
World Wide Web: Internet and Web Information Systems, 5, 67–88, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Prediction of Web Page Accesses by
Proxy Server Log

YI-HUNG WU and ARBEE L. P. CHEN yihwu@mx.nthu.edu.tw, alpchen@cs.nthu.edu.tw
Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C.

Abstract

As the population of web users grows, the variety of user behaviors on accessing information also grows, which
has a great impact on the network utilization. Recently, many efforts have been made to analyze user be-
haviors on the WWW. In this paper, we represent user behaviors by sequences of consecutive web page ac-
cesses, derived from the access log of a proxy server. Moreover, the frequent sequences are discovered and
organized as an index. Based on the index, we propose a scheme for predicting user requests and a proxy-
based framework for prefetching web pages. We perform experiments on real data. The results show that
our approach makes the predictions with a high degree of accuracy with little overhead. In the experiments,
the best hit ratio of the prediction achieves 75.69%, while the longest time to make a prediction only requires
2.3 ms.

Keywords: WWW, data mining, user behavior, prediction, suffix tree, proxy server log

1. Introduction

Due to the great popularity of the WWW, huge amounts of web pages have spread over
various web sites and the population of web users grows rapidly. The proliferation of web
users gives rise to a variety of behaviors on accessing information. User behavior has a
great impact on network utilization. Owing to a fine perspective of business and industry,
numerous analyses of user behavior on the WWW have been made for discovering market-
ing intelligence [7]. Within the WWW environment, the information about user behavior
is often kept in three ways, i.e., the history record of a browser, the access log of a proxy
server, and the request log of a web server. In this paper, our approach is based on the
access log.

In our study, there are three major topics in this field. The first topic is the clustering
of user behavior. Several approaches are proposed to measure the similarity between two
browses and divide them into clusters. Yan et al. [26] apply the analytical results to user
clustering and hyperlinks generation. In this approach, sequences of user requests are
collected by the session identification technique, which distinguishes the requests for the
same web page in different browses. A sequence is represented as a numeric vector that
keeps the numbers of requests for the web pages involved. By the similarity measure,
all the sequences are divided into clusters and so are the web pages. After that, a user is
assigned to a cluster based on the web pages they request recently. Finally, the web pages

68 WU AND CHEN

that are frequently requested in the cluster will be recommended to the user as the extra
hyperlinks.

In view of the browser’s functions, e.g., the local cache and bookmarks, the data logged
by the server do not necessarily imply a correspondence to the user behavior. To remedy
this situation, Shahabi et al. [20] design the profiler to collect the user behavior. The profiler
attaches a Java applet program, which keeps track of the user actions on the browser, to
each web page. The details of user behavior, such as the duration of user browsing, are
completely logged. In addition to the profiler design, they also consider clustering the
sequences of user requests. Compared with Yan’s approach, Shahabi et al. further take
into account the order of user requests for the similarity measure. Furthermore, Zarkesh
et al. [30] propose an approach to evaluate the quality of a web site. They assume that a
good web site leads to good clusters. Therefore, their approach estimates the goodness of
a web site by comparing its clusters with a predefined set of clusters.

The WebWatcher designed by Joachims et al. [13] provides another solution. Basically,
the WebWatcher acts as a tour guide, which advises the user regarding which hyperlinks
to follow and learns by observing the user actions. The user-specified interests and the
texts around the hyperlinks clicked by the user are gathered. As a result, the WebWatcher
highlights the hyperlinks in the web pages to be read, which are considered relevant to the
user. However, the frequent modifications of web pages for the individual users will bring
the system heavy loads. Perkowitz and Etzioni [19] introduce a scheme of composing
web pages for the individual users dynamically. The goal is to create a web site that
automatically adapts its organization and presentation to user behavior. However, due to
the complexity of the automation for building a web site, only the dynamic generation of
index pages for a web site is studied in their work.

The second topic is the discovery of significant behavior. For transaction databases,
Agrawal and Srikant [2] present an algorithm for discovering frequent buying sequences
for most customers. They define the field named sequential pattern discovery and call the
derived sequences the sequential patterns. The problem of discovering significant behavior
from log data is similar to the one of mining sequential patterns from transaction data.
Therefore, some apply the techniques for sequential pattern discovery to this topic. For
example, Spiliopoulou [21] proposes a process for mining navigational patterns to evaluate
the usage of web sites. In addition, Mobasher et al. [17] apply data mining techniques to
usage pattern discovery in order to create decision rules for customizing a web site.

In our previous work [28], an efficient algorithm for mining frequent buying sequences
from transaction databases is presented. In [25], we adopt this algorithm to derive the hot
sequences, which stand for the general behavior in browsing. Chen et al. [8] apply the
mining algorithms for transaction data [18] to find popular sequences from log data, which
are called the traversal patterns. In this work, they assume that a web server always logs
the user requests with contextual information.

Zaïane et al. [29] also perform data mining on log data and develop a knowledge dis-
covery tool WebLogMiner. They focus on the discovery of time-series patterns by using
the OLAP techniques and a multidimensional cube. Their experiences show that the data
preparation step is crucial and time-consuming. In addition, Masseglia et al. [16] design
the WebTool for applying the data mining techniques to the log data analysis. In this work,

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 69

they illustrate how to customize the hyperlink structure of a web site by the derived pat-
terns. Berkhin et al. [5] implement the interactive tools to explore the navigation activities
of a web site. They focus on the path analysis and provide user-configurable facilities
for path extraction and filtering. Srivastava et al. [22] provide a detailed taxonomy of the
related works in this area.

Third, some seek a deep understanding of user behavior and build the behavioral mod-
els. Almeida et al. [3] derive the regularity of user behavior based on the temporal and
spatial locality. On the other hand, Crovella and Bestavros [10] employ the notion of self-
similarity to characterize the user behavior.

Cunha and Jaccoud [11] further consider the prefetching of web pages. They develop
two user models to help predicting the user requests. Kraiss and Weikum [15] introduce
a probabilistic model, based on the Markov chain theory, to simulate the arrivals of user
requests. They design a storage hierarchy for caching data and build a general framework
for prefetching. In addition, Griffioen and Appleton [12] propose the concept of probability
graph to predict future file system needs based on the past file activities. In this paper, we
also consider the prefetching of web pages but focus on the behavioral discovery and the
data indexing.

On the WWW, the client–server framework often incurs a great risk that the server is
a bottleneck. To preserve availability and efficiency, caching techniques are commonly
used. Caching serves to reduce the latency time by bringing web pages as close to users
as possible. Vakali [23] presents an overview of cache replacement algorithms for a proxy
server based on the idea of preserving a history record for cached web pages. On the other
hand, Belloum and Hertzberger [4] propose a collaborative caching system that takes the
dynamics of Internet traffic into consideration.

Prefetching serves to further reduce the latency time by caching web pages as soon as
possible. For a prefetching service, the web pages to be prefetched are identified by the
prediction of user requests. Therefore, the accuracy of prediction has a direct impact on the
quality of service. Both the prefetching and caching strategies rely on the locality of refer-
ence, which assumes that recently accessed data have larger probabilities to be accessed in
the near future. Moreover, the popularity of web pages is also useful for prediction. Yang
and Zhang [27] present an integrated architecture, in which a certain amount of caching
space is reserved for prefetching.

Klemm [14] proposes a client-side Java-based prefetching agent WebCompanion,
which is based on the estimated round-trip time of each web page. Given a web page,
the WebCompanion extracts the embedded hyperlinks and estimates their round-trip times
based on the server statistics. By the strategies of selective prefetching and session control,
it claims to achieve on average 50 percent speedup of the latency time. Bestavros [6] also
implements a system for speculating user requests and disseminating data. The experi-
mental results show that both the server load and the latency time are reduced. The goal
of web page prefetching is to reduce the latency time. However, the erroneous retrieval of
web pages will bring extra costs to the network traffic. As pronounced by Crovella and
Barford [9], prefetching of web pages is counter-productive as a result of a straightforward
approach.

70 WU AND CHEN

Seeing that the accuracy of the prediction has a great impact on the performance of the
prefetching service, we concentrate on how to make the prediction accurate. In our ap-
proach, the user behavior, represented by a sequence of consecutive web page accesses, is
derived from the access log of a proxy server. All the sequences are stored in disk as a
tree structure to provide the ability of incremental update. Based on the data mining con-
cepts, the sequences that appear frequently are identified. An index structure is employed
to cache the frequent sequences in memory and to make predictions. The proposed struc-
ture guarantees that at most two block accesses are required for one prediction. Finally, the
corresponding web pages are prefetched by a ranking method.

To alleviate the workload of a single proxy server for prediction, in this paper, the derived
sequences are divided into groups based on the web sites they belong to and the users who
issue the requests. In this way, the workload can be easily distributed among a number of
proxy severs. Moreover, different user communities can establish a variety of prefetching
services on their own proxy servers. As a result, a distributed cooperative environment that
coordinates the prefetching services for different user communities will be built. In this
paper, we only focus on the case of a single proxy server to develop the techniques for
predicting user requests.

The rest of this paper is organized as follows. Section 2 introduces our framework
for prefetching web pages. Our approach is described in Section 3. Section 4 illustrates
the experimental results. In Section 5, we conclude with our contributions and future
works.

2. Overview

On the WWW, it is time consuming to issue a number of requests frequently for a prefetch-
ing service. Moreover, it is costly to cache the prefetched web pages. An effective mecha-
nism equipped with both facilities is required. In our approach, the proxy server is chosen
as the foundation of the prefetching service. The log data is extracted and reorganized into
sequences of web page accesses (called the paths). After that, the paths are put into the
mining process to discover frequent sequences (called the patterns). In this way, the user
request will be predicted when the sequence of the recent requests matches up to one of
the patterns. Finally, the proxy server prefetches the related web pages and stores them in
the proxy cache. The proxy-based prefetching framework is shown in Figure 1.

For efficiency and flexibility, we organize the paths as a tree (called the path tree). The
proposed structure is adapted from Wang’s approach in [24] by incorporating a tree struc-
ture into each node. The tree structure (called the PVB + tree) provides the ability of
incremental update. For the mining process, we apply the data mining concepts to pat-
tern discovery. Compared with the problem of mining association rules [1], a path is like
a transaction and its subpaths are the candidates to be frequent itemsets. In Section 3.3,
we will introduce the measures of support and confidence for pattern discovery. To re-
duce the overhead of prediction, we organize the patterns as an index (called the pattern
tree).

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 71

Figure 1. The proxy-based prefetching framework.

We divide our approach into four stages: collection, storage, mining, and prediction. The
flowchart of our approach is shown in Figure 2, where rectangles stand for process units
and ellipses refer to storage units. The area surrounded by a dotted rectangle refers to the
parts that require online processing. The collection stage (i.e., path collector) extracts the
log data and derives a series of paths. The storage stage (i.e., storage manager) builds and
maintains a set of path trees. Periodically, the mining stage (i.e., index generator) discovers
the patterns and organized them as a set of pattern trees. The prediction stage (i.e., user
monitor) keeps track of the user requests and makes the predictions accordingly. At last,
the prediction results are kept in the user log for each user and the request dispatcher
integrates all of them into a sorted list for prefetching.

3. Our approach

3.1. Collection

Whenever the proxy server responds to the user with a web page, it adds a new record
to the access log. The access log keeps all the records in temporal order. Moreover, the
requests from different users (and different browses of the same users) are mixed together.
Therefore, an effective way to collect meaningful information from the access log is re-
quired.

72 WU AND CHEN

Figure 2. The flowchart of our approach.

Due to the local cache and utilities provided by the browser, it is impractical for the proxy
server to keep all the actions of user browsing. For example, if a user uses the backward
and forward commands for browsing (when the local cache is not full), the requests will
not be sent to the proxy server. In this case, the access log will miss this part of user
behavior. From the viewpoint of a proxy server, the access log captures only part of the
user behavior. We call it the access behavior. We build a web service on the proxy server
by considering the access behavior.

We adopt sequences of requests from individual users to represent the access behavior.
Given a user (or an IP address), a series of the corresponding records (i.e., requests) consti-
tutes the access behavior of the user. The access log usually keeps a complete description
for each request. The following is an example:

890984441.324 0 140.117.11.12 UDP_MISS/000 76 ICP_QUERY

http : //www.yam.org.tw/b5/yam/ . . .

For simplicity, we consider only part of the description, i.e., the arrival time of a request
(e.g., 890984441.324), the IP address of the user’s computer (e.g., 140.117.11.12), and the
URL (e.g., http://www.yam.org.tw/b5/yam/). Every record collected from the
access log is reduced to a triplet. Moreover, all the triplets with the same IP address are
concatenated as a long sequence in temporal order. Such a sequence of triplets completely
specifies the access behavior of a user (IP address).

A sequence of triplets often spans a long time and implies the access behavior that
results from more than one browse. Note that a browse means a series of navigation for
a specific goal. Therefore, we have to find the places to cut the sequence into segments,

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 73

Figure 3. The time-based heuristic.

which correspond to the browses. In this paper, we adopt a time-based heuristic to identify
the browses (i.e., segments), which is based on the following two assumptions:

1. When the interval between two consecutive triplets is very long, a new browse begins
after this interval.

2. When the interval between two consecutive triplets is very different from the average
of the previous ones, a new browse begins after this interval.

By the arrival times, we compute the interval between every two consecutive triplets and
cut the sequence when the interval is longer than an upper bound θt. Further, by the second
assumption, we cut the sequence when the difference between the interval and the average
of the previous ones is larger than a variation limit θv. For simplicity, we set θt and θv to
be constant.

Example. Consider the sequence ABCDEFG in Figure 3 as an example. The arrival times
are set to be the values in the second row. We compute the six intervals (i.e., from A→B
to F→G) as 2, 2, 6, 4, 5, and 8. Let θt and θv be set to 6 and 3, respectively. The last link
F→G is cut because its interval is longer than θt. Further, the third link C→D is also cut
because the difference between its interval and the average of ABC (i.e., 6 − 2) is larger
than θv. Finally, the sequence is cut into three segments ABC, DEF, and G.

For saving the storage space, we cut each segment into pieces, named the access path,
such that the URLs on an access path belong to the same web site. An access path is
represented as five fields of data. They are hostname (the web site), path length (the number
of requests), path time (represented by the arrival time of the last request), URL list (the list
of URLs), and out-link flag (a flag indicating whether there is a link to another access path).
For the prefetching service, we only collect the access paths with at least two requests.

3.2. Storage

In the collection stage, the access paths are accumulated day by day. The storage space
will be exhausted fast if we store them without organization. Therefore, an efficient way to
store the access paths is required. We organize the access paths as a tree structure to enable
data sharing and incremental update.

A URL is composed of two parts: hostname (the address of the web site) and pathname
(the file location). We build a B+ tree (called the host tree) to keep the hostnames. For
each hostname, we store the corresponding access paths together as a tree, named the path
tree. As a result, the access paths are distributed over a set of path trees.

74 WU AND CHEN

Figure 4. The enumeration of the suffix paths.

Figure 5. The path tree.

Due to the variety of user browsing, it is difficult to set up proper time limits to guarantee
that every access path corresponds to a single browse. In other words, it is possible for each
request on the access path to be the starting point of a browse. To handle such uncertainty,
we replace every access path with all its suffixes (called the suffix paths). A suffix path is
part of an access path by removing some prior requests.

Figure 4 shows the enumeration of suffix paths for the access path ABCD. Note that the
suffix paths with only one request (e.g., D) are ignored during the enumeration. That is,
every request except the last one on the access path is taken as the starting point of a suffix
path. Although the use of suffix paths brings extra cost, it guarantees that the entire access
behavior is captured.

A path tree consists of nodes and pointers. A root keeps the identifier of the path tree,
while the other nodes refer to the individual requests on the suffix paths. Every suffix path
corresponds to a path from the root to one of the other nodes. A pointer indicates the order
of two requests on the suffix paths. In addition, the links between any two access paths are
kept at the leaf nodes by some extra pointers (called the out-links). For brevity, we will
use path to represent suffix path or path on the path tree in the rest of this paper (unless
explicitly specified otherwise).

Consider Figure 5, there are two path trees T1 and T2. Assume the pathnames A, B,
C, and D belong to the same web site and E belongs to another web site. Four pointers
are used to keep the out-links (i.e., the pointers from D to E). On a path tree, each pointer
is associated with four types of information. They are position (the disk location of the

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 75

next node along the same path), URL (the pathname of the next node along the same
path), timestamp (the time when the last modification of the next node along the same path
occurs), and count (the number of paths that use this pointer). In this way, the paths with
the same prefix will share their common nodes and pointers.

Owing to the variety of paths, a node on the path tree can be associated with a large
number of pointers. Therefore, for each node, we use a PV-B+ tree to organize the set of
pointers. A PV-B+ tree behaves like a B+ tree in the following way:

1. A PV-B+ tree consists of two types of nodes. The leaf nodes are physical nodes (abbre-
viated as p-nodes), while the other nodes are virtual nodes (abbreviated as v-nodes).
A p-node keeps the four types of information (i.e., position, URL, timestamp, and
count), while a v-node keeps URLs for traversing the tree.

2. For search and update, we use the URLs on v-nodes to traverse a PV-B+ tree and regard
the contents on p-nodes as our targets.

Example. In the left-hand side of Figure 6, we show two snapshots of a path tree. The first
one is a tree with only two paths ABC and ACD. After inserting the paths ACF, ADE, and
AE, we obtain a larger tree. For each snapshot, we detail the corresponding PV-B+ trees at
the right-hand side. For instance, the area surrounded by the dotted lines corresponds to the
PV-B+ tree for node A. The one for the smaller tree has only one p-node with two pointers
for B and C. We assume that E and F belong to the other path trees. In the following, we
illustrate what happens to the PV-B+ tree when the three paths are inserted one by one.

Figure 6. The construction of the path tree.

76 WU AND CHEN

1. Insert ACF: Follow the pointer from N1 to N2 (i.e., path AC) and then insert F to N2
with the out-link to the other path tree as � depicts.

2. Insert ADE: Create a new PV-B+ tree with only one p-node (i.e., N6) and then insert E
to N6 with the out-link to the other path tree as denoted by �. In addition, a new pointer
from N1 to N6 (i.e., path AD) is also built.

3. Insert AE: N1 splits because it is full at this moment. As a result, the PV-B+ tree for
node A is composed of one v-node and two p-nodes. Four URLs are equally distributed
into N1 and the new p-node N5. Furthermore, the v-node N4 chooses D as the key for
comparison and two pointers for N1 and N5 are created respectively as � indicates.

For efficiency, all the p-nodes in the same PV-B+ tree are linked in sequence. Taking
Figure 6 as an example, N1 and N5 are linked together by �. In this way, the p-nodes in
the same PV-B+ tree can be accessed sequentially and efficiently.

3.3. Mining

In practice, not all paths are useful guides for prediction. In addition, the increasing number
of paths makes the path trees large. Therefore, we further apply the data mining concepts
to the discovery of important access behavior. In the previous stages, we find some features
to specify the importance of a path. For a prefetching service, we simplify them as follows:

• Hostname. The paths with different hostnames are equally treated.
• Path length. The impact of the path length is ignored.
• Path time. Only the last time that a path appears is recorded. Therefore, we define a

constraint called the expired time to select the paths that appear recently.

As a result, a path is called an important path if it contains at least two requests and
does not violate the expired time constraint. Moreover, we employ the path frequency of
a path µ (denoted by Cµ), indicating how many times µ appears, to quantify the importance
of a path. The count kept by the ending node corresponds to the path frequency of a path.
Because we have to equally treat the paths with different hostnames, we also consider the
total frequency of a path tree T (denoted by CT), indicating how many times the paths in T
appear. As a result, we estimate the importance of µ, named the support of µ (denoted by
Supµ), as follows:

Supµ = Cµ

CT
, (1)

where T is a path tree, and µ ∈ T.
From the viewpoint of a small granularity, in a PV-B+ tree, the Count field on a p-node

corresponds to one of the path frequencies. For the PV-B+ tree of the root, all the Count
fields on p-nodes constitute the total frequency of the path tree. Based on the support
measure, the degrees of importance for the paths are estimated. What we discover is the
popular access behavior for the proxy server. At this moment, the popular web pages are
also identified.

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 77

Furthermore, given a path, the dependence of a request on this path is also utilized for
prediction. Let µν denote a path. The probability that a request ν appears immediately
after µ is equal to the conditional probability that µν will appear if µ appears. Given the
supports of two paths µ and µν, we estimate the dependence of ν on µ, which is named
the confidence of µν (denoted by Conµν), as follows:

Conµν = Supµν

Supµ

= Cµν

Cµ

, (2)

where both µ and µν are important paths.
It is easy to extend the definition to cover general cases, e.g., the dependence of one path

on another. However, it will lead to a high overhead if we predict a sequence of requests for
each user at one time. Given the expired time, we select a set of important paths from the
path tree and compute their supports and confidences. Moreover, we assume that the paths
with high supports and confidences are helpful in making good predictions. Therefore, we
set up two thresholds minimum support (denoted by α) and minimum confidence (denoted
by β) to filter out the paths with low supports or confidences. Finally, all the qualified
paths, called the access patterns, will be used for making predictions.

On the WWW, a web page may contain not only text but also other media such as images,
sounds, and videos. As far as the proxy server is concerned, the media embedded in a web
page are considered as independent requests. In this case, a series of requests appears
close and arrives in the same order. This phenomenon will bring extra high confidence
measures. Similarly, the frames in a web page also result in the same situation. To speed
up prefetching, we introduce a measure for a sequence of requests µ, called the grouping
confidence of µ(denoted by G-Conµ):

G-Conµ = CB

CA
, (3)

where µ is a sequence of requests from A to B.
Note that the sequence µ starts at any node on the path tree. If G-Conµ is high enough,

the requests in µ will form a group that will be prefetched at the same time. We also set up
a threshold minimum grouping confidence (denoted by γ) to limit the number of groups.

Example. Take the path tree T in Figure 7 as an example. In T, each node is associated
with an alphabet and a number, which denote the URL and the count, respectively. We
assume that both the timestamps associated with � and � are expired. Therefore, only the
paths across � or � are important paths. Moreover, CT is the sum of the counts associated
with � and � (i.e., 200). The following applies the three formulae to the paths across �

and derives the access patterns based on the thresholds α, β, and γ .

1. By formula (1), both SupAB and SupABC are 15%, and SupABCD equals 7.5%.
2. By formula (2), ConAB is 20%, ConABC is 100%, and ConABCD is 50%. Based on the

thresholds α and β, we conclude that the access patterns are AB and ABC.

78 WU AND CHEN

Figure 7. A path tree and the three thresholds.

Figure 8. The pattern tree.

3. By formula (3), G-ConAB is 20% and G-ConBC equals 100%. According to the thresh-
old γ , we find that B and C will form a group. Note that we do not have to compute
G-ConABC because G-ConAB is lower than the threshold γ .

On an access pattern, each request except the first one is called a candidate for the
requests before it. That is, given an access pattern µν, the request ν is a candidate for µ.
Given a sequence of requests, we select the access patterns that are prefixed by the sequence
and extract the corresponding set of candidates from them. The access patterns derived
from a path tree are organized into the pattern tree. Conceptually, every access pattern
corresponds to a path on the pattern tree. For brevity, we use the pattern to mean a path on
the pattern tree in the rest of this paper (unless explicitly specified otherwise).

A pattern tree is composed of buckets and pointers, where a bucket keeps the candidates
for a specific pattern and the pointers maintain the order on patterns. For clarity, we call the
pointer pointing to a bucket the b-pointer. The number of candidates in a bucket is varied
in reality. Each candidate is represented as three fields, including its URL, the confidence
of the corresponding pattern, and a b-pointer pointing to the next bucket.

Example. Consider the pattern tree in Figure 8 as an example. The solid rectangles refer
to candidates and the dotted rectangles stand for buckets. In this pattern tree, there are

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 79

five buckets in total. The root bucket is only used as the starting point for prediction
and a reference for other buckets. Recall that B and C on the pattern ABC will form a
group. Therefore, the bucket pointed to by A contains three candidates (i.e., D, B, C).
Moreover, the confidence of C (20%) is computed by multiplying the original confidence
(i.e., ConABC = 100%) with the confidences of all the candidates in the same group (i.e.,
ConAB = 20%). The following illustrates how to utilize the pattern tree for prediction.

1. When a user issues a request for A, through the b-pointer of A, we will reach the
bucket that contains three candidates (i.e., D, B, C). All of them will be the web pages
to be prefetched and their confidences will contribute to the ranking in the next stage.
After that, the current bucket will be stored into the user log.

2. If the user issues another request for C immediately after the prediction, we continue
the prediction from the user log and follow the b-pointer of C to reach the bucket that
contains only one candidate D (with confidence 50%). The case that the new request
is included in the user log is called a success.

3. If the new request does not exist in the user log (e.g., A), we restart the prediction from
the root bucket. This case is called a failure. In this way, our approach guarantees that
at most two block accesses are required to make a prediction.

4. If the user has not issued any request for a long time, we discard the user log. This
case is called timeout.

3.4. Prediction

The final stage uses the index built in the mining stage to predict the user requests. The
requests that appear in the access log are periodically collected to start the prediction. In
other words, all the requests that arrive within a time period are collected and served at the
same time. Moreover, the time-based heuristic introduced in Section 3.1 is employed to
determine whether a request belongs to the previous browse or starts a new browse.

The prediction for a user often generates more than one candidate. Furthermore, a web
page can be the candidate for more than one user. Therefore, how to integrate the candi-
dates to provide an effective schedule for prefetching is another issue we have to handle.
In this paper, we assume that only one proxy server is utilized for prefetching.

Intuitively, the confidence of a candidate is a good clue for ranking. Consider the case
of a single user. The candidate with a high confidence is more likely to generate a success
than the one with a low confidence. Therefore, we apply the confidence measure to ranking
of the candidates for each user. On the other hand, for a candidate, the number of the users
involved is also a good clue for ranking. In general, the candidate that involves more users
is likely to benefit more users after it is prefetched. Therefore, we combine the influences
from both the candidates themselves and the users involved in our ranking methods. The
following formula is proposed to estimate the static rank of a candidate i (denoted by SRi),
where U denotes the set of all the users served and j is a user in U . Note that Confij is set
to zero if user j does not own candidate i:

80 WU AND CHEN

SRi = 1

|U |
∑

j∈U

Confij , (4)

where Confij is the confidence of candidate i for user j .
In the static ranking method, all the users involved have the same right to be served by

the prefetching service. That is, all the users have the same influences on the ranking.
However, in reality, not every user deserves to be served, such as naïve users and the users
who often behave irregularly. Therefore, we propose another method to take into account
how the users behave in the previous service.

At the start of a new browse, the user is given a constant right to request a prefetching
service. We quantify this right and call it the weight. Moreover, the weight is dynamically
adjusted by the following two alternatives:

1. When the new request leads to a success, the weight increases.
2. When the new request leads to a failure, the weight decreases.

The user will not be served for a while after the weight is down to zero. Furthermore,
the volume, each time the weight increases or decreases, is called the quota (denoted by δ).
Intuitively, the larger δ is, the smaller the number of users to be served will be. In other
words, δ adapts to the change of server load. For simplicity, δ is set to a constant value in
this paper. In the following, we reformulate the computation of the rank, which is called
the dynamic rank of a candidate i (denoted by DRi), where U denotes the set of users who
have nonzero weights.

DRi = 1

|U |
∑

j∈U

(Confij × Weightj), (5)

where Weightj is the weight of user j .
Compared with formula (4), formula (5) takes the weights of the individual users into

consideration and the users whose weights are down to zero are not served. Therefore, the
static ranking method is viewed as a special case of the dynamic ranking method, where
the weights are equal and constant.

Example. Take Figure 9 as an example. Two predictions are made at 10 : 00 and 14 : 00.
We obtain the confidences of candidates from Figure 8. The following illustrates what
happens as we adopt the above two methods to rank the candidates, respectively.

1. At 10:00 (denoted by �), IP1 has three candidates D, B, and C, while IP2 has only one
candidate C. For dynamic ranking, the weights of IP1 and IP2 are set to 0.6 and 1.6,
respectively.

• By formula (4), SRD = (80% + 0)/2 = 40%, SRB = (20% + 0)/2 = 10%, and
SRC = (20% + 50%)/2 = 35%. Therefore, a schedule based on the static ranking
method is D→C→B.

• DRD = (80% · 0.6 + 0)/2 = 24%, DRB = (20% · 0.6 + 0)/2 = 6%, and DRC =
(20% · 0.6 + 50% · 1.6)/2 = 46% by formula (5). Therefore, a schedule based on the
dynamic ranking method is C→D→B.

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 81

Figure 9. An example for making predictions.

2. At 14 : 00 (as denoted by �). IP1 has one candidate D, while IP2 also has one candi-
date A. For dynamic ranking, the weights of IP1 and IP2 become 0.8 and 1.8 (δ is set
to 0.2), respectively.

• By formula (4), SRD = (50% + 0)/2 = 25%, and SRA = (0 + 12%)/2 = 6%.
Therefore, a schedule based on the static ranking method is D→A.

• DRD = (50% · 0.8 + 0)/2 = 20%, and DRA = (0 + 12% · 1.8)/2 = 10.8% by
formula (5). Therefore, a schedule based on the dynamic ranking method is D→A.

4. Performance evaluation

To evaluate the effectiveness and the efficiency, we implement all the four stages of our ap-
proach. After that, we make a set of experiments on the log data provided by the National
Center of High-Performance Computing in Taiwan. We build the index for prediction
based on the training set. For evaluation, we use the testing set to simulate the process of
prediction. At last, we compare the simulation results with the real scenarios to evaluate
the effectiveness of our approach. On the other hand, we observe the overheads due to
prediction.

We make the experiments on the training sets with various sizes, which refer to the time
window (denoted by �) for selecting the records from the log data. For simplicity, in this
paper the time window is set to one hour. Given a training set, we collect the testing set in
two ways:

1. The requests that appear in the next hour after the training set (denoted by TEST = H).
2. The requests that appear in the same hour of the next day after the training set (denoted

by TEST = D).

82 WU AND CHEN

Table 1. Experimental parameters

Symbol Definition Value

TEST The way to collect the testing set H, D
� The size of the training set 1 (hour)
α The minimum support 10%, 20%, 30%, . . . , 90%
β The minimum confidence 10%, 20%, 30%, . . . , 90%
γ The grouping confidence 100%

Table 2. Performance metrics

Symbol Definition Computation

λ The hit ratio Number of successes ÷ Number of predictions
τ The service rate Number of predictions ÷ Number of requests
� The contribution Number of successes ÷ Number of requests
ωn The number of index The number of pattern trees
ωt The prediction time The processing time to make a prediction

Table 3. Parameter settings for the experiment on α

Parameters
Constants β γ �

50% 100% 1
Variables α 10%, 20%, 30%, . . . , 90%

TEST D, H

Metrics τ , λ, �, ωn, ωt

Table 1 lists all the parameters with their values used in the experiments. We perform
the experiments to examine the parameter settings. In this paper, we focus on the set of
metrics for performance evaluation as shown in Table 2. The experimental results are
obtained by averaging the measurements from a series of tests. The thresholds α and β

have great impacts on the number of access patterns, and the effectiveness and efficiency
of our approach. Therefore, we focus on the influences of α and β on the performance of
our approach.

4.1. Experiment on α

The settings of parameters and metrics are listed in Table 3. In this experiment, we consider
one-hour log data as the training set (�). Furthermore, the minimum confidence (β) and
the grouping confidence (γ) are set to 50% and 100%, respectively. All these parameters
are controlled and fixed to minimize their impacts on the experimental results. As for the
parameter to be analyzed – the minimum support (α), we give a series of tests on the values
ranging from 10% to 90% and estimate the set of metrics, including λ, �, τ , ωn, and ωt . In
addition, we also make the experiments on different ways to collect the testing set (TEST).

Based on the curves in Figures 10 and 11, we observe the influence of α on the hit
ratio and the service rate, respectively. For both curves in Figure 10, the hit ratio reaches
60% or above when α exceeds 70%. Moreover, the testing set that comes from the next

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 83

Figure 10. The hit ratio (λ%) vs. minimum support (α%).

Figure 11. The service rate (τ%) vs. minimum support (α%).

Figure 12. The contribution (�%) vs. minimum support (α%).

hour (TEST = H) always achieves a hit ratio better than the other one. The best hit ratio
obtained in the series of tests is 74.29%. On the other hand, the service rate will be under
0.5% when α exceeds 30%. In other words, a majority of requests cannot be predicted
because they do not appear in the pattern trees. Similarly, the testing set that comes from
the next hour (TEST = H) achieves a service rate better than the other one. The best service
rate obtained in the series of tests is only 1.78%. To illustrate the contribution of prediction
to the proxy server, we combine the effects of hit ratio and service rate into the two curves
in Figure 12. In general, both curves drop quickly in the beginnings and then slow down
when α exceeds 30%.

The larger α is, the fewer paths that appear in the pattern trees will be. Therewith, the
number of pattern trees also decreases. As shown in Figure 13, the declined curve supports

84 WU AND CHEN

Figure 13. The number of index (ωn) vs. minimum support (α%).

Figure 14. The prediction time (ωt) vs. minimum support (α%).

Table 4. Parameter settings for the experiment on β

Parameters
Constants α γ �

50% 100% 1
Variables β 10%, 20%, 30%, . . . , 90%

TEST D, H

Metrics τ , λ, �, ωn, ωt

such an argument. As α increases, the time to rebuild the index is reduced because of fewer
patterns. This experiment confirms that the longest time to rebuild the index (about 510 s)
is measured as α is set to 10%. That means it takes no more than nine minutes to rebuild
the index for one-hour log data. Because both the path trees and the pattern trees are built
offline, what we really concern is the time to make a prediction. Similarly, the prediction
time also decreases as α increases. In Figure 14, the time measure on the y-axis indicates
the average time to make a prediction for a single request. From the series of tests, the
longest time to make a prediction is 2.3 ms.

4.2. Experiment on β

The settings of parameters and metrics are listed in Table 4. As the previous experiment,
only one-hour log data is taken as the training set (�). Furthermore, the minimum sup-
port (α) and the grouping confidence (γ) are set to 50% and 100%, respectively. All these
parameters are controlled and fixed to minimize their impacts on the experimental results.

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 85

Figure 15. The hit ratio (λ%) vs. minimum confidence (β%).

Figure 16. The service rate (τ%) vs. minimum confidence (β%).

As for the parameter to be analyzed – the minimum confidence (β), we give a series of
tests on the values ranging from 10% to 90% and estimate the set of metrics, including λ,
τ , �, ωn, and ωt . In addition, we also make the experiments on different ways to collect
the testing set (TEST).

From Figure 15, we observe the influence of β on the hit ratio. Notice that the two kinds
of testing sets lead to different curves. For the testing set that comes from the next hour
(TEST = H), the hit ratio slowly decreases as β increases. On the other hand, if we adopt
the testing set that comes from the same hour of the next day (TEST = D), the hit ratio
almost keeps constant as β increases. The best hit ratio obtained in the series of tests is
75.69%. On the other hand, for both kinds of testing sets, the service rate decreases as β

increases. As Figure 16 shows, the decrease is sharper if the testing set comes from the
next hour (TEST = H). When β exceeds 60%, the service rate will be under 0.2%. The
best service rate obtained in the series of tests is only 0.77%. Similarly, we combine the
effects of hit ratio and service rate into the two curves in Figure 17. It verifies that the two
kinds of test sets achieve almost the same contribution when β exceeds 60%.

As described previously, the increase of β has a great impact on the number of pattern
trees. As shown in Figure 18, the number of pattern trees decreases sharply as β exceeds
50%. Intuitively, the prediction time should decrease as β increases because of fewer
candidates. However, Figure 19 indicates that β has no obvious impact on the prediction
time. From the series of tests, the longest time to make a prediction is 1.9 ms.

86 WU AND CHEN

Figure 17. The contribution (�%) vs. minimum support (β%).

Figure 18. The number of index (ωn) vs. minimum confidence (β%).

Figure 19. The prediction time (ωt) vs. minimum confidence (β%).

5. Conclusion

In this paper, we propose a new approach for predicting user requests based on the re-
cent behavior of the individual users. To provide a systematic analysis of user behavior,
we present a procedure that consists of four stages, i.e., collection, storage, mining, and
prediction. Our approach derives the patterns based on the access log of a proxy server.
Moreover, the patterns are organized as a compact index. By the index, we provide an
effective way to make the prediction.

In the experiments, the best hit ratio of the prediction achieves 75.69%, while the longest
time to make a prediction only requires 1.9 ms. However, our experiments show that the
average service rate is very low. In the future, we will continue our work to promote the

PREDICTION OF WEB PAGE ACCESSES BY PROXY SERVER LOG 87

service rate. For example, we will consider partial matching of the pathnames instead of
exact matching of the entire URLs.

The other problem is the setting of the three thresholds used in the mining stage. These
thresholds have great impacts on the construction of the pattern trees. The use of min-
imum support and minimum confidence is to prune the useless paths. Obviously, some
information may be lost if the pruning effects are overestimated. On the other hand, the
grouping confidence is only useful for the strongly related web pages due to some editorial
techniques, such as the embedded images and the frames.

The goal of this research is to provide a prefetching service with good performance. The
related issues also include the dynamic control of prefetching activities and the enhance-
ment of cache management. Currently, we have been working on the cache enhancement
based on the prediction results.

References

[1] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” in Proceedings of VLDB Con-
ference, 1994, pp. 487–499.

[2] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proceedings of IEEE Conference on Data
Engineering, 1995, pp. 3–14.

[3] V. Almeida, A. Bestavros, M. Crovella, and A. Oliveira, “Characterizing reference locality in the WWW,”
in Proceedings of IEEE Conference on Parallel and Distributed Information Systems, 1996, pp. 92–103.

[4] A. Belloum and L. O. Hertzberger, “Scalable federation of Web cache servers,” World Wide Web 4, 2001,
255–275.

[5] P. Berkhin, J. D. Becher, and D. J. Randall, “Interactive path analysis of Web site traffic,” in Proceedings of
ACM SIGKDD Conference, 2001, pp. 414–419.

[6] A. Bestavros, “Speculative data dissemination and service to reduce server load, network traffic and service
time for distributed information systems,” in Proceedings of IEEE Conference on Data Engineering, 1996,
pp. 180–187.

[7] A. Büchner and M. D. Mulvenna, “Discovering Internet marketing intelligence through online analytical
Web usage mining,” in ACM SIGMOD Record 27(4), December 1998, 54–61.

[8] M. S. Chen, J. S. Park, and P. S. Yu, “Efficient data mining for path traversal patterns,” IEEE Transactions
on Knowledge and Data Engineering 10(2), March/April 1998, 209–220.

[9] M. Crovella and P. Barford, “The network effects of prefetching,” in Proceedings of IEEE INFOCOM
Conference, 1998.

[10] M. Crovella and A. Bestavros, “Self-similarity in World Wide Web traffic: Evidence and possible causes,”
in Proceedings of ACM SIGMETRICS Conference, May 1996.

[11] C. R. Cunha and C. F. B. Jaccoud, “Determining WWW user’s next access and its applications to prefetch-
ing,” in Proceedings of IEEE International Symposium on Computers and Communications, July 1997,
pp. 1–3.

[12] J. Griffioen and R. Appleton, “Automatic prefetching in a WAN,” in Proceedings of IEEE Workshop on
Advances in Parallel and Distributed Systems, 1993.

[13] T. Joachims, D. Freitag, and T. Mitchell, “WebWatcher: A tour guide for the World Wide Web,” in Pro-
ceedings of International Joint Conference on Artificial Intelligence, August 1997.

[14] R. P. Klemm, “WebCompanion: A friendly client-side Web prefetching agent,” IEEE Transactions on
Knowledge and Data Engineering 11(4), July/August 1999, 577–594.

[15] A. Kraiss and G. Weikum, “Integrated document caching and prefetching in storage hierarchies based on
Markov-chain predictions,” VLDB Journal 7, 1998, 141–162.

[16] F. Masseglia, P. Poncelet, and M. Teisseire, “Using data mining techniques on Web access logs to dynami-
cally improve hypertext structure,” ACM SIGWEB Newsletter 8(3), October 1999, 13–19.

88 WU AND CHEN

[17] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization based on Web usage mining,” Com-
munications of the ACM 43(8), August 2000, 142–151.

[18] J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash based algorithm for mining association rules,” in
Proceedings of ACM SIGMOD Conference, 1995, pp. 175–186.

[19] M. Perkowitz and O. Etzioni, “Adaptive Web sites,” Communications of the ACM 43(8), August 2000,
152–158.

[20] C. Shahabi, A. M. Zarkesh, J. Adibi, and V. Shah, “Knowledge discovery from user Web-page navigation,”
in Proceedings of Workshop on Research Issues in Data Engineering, 1997, pp. 20–29.

[21] M. Spiliopoulou, “Web usage mining for Web site evaluation,” Communications of the ACM 43(8), August
2000, 127–134.

[22] J. Srivastava, R. Cooley, M. Deshpande, and P. N. Tan, “Web usage mining: Discovery and applications of
usage patterns from Web data,” SIGKDD Explorations 1(2), 2000, 12–23.

[23] A. Vakali, “Proxy cache replacement algorithms: A history-based approach,” World Wide Web 4, 2001,
277–297.

[24] K. Wang, ”Discovering patterns from large and dynamic sequential,” Journal of Intelligent Information
Systems 9, 1997, 33–56.

[25] Y. H. Wu, Y. H. Chen, and A. L. P. Chen, “Querying and browsing the resources in Internet,” in Proceedings
of International Computer Symposium, 1996, pp. 9–16.

[26] T. W. Yan, M. Jacobsen, H. Garcia-Molina, and U. Dayal, “From user access patterns to dynamic hypertext
linking,” in Proceedings of International WWW Conference, May 1996.

[27] Q. Yang and H. H. Zhang, “Integrating Web prefetching and caching using prediction models,” World Wide
Web 4, 2001, 299–321.

[28] S. J. Yen and A. L. P. Chen, “An efficient approach to discovering knowledge from large databases,” in
Proceedings of International Conference on Parallel and Distributed Information Systems, 1995, pp. 8–18.

[29] O. R. Zaïane, M. Xin, and J. W. Han, “Discovering Web access patterns and trends by applying OLAP and
data mining technology on Web logs,” in Proceedings of IEEE Conference on Advances in Digital Libraries,
1998, pp. 19–29.

[30] A. M. Zarkesh, J. Adibi, C. Shahabi et al., “Analysis and design of server informative WWW-sites,” in
Proceedings of ACM Conference on Information and Knowledge Management, 1997, pp. 254–261.

