interpreted as the
partitioning process has a smaller cost. Similarly, if the
data communication process and the local processing pro-
cess overlap, then we can interpret this as the data com-
munication cost is smaller. Thus, the case where the par-
titioning process, the data communication process, and
the local processing process overlap can be simulated by
assigning smaller cost components for data communica-
tion and partitioning. The simulation is carried out by
having the following parameters to distinguish different
simulation environments.

The first parameter is A, which is used to denote the
ratio of joining cost to partition cost. The higher the con-
stant A, the smaller the partition cost in comparison with
the joining cost and/or more overlap between the partition
and the transmission processes. Two values, 10 and 100,
are simulated for A4 in this simulation. When 4 is 100, the
partition delay is considered negligible. (When 4 is 10,
partition delay is still less than joining cost.)

The second parameter is B, which is used to denote the
relative cost between joining cost and transmission cost.
The larger the value of B, the smaller the transmission
cost in comparison with local processing cost (i.e., the
faster the transmission speed in comparison with local
processing speed) and/or more overlap between the trans-
mission and local processing processes. In the simulation,
two values, 1 and 10, are considered for B. 1 denotes that
transmission cost and local processing cost are compara-
ble, while 10 denotes that transmission cost is much
smaller.

Different processing speeds at different sites are consid-
ered in our simulations. One set of processing speeds are
randomly generated between 1 and 100. This is used to
find out how significant difference of processing speeds at
different sites affects performance. Another set of pro-
cessing speeds are randomly generated between 80 and
100. This is used to simulate sites having rather uniform
processing speeds.

Each relation referenced by a query is randomly as-
signed a size, randomly assigned to sites and randomly
assigned or not assigned a fast access path (index) for
joining attribute (the cost to process a join involving a
relation with a fast access path for joining attribute is less
than that without a fast access path). The number of re-
lations ranges from 2 to 6. The number of sites ranges
from 2 to 11.

The response time Y, obtained by the best single site
processing is compared to the optimal response time Y,
obtained by the partition strategy. The improvement fac-
tors is obtained by computing 100% * (Y, — Y,)/Y,. The
improvement factors shown in Figs. 1-3 are the average
results over 1000 runs.

First, we study the effect of the number of sites and the
number of relations on the improvement factor. As shown
in Figs. 1-3, the improvement factor increases rapidly
initially as the number of sites increases, but tapers off as

788

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6, JUNE 1989

fmprovement

Factor (%)

907‘ # Relations =
Processing Speed Range 80 - 100
80— 2
B=10
A=100
=10
70+
60~
2
50
40— 5
30—
3
4
20—+
5 4
6
5
10 6
of sites
>
T T T I | T I T T T
2 3 4 5 6 7 8 9 10 11
Fig. 1. The effect of the partition cost.
Improvement Factor (%)
3
B=10 A=10
70~ Processing Speed Range
1-100
80 - 100
Relations =
60—
2
50+
40
304 3
2
204
4
3
E
10 6
4
5
////\ 8
of sites

| T T T T T T T T T
2 3 4 5 6 7 8 9 10 1

Fig. 2. The effect of the distribution of processing speeds.

Improvement Factor (%)

4
70 Processing Speed Range 80 - 100
A=10
60— B=10 # Relations =
=1 —
2
50—
2
40
30
3
3
204 4
4
5 5
6
10 .
of sites

—rT T T T T T T 1~
2 3 4 5 6 7 8 9 10 11

Fig. 3. The effect of transmission speed.

the number of sites continues to increase. This may not
be obvious, but it is not surprising, either. When the num-
ber of partitioned fragments increases, there is more par-
allelism. However, when the number of partitioned frag-
ments increases, it incurs more data communication cost
due to sending data to more sites. Furthermore, each pro-
cessing site needs to process not only a fragment of the
partitioned relation but also all other relations referenced
by the query. So, even if the number of processing sites
were to approach infinity, the fragments would be reduced
to sizes close to zero, but the other relations still need to
be processed. Thus, the benefit of having additional sites
after a certain number of sites is marginal. Furthermore,
for those sites which originally do not contain any data
referenced by the query, local processing costs are high
as there is no fast access path to support efficient process-
ing. This result suggests that it is sufficient to consider
just a few sites for the partition strategy.

The improvement factor decreases as the number of re-
lations increases. Recall that in a partition strategy, only
one relation is partitioned and the gain in local processing
cost is due mainly to this partition. Thus, when the num-
ber of relations increases, the gain in local processing cost
relative to the total cost due to processing all other rela-
tions decreases.

Fig. 1 shows the results of two sets of simulations. One
is for low partition cost, i.e., 4 = 100 (solid line) and
another is for high partition cost, i.e., 4 = 10 (dotted
line). When the partition cost is smaller (i.e., 4 = 100)

YU et al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

in comparison with the processing cost, the improvement
factor is higher.

In Fig. 2, we study the effect of the distribution of pro-
cessing speeds among sites on the performance of the par-
tition strategy. When the distribution of processing speeds
is more uniform (i.e., processing speeds range from 80
to 100), the improvement factor is higher. This is appar-
ent. If there are significant differences in processing
speeds of sites, it is preferable to send data to those few
sites with faster processing speeds. However, this lowers
the degree of parallelism.

In Fig. 3, we study the effect of the relationship be-
tween transmission cost and local processing cost on the
performance of the partition strategy. We compare two
cases, B = 1 (local processing cost and transmission cost
are comparable) and B = 10 (local processing cost is
dominant). There is not much difference between the two
cases when the number of relations is large (e.g., 4 in
this simulation). However, for a small number of rela-
tions, there is much more improvement when transmis-
sion cost is lower. Clearly, when transmission cost is
comparable to local processing cost, improvement of the
partition strategy over single site processing may not be
possible. This is unlikely to occur in local area networks
where data communication cost is not as significant as lo-
cal processing cost [27].

By these simulation results, the partition strategy is
shown to be feasible in fast local networks. The factors
that favor the partition strategy are 1) small number of
relations, 2) small partition cost (in comparison to joining
cost), 3) small difference among processing speeds of
sites, and 4) fast transmission speed.

VI. INCORPORATING THE SEMIJOIN OPERATION

After the relation to be partitioned and the processing
sites have been determined, we want to decide whether
response time can be reduced further by performing some
semijoins. A semijoin sj: R;-A — R, is the selection of
the tuples of R, whose values under attribute 4 are in
R;.A. For example, a query references three relations, R,
R,, and R;. There is a join between R, and R, on attribute
A, and a join between R, and R; on attribute B. Suppose
that R, is to be partitioned. We may decide whether one
of the following semijoins, R-4 — R,, Ry-B = R;, and
R3-B = R,, should be performed to improve response
time. We will not perform the semijoin to the partitioned
relation. Usually, R, is very much reduced in size by the
semijoin. Since joining of various relations takes place in
the last phase of the partitioning algorithm, and the join-
ing cost is monotonically increasing in relation size, it
may be worthwhile to reduce some of the relations through
semijoins before distributing relations and performing the
joins.

If a semijoin is performed, the partition weight and
hence the total cost of a site will be changed. Let RT(*)
be the response time obtained before performing semijoin
sj and F(p, *) be the fragment assigned to site p. After
semijoin sj is performed, the original total cost of site D,

789

Cost (F(p, *)), is changed to Cost (F(p, *), sj) (semi-
join cost is included). The profit obtained at site p due to
performing semijoin sj is defined to be RT(*) — Cost
(F(p, *), sj) and is denoted by PF(p, sj). For a pro-
cessing site p, we have RT(*) — Cost (F(p, *), sj) =
Cost (F(p, *) — Cost (F(p, *), sj) (since RT(*) =
Cost (F(p, *)), see Proposition 1). If the total cost of a
site becomes less than the original response time, there is
a positive profit at the site; otherwise, there is a negative
profit. If the profits of all processing sites are positive,
then response time can be reduced by performing this
semijoin. If the profits of all processing sites are negative,
response time will be increased if this semijoin is per-
formed. It is also possible that some processing sites have
positive profits but other processing sites have negative
profits. We want to decide whether we can redistribute the
partitioned relation, i.e., assign less (or do not assign)
data of the partitioned relation to those sites with negative
profit and assign more to those sites with positive profit,
such that response time can be reduced.

Let RT(*)(RT(sj)) be the response time obtained by
the partition PT(PS(*))(PT(PS(sj))) of R without
(with) performing semijoin sj, R;-4 = R,, where R, # R
and * denotes that no semijoin is performed. The semijoin
is usually not performed on R, since only part of R which
is the fragment of R assigned at a site, is processed at the
site. Let F(p, *) be the fragment assigned to site p by
partition PT(PS(*)).

Suppose that a semijoin sj is to be performed, and the
profit at site p, PF(p, sj), is negative. This negative profit
means that the total cost at site p will increase if sj is
performed. Thus, in order to lower the total cost at site p
to be below the original total cost (i.e., the original re-
sponse time), we must assign a smaller fragment (or no
fragment) of R (instead of F(p, *)) to site p. Let F(p,
5j) be the largest fragment that can be assigned to site p
after semijoin sj is performed such that the new total cost
Cost (F(p, sj) (which is the total cost to process
subquery at site p by using F(p, sj) instead of F(p, *)
after semijoin sj is performed) is equal to the original re-
sponse time (i.e., the original total cost Cost (F(p, *))
before performing the semijoin at site p).

We determine F(p, sj) as follows. After performing a
semijoin sj, the quantity M = PW(p, sj), which is the
partition weight of site p after semijoin sj is performed,
is the minimum startup cost at site p even if a fragment
of relation R of size close to zero is assigned to p for
processing. If M = RT(*), then there is no way we can
assign any fragment F(p, sj) to site p such that Cost
(F(p, sj)) is less than RT(*). Therefore, site p should
be excluded from the set of processing sites if the semi-
Join sj is performed. Hence, F(p, sj) should be zero. If
M < RT(*), then we can assign F(p, sj) to site p such
that Cost (F(p, sj)) = RT(*). In the first situation, site
p will not be used as a processing site because its new
total cost is always larger than the original response time
(i.e., the original total cost). In the second situation, F(p,
s/) is the largest fragment that we can assign to site p such

790

that the new total cost is the same as the original response
time (before performing semijoin) at site p. Let F'(p,sj)
=F(p,sj) — F(p,*). Then | F'(p, sj)| (note that F'(p,
sj) is negative here) is the smallest amount of data that
we must redistribute from site p to other sites.

Suppose that the profit PF(p, sj) is positive. This pos-
itive profit means that the total cost at site p will decrease
if sj is performed. Thus, this site can receive more data
than it was assigned. Let F(p, sj) be the largest fragment
that we can assign to site p such that the new total cost is
equal to the original response time (i.e., the original total
cost before performing semijoin sj at site p). Then, F(p,
sj) satisfies Cost (F(p, sj)) = RT(*). Since PF(p, sj)
> 0, F(p,sj) > F(p, *). Inthis case, the largest amount
that we can reallocate from other sites to site p in addition
to F(p, *)is F'(p,sj) = F(p,sj) — F(p,*) > 0.

In the above, we discuss redistribution among the pro-
cessing sites. It is possible that some nonprocessing sites
will have a lower partition weight after semijoin sj is per-
formed. We may consider assigning a fragment to those
sites. The size of fragments previously assigned to non-
processing sites is zero. That is F(p, *) = 0 if p is not
in PS(*). We can use the same method discussed above
to determine F(p, sj) which is the amount we can assign
to site p such that the new total cost is equal to the original
response time.

The following proposition states a necessary and suffi-
cient condition that a semijoin is useful to reduce response
time.

Proposition 6: Let F'(p, sj) = F(p, sj) — F(p, *),
where F(p, *) is the fragment size assigned to site p by
optimal partition PT(PS(*)) of relation R and F(p, sj)
is the largest fragment that can be assigned to site p after
the execution of semijoin sj such that the new total cost
Cost (F(p, sj)) is the same as the original response time,
i.e., F(p, sj) satisfies Cost (F(p, sj)) = RT(*), if
RT(*) > PW(p, sj), otherwise, F(p, sj) = 0.

T, F'(p,sj) = 0 if and only if the semijoin sj yields a
smaller response time, i.e., there exists a partition
PT(PS(sj)) such that RT(sj) < RT(*), where RT(sj)
and RT(*) are the response times obtained by the parti-
tions PT(PS(sj)) and PT(PS(*)), respectively.

Proof: Sufficiency: Consider the following two
cases:

1) Suppose that F'(p, sj) = 0 for every site p, p €
PS(*). Since F'(p, sj) = 0 for every site p, we have
nonnegative profit for every site p. Therefore, we can
make PT(PS(sj)) = PT(PS(*)) and have RT(sj) =
RT(*).

2) Suppose that there exists a site u, u € PS(*), with
F'(u, sj) < 0. In this case, we have a negative profit at
site . We must reduce F(u, *) by at least | F'(u, sj)|
such that the new total cost at site u will not exceed the
total cost at site u before performing semijoin sj, and re-
distribute it to some other sites with positive profit.

Since I, F'(p, sj) = 0, there must be a set of sites PJ

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

with F'(v, sj) > 0 for v, v € PJ, such that o,p; F'(v,
sj) + F'(u, sj) = 0. Therefore, we can redistribute a
portion, F“(v, 5j), of | F'(u, sj)| to site v such that F“(v,
sj) < F'(v, sj) forevery site v, v € PJ,and o,.p F* (v,
sj) = F'(u, sj). After redistribution, F'(v, sj) is reduced
to F'(v, sj) — F“(v, sj). We make PS(sj) = PS(*) U
PJ — {u} if F(u, sj) = 0, otherwise PS(sj) = PS(*)
U PJ. We can repeat this process for every site with a
negative profit. By this redistribution, the new total cost
at site p, p € PS(sj) will not exceed the original response
time obtained by PT(PS(*)). Thus, RT(sj) = RT(*).

Necessity: We now show that if T, F'(p, sj) < 0, then
there does not exist any partition such that the response
time obtained is less than or equal to the original response
time (i.e., RT(*)). First, if a site p has F(p, sj) =0,
the total cost incurred at this site is not less than the orig-
inal response time, even if we assign a fragment having
zero size. Thus, those sites p with F(p, sj) = 0 can not
be included in PS(sj). Second, we now show that if
PS(sj) is the set of sites p with F(p, sj) > 0, the re-
sponse time obtained by using all these processing sites is
higher than the original response time. Since L, F'(p,sj)
<0, F(p,s) < L, F(p,*). In other words, if F(p,
sj) is assigned to every site p with F(p,sj) > 0, apor-
tion of size R — LF(p, sj) > 0 remains unassigned. But
after the assignment of F(p, sj), each such site p has total
cost equal to the original response time RT(*). Since the
remained portion has to be assigned and any additional
assignment to any site p causes the total time to go beyond
the original response time, the desired result follows. [l

Each possible semijoin is examined against the condi-
tion given in Proposition 6. If the condition is satisfied,
then the semijoin, if executed, will yield a smaller re-
sponse time than simply partitioning a relation applying
the fragment and replicate approach.

VII. CONCLUSION

The fragment and replicate strategy permits parallel
processing of a query. However, if no relation referenced
by a query is fragmented, it is necessary to decide which
relation is to be partitioned into fragments, which copy of
the relation should be used, how the relation is to be par-
titioned and where the fragments are to be sent for pro-
cessing. A general partition algorithm has been given to
provide answers to the above questions.

Simulation results show that the partition strategy is
feasible 1n fast local network environments. The results
also show that the number of partitions does not need to
be large. The factors that favor the partition strategy are
1) a small number of relations referenced by the given
query, 2) a small partition cost (in comparison with join-
ing cost), 3) fast transmission speed, and 4) rather uni-
form processing speeds among sites.

An incorporation of the use of semijoin in the partition
strategy to improve response time is given. A necessary
and sufficient condition that a semijoin yields improve-

YU er al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

ment when used in conjunction with the partition strategy
is provided.

As shown in the simulation results, when the number
of relations increases, the percentage of improvement de-
creases. This suggests that we may need to partition more
than one relations to increase the improvement. This needs
to be investigated in the future.

The following two situations have not been taken into
consideration by our model. 1) The cost of assembling
results of the subqueries executing in the processing sites
is not included in our cost model. When a partial result is
transferred to the query site, it is to be unioned with the
partial results that have been assembled so far. The cost
of performing the union may depend on the number of
partial results (which is the same as the number of pro-
cessing sites). 2) When a relation is partitioned into d
fragments and sent across the network to the d processing
sites, the cost of transmission (or network contention) may
depend on d as well as the amount of data transfer. This
is also not considered in our model.

In both situations, the cost of assembling the data and
the cost of distributing the fragments go up as d increases.
We can handle these situations by a slight modification of
our algorithm. If d; and d, are numbers of processing sites,
d) < d,, such that the response time using d,; processing
sites is only ‘‘slightly higher’” than that using d, process-
ing sites, then we will use the former solution. We intend
to explore this issue further in an implementation in the
near future.

APPENDIX

Let Par (R, u) and Par (R, v) be the partitioning costs
for partitioning the copies of R at sites u and v, respec-
tively.

Lemma Al: Let RT, and RT, be the optimal response
times obtained by the optimal partitions PT(PS,) and
PT(PS,) of relation R, respectively, by using the copies
CO, and CO, of R at sites u and v, respectively. If 1) Par
(R, v) = Par (R, u) and 2)-a) PS, is not a subset of the
union of PS, and {v}, orb) v is not in PS,, then RT, <
RT,.

Proof: We first prove for the case 1) and 2)-a). Since
PS, is not a subset of the union of PS, and {v}, there
must exist a site j, j # v, such that j is in PS, but is not
in PS,. By Lemma 1, since j is not in PS,, the partition
weight PW(R, u, j) = RT,.

The partition weight of a site is the time for partitioning
R and the cost for transferring and processing other un-
fragmented relations for the processing of the subquery at
the site. Therefore, when j # o and j # u, we have
PW(R, v,j) = Par (R, v) + C and PW(R, u,j) = Par
(R, u) + C, where C is the time for transferring and pro-
cessing relations at site j, which is independent of the copy
to be partitioned. We can easily obtain PW (R, v, j) =
PW(R, u,j)if Par (R, v) = Par (R, u). The above result
is also true for j = u. Therefore,

791

RT, = Cost (F(v, j)) (by Proposition 1)

PW(R, v, j) (by the definition of PW)

PW(R, u, j) (since Par (R, v) = Par (R, u)
and v # j)

RT,

us

v

1Y

v

where F(v, j) is the fragment assigned to site j by parti-
tion PT(PS,).

We now prove for case 1) and 2)-b). Suppose we use
the same processing sites PS, and partition PT(PS,) but
partitioning copy CO,, i.e., |F(u,j)| = |F(v, j)|, for
every j € PS,. Since Par (R, v) = Par (R, u) andj # v,
we have PW(R, u, j) < PW(R, v, j) and hence Cost
(F(u,j)) = Cost (F(v,j)). The response time obtained
by the above partition is RT, = max;cps, < RT,. But RT,
is the optimal response time obtained for copy CO,. Thus,
RT, < RT, < RT,. O

Proposition Al: Let RT, and RT, be the optimal re-
sponse times obtained by the optimal partitions PT(PS,)
and PT(PS,) of relation R, respectively, by using the
copies CO, and CO, of R at sites u and v, respectively.
If Par (R, v) = Par (R, u) and the partition weight
PW(R, v, v) = RT,, then RT, < RT,.

Proof: if v is not in PS,, then this is a case of Lemma
Al. If visin PS,, then RT, = PW(R, v, v) = RT,. O

By the above Lemma and Proposition A1, the copies of
a relation is ordered by the partitioning cost instead of the
processing speeds when we want to determine the copy to
be partitioned.

ACKNOWLEDGMENT

The authors would like to acknowledge and thank the
anonymous referees for their valuable suggestions.

REFERENCES

[1] P. Apers, A. Hevner, and S. B. Yao, ‘‘Optimization algorithm for
distributed queries,"” IEEE Trans. Software Eng., 1983.

[2] P. A. Bernstein and D.-M. W. Chiu, **Using semi-joins to solve re-
lational queries,”” J. ACM, pp. 25-40, 1981.

[3] P. A. Bernstein and N. Goodman, **The theory of semi-join,”” CCA,
Tech. Rep., Nov. 1979,

(4] P. A. Bemnstein, N. Goodman, E. Wong, C. Reeve, and J. B. Roth-

nie, ‘*Query processing in SDD-1: A system for distributed data-

bases,”” ACM TODS, vol. 6, no. 4, pp. 602-625, Dec. 1981.

D. Bitton, D. DeWitt, and C. Turbyfil, *‘Benchmarking database sys-

tems: A systematic approach.™" in Proc. Conf. VLDB, 1983.

[6] P. A. Black and W. S. Luk, ‘*A new heuristic for generating semi-
join programs for distributed query processing,”’ in Proc. IEEE
COMPSAC, 1982.

[7} D. Brill, M. Templeton, and C. Yu, *‘Distributed query processing
strategies in Mermaid: A frontend to data management systems,”’
IEEE Data Eng., pp. 211-218, 1985.

[8] A. Chan, U. Dayal. S. Fox, N. Goodman, D. Ries, and D. Skeen,
*Overview of an ADA compatible distributed database manager,’” in
Proc. ACM SIGMOD 83, pp. 228-242.

[9] J. M. Chang, ‘A heuristic approach to distributed query process-
ing,”” in Proc. Conf. VLDB, 1982.

[10) —. “*Query processing in a fragmented data base environment,”’
Bell Lab., Tech. Rep., 1982,

[5

792 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15. NO. 6. JUNE 1989

[11] A. L. P. Chen and V. O. K. Li, **Deriving optimal semi-join pro-
grams for distributed query processing,’” in Proc. IEEE INFOCOM,
San Francisco, CA, Apr. 1984.

[12] ——. **Optimizing star queries in a distributed database system,’” in
Proc. Conf. VLDB, Singapore, Aug. 1984.

[13] ——. *‘Improvement algorithms for semi-join query processing pro-
grams in distributed database systems,”” IEEE Trans. Comput., Nov.
1984.

[14] D.-M. Chiu, P. Bernstein, and Y. C. Ho, *‘Optimizing chain queries
is a distributed database system,"’ SIAM J. Comput., Feb. 1984.

[15] D.-M. W. Chiu and Y. C. Ho, **A method for interpreting tree quer-
ies into optimal semi-join expressions,”” in Proc. ACM SIGMOD,
1980, pp. 169-178.

[16] W. W. Chu and P. Hurley, **Optimal query processing for distributed
database systems,”’ IEEE Trans. Comput., vol. C-31, no. 9, pp. 835-
850, Sept. 1982.

{17] R. Epstein, M. Stonebreaker, and E. Wong, “‘Distributed query pro-
cessing in relational database systems,’" in Proc. ACM SIGMOD 1978,
pp. 169-180.

[18] B. Gavish and A. Segev, *‘Set query optimization in distributed da-
tabase systems,”” ACM TODS, vol. 11, no. 3, 1986.

[19] N. Goodman, P. A. Bernstein, E. Wong, C. Reeve, and J. B. Roth-
nie, **Query processing in a system for distributed databases (SDD-
1),”’ CCA, Tech. Rep., 1979.

[20] N. Goodman and O. Shmueli, ‘‘Transforming cyclic schemes into
trees,’” in Proc. ACM SIGACT-SIGMOD Conf. Principles of Data-
bases, 1982.

[21] A. Hevner and S. B. Yao, **Query processing in distributed database
systems,"" IEEE Trans. Software Eng., vol. 5, no. 3, pp. 177-187,
1979.

[22] —. **Querying distributed databases on local area networks,”” Proc.
IEEE, vol. 75, no. 5, pp. 563-572, May 1987.

[23] M. Jarke and J. Koch, **Query optimization in database systems,’’

ACM Comput. Surveys, June 1984.

L. Kerschberg and S. B. Yao, “‘Optimal distributed query process-

ing,”’ Bell Lab., Holmdel, NJ, 1980.

[25] G. Lohman, C. Mohan, L. Hass, B. Lindsay, P. Selinger, and P.
Wilms, ‘‘Query processing in R*,”” IBM, Res. Rep. RJ4272, Apr.
1984.

[26] W. C. Luk and L. Luk, **Optimizing query processing strategies in
a distributed database system,"" Simon Fraser Univ., Burnaby, B. C.,
Canada.

{27} L. F. Mackert and G. M. Lohman, *‘R* optimizer validation and
performance evaluation for distributed queries,”” in Proc. Conf.
VLDB, Kyoto, Japan, 1986.

[28] L. F. Mackert and G. M. Lohman, **R* optimizer validation and
performance evaluation for local queries,” in Proc. Conf. ACM SIG-
MOD, 1986.

[29] R. McNaughton, *‘Scheduling with deadlines and loss functions,”’
Management Sci., vol. 6, no. 1, pp. 1-12, Oct. 1959.

[30] R. R. Muntz and E. G. Coffman, Jr., *‘Preemptive scheduling of real-
time tasks on multiprocessor systems,”’ J. ACM, vol. 17, no. 2, pp.
324-338, Apr. 1970.

131} G. Pelagatti and F. A. Schreiber, **A model of an access strategy in
a distributed database system.’" in Proc. Conf. Database Architec-
ture, Venice, Italy, 1979.

132] D. Sacca and G. Wiederhold, *Database partitioning in a cluster of
processors,”” ACM Trans. Database Syst., vol. 10, no. 1, pp. 29-56,
Mar. 1985.

[33] G. M. Sacco, ‘‘Fragmentation: A technique for efficient query pro-
cessing,”” ACM TODS, vol. 11, no. 2, pp. 113-133, June 1986.

[34] A. Segev, ‘*Optimization of join operations in horizontally parti-
tioned database systems,”” ACM TODS, vol. 11, no. 1, 1986.

{35} P. Selinger and M. Adiba, ‘‘Access path selection in distributed da-
tabase systems,”’ in Proc. First Int. Conf. Distributed Data Bases,
Aberdeen, 1980.

36] M. Templeton, D. Brill, A. Chen, S. Dao, and E. Lund, **Mermaid
experiences with network operations,”” IEEE Data Eng., 1986.

[37] J. D. Ullman, Principles of Database System, 2nd ed. Rockville,
MD: Computer Science Press, 1982,

138] Williams et al., **R*: An overview of the architecture,’” in Proc. 2nd
Int. Conf. Databases, 1982.

[39] E. Wong and R. H. Katz, *‘Distributing a database for parallelism,”
in Proc. Conf. ACM SIGMOD, 1983, pp. 23-29.

[40] E. Wong, “*Retrieving dispersed data from SDD-1: A system for dis-

[24

=

tributed databases,”’ in Proc. Berkeley Workshop Distributed Data
Management and Computer Networks, Berkeley, CA, 1977.

[41] S. B. Yao. ‘*Optimization of query evaluation algorithms."™ ACM
TODS, vol. 4, no. 2. pp. 133-155, June 1979.

[42] C. T. Yu and C. C. Chang, *‘Distributed query processing.” ACM
Comput. Surveys, vol. 16, no. 4, pp. 399-433, Dec. 1984.

[43] C. T. Yu, C. C. Chang, M. Templeton, D. Brill, and E. Lund, **On
the design of a distributed query processing strategy,’” in Proc. Conf.
ACM SIGMOD, 1983, pp. 30-39.

[44] —, “‘Mermaid: An algorithm to process queries in a fragmented
database environment,"’ IEEE Trans. Software Eng.. pp. 795-810,
Aug. 1985.

[45] C. T. Yu, K. C. Guh, D. Brill, and A. L. P. Chen, *‘Partitioning
relation for parallel processing in fast local networks,”" in Proc. Int.
Conf. Parallel Processing, 1986.

[46] C. T. Yu, K. C. Guh, C. C. Chang, C. H. Chen, M. Templeton, and
D. Brill, **An algorithm to process queries in a fast distributed net-
work,”” in Proc. IEEE Real-Time Systems Symp., 1984, pp. 115-122.

[47] C. T. Yu, K. C. Guh, and A. L. P. Chen, *‘An integrated algorithm
for distributed query processing,”” in Proc. IFIP Conf. Distributed
Processing, Oct. 5-7, 1987.

[48] C. T. Yu, K. C. Guh, W. Zhang, M. Templeton, D. Brill, and A.
Chen, **Algorithms to process distributed queries in fast local net-
works,” 1EEE Trans. Comput., vol. C-36, no. 10. pp. 1153-1164,
Oct. 1987.

[49] C. T. Yu, K. Lam, C. C. Chang, and S. K. Chang, A promising
approach to distributed query processing,’” in Proc. Berkeley Work-
shop Distributed Data Managment and Computer Networks, Berke-
ley, CA, Feb. 1982, pp. 363-390.

[50] C. T. Yu, L. Lilien, K. C. Guh, M. Templeton, D. Brill, and A.
Chen, **Adaptive techniques for distributed query optimization,”” in
Proc. Int. Conf. Data Engineering, Los Angeles. CA. Feb. 1986.

[51] C. T. Yu and M. Z. Ozsoyoglu, **An algorithm for tree-query mem-
bership of a distributed query.”” in Proc. IEEE COMPSAC, 1979, pp.
306-312.

Clement T. Yu received the B.Sc. degree in applied mathematics from
Columbia University, New York, NY, in 1970 and the Ph.D. degrec in
computer science from Cornell University, Ithaca, NY, in 1973.

He is currently a Professor in the Department of Electrical Engineering
and Computer Science at the University of Illinois at Chicago. He has pub-
lished in various journals and conference proceedings, including Journal
of the ACM, Communications of the ACM, ACM Transactions on Duta
Base Systems, ACM Computing Surveys, Journal of Theoretical Computer
Science, Journal of Computer & System Science, Information Processing
& Management, Information Processing Letters, IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, IEEE TRANSACTIONS ON COMPUTERS, IEEE JOUR-
NAL ON SELECTED AREAS IN COMMUNICATIONS, Information Technology.
Canadian Journal of Operation Research & Information Processing. ACM
SIGMOD. VLDB, ACMSIGIR, IFIP, [EEE COMPSAC, IEEE Data Engi-
neering, and ASIS. He has served as a consultant for various corporations.

Dr. Yu has served as Chairman of the ACM Special Interest Group on
Information Retrieval, an advisory committee member for the National Sci-
ence Foundation. and Program Committee Chairman for the annual
ACMSIGIR conference.

Keh-Chang Guh (S'85-M’86) received the B.S.
and M.S. degrees in electrical engineering from
National Cheng Kung University, Tainan, Tai-
wan, Republic of China, in 1977 and 1979, re-
spectively, and the Ph.D. degree in electrical en-
gineering and computer science from the
University of Illincis at Chicago in 1986.

Since 1986, he has been an Assistant Professor
in the Department of Electrical Engineering and
Computer Science, University of Wisconsin-Mil-
waukee. His research interests include distributed
database management systems and expert systems.

YU er al.: PARTITION STRATEGY FOR DISTRIBUTED QUERY PROCESSING

David Brill received the B.A. degree from the
City University of New York in 1968 and the
M.A. degree in communication research from
Stanford University, Stanford, CA, in 1969. He
did additional graduate work at the Stanford Ar-
tificial Intelligence Project.

He worked on the ARPA Speech Project at
Speech Communications Research Laboratory,
Santa Barbara, CA. From 1977 to 1987, he was
with System Development Corporation, Santa
Monica, CA, where he specialized in distributed
query optimization and natural language interfaces to data management
systems. He is currently doing knowledge representation research at USC
Information Sciences Institute, Marina del Rey, CA.

Do

793

Arbee L. P. Chen (S°80-M’84) received the B.S.
degree from National Chiao Tung University,
Taiwan, Republic of China, in 1977, the M.S. de-
gree from Stevens Institute of Technology, Ho-
boken, NJ, in 1981, both in computer science, and
the Ph.D. degree in computer engineering from
the University of Southern California, Los An-
geles, in 1984,

He is currently a member of Technical Staff at
Bell Communications Research, Piscataway, NJ,
and Adjunct Assistant Professor in the Depart-
ment of Electrical Engineering and Computer Science at Polytechnic Uni-
versity, Brooklyn, NY, where he teaches a course on compiler and formal
lanuages. Prior to joining Bellcore, he was a Research Scientist at System
Development Corporation (now UNISYS Corporation), Santa Monica, CA.
His research interests include distributed databases, data models, computer
networks, and network operations simulation modeling.

Dr. Chen is a member of the Association for Computing Machinery and
the IEEE Computer Society, and was a member of the ANSI/X3/SPARC/
Database Systems Study Group.

794 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 15, NO. 6. JUNE 1989

Expressions for Completely and Partly Unsuccesstul
Batched Search of Sequential and
Tree-Structured Files

YANNIS MANOLOPOULOS anp J. (YANNIS) G. KOLLIAS

Abstract—A number of previous studies derived expressions for
batched searching of sequential and tree-structured files on the as-
sumption that all the keys in the batch exist in the file, i.e., all the
searches are successful. New formulas for batched searching of se-
quential and tree-structured files are derived, but the assumption made
now is that either all or part of the keys in the batch do not exist in the
file, i.e., the batched search is completely or partly unsuccessful.

Index Terms—Access strategy, batched searching, performance
evaluation, physical database design, sequential and tree-structured
files, successful and unsuccessful search.

I. INTRODUCTION

HIS paper considers a file residing in a secondary

storage device, which is physically partitioned into
fixed size blocks (e.g., disks). A query based on a pri-
mary key value (e.g., social security number) is satisfied
by one record (i.e., successful search) or the requested
record does not exist in the file (i.e., unsuccessful search).
The studies in [1], [2] present a number of file organiza-
tion schemes (e.g., sequential, random, tree-structured,
etc.) and estimate the cost of both successful and unsuc-
cessful searches using these schemes. These costs are ex-
pressed by the required number of block accesses to sat-
isfy the query. A query based on secondary key values
(e.g., date of birth, sex, etc.) is satisfied by accessing a
number of records located normally in more than one
block of secondary memory. The blocks containing the
records of interest are usually established by employing
secondary indexing techniques [1], [2].

Let us assume that we have to satisfy k& queries based
on either primary or secondary key values. Shneiderman
and Goodman [3] argued that the response time of satis-
fying the queries may be reduced if we consider them as
a batch instead of satisfying them individually on a first-
come-first-served basis. A number of studies considering
batching appeared in the literature. Mainly, they report
estimations on the number of blocks of secondary storage

Manuscript received August 31, 1987; revised September 30, 1988.

Y. Manolopoulos is with the Department of Electrical Engineering, Di-
vision of Electronics and Computer Engineering, Aristotelian University
of Thessaloniki, 54006 Thessaloniki, Greece.

J. G. Kollias is with the Department of Electrical Engineering, Division
of Computer Science, National Technical University of Athens, 15773 Zo-
grafou, Athens, Greece.

IEEE Log Number 8927390.

that have to be transferred in main memory for various
environments. The assumptions made by all previous
studies is that the records are retrieved under a replace-
ment or a nonreplacement model. The replacement
(nonreplacement) model assumes that the probability of
locating a record in a specific block is not (is) reduced
when a block has already been accessed.

Studies based on the replacement model assumption de-
rived expressions for the expected value of block accesses
required to satisfy a request for k keys using sequential
[4] or random files [4]-[6]. Under the assumption of the
nonreplacement model, expressions have also been de-
rived for sequential [3], [4], [7]-[9], random [4], [10]-
[13] and tree-structured files [3], [8], [14]. Table I lists
the above mentioned studies according to the file organi-
zation and the model concerned.

In this paper we focus on batched searching of sequen-
tial and tree-structured files and, therefore, we start dis-
cussing the relative studies in more detail. In [3] approx-
imate formulas are derived evaluating the gain due to
batched searching of sequential files and of j-ary search
trees. In [7] another approximate solution was given for
the cost of batched searching in sequential file structures.
Recently, [8] derived exact and approximate formulas for
the cost of batched searching in both the sequential and
tree-structured environments. The same problem for tree-
structured files was also examined in [14], where an ac-
curate formula for the gain was derived. We note that sim-
ilar exact formulas were derived estimating the cost of
batched searching in an array [15] and in a main memory
database [16], as well as the cost of seeking in a disk
system [17]-[19].

A common characteristic of all the previous studies is
that they assume that all the records of the batch exist in
the file, i.e., that the search is successful. In this paper
the last assumption is dropped and the performance of
completely or partly unsuccessful batched searching is ex-
amined. We say that a batched search is completely un-
successful or partly unsuccessful when all the keys or
some keys of the batch do not exist in the file respectively.
Before proceeding further, we note that erroneous input
and missing records from the file (possibly because file
updates are performed off-line) are among the reasons
which may cause completely and partly unsuccessful

0098-5589/89/0600-0794$01.00 © 1989 IEEE

