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Abstract 
The accuracy of multimedia data retrieval can be enhanced by a data classification and 

feedback mechanism. It is known that constructing a classifier for the multimedia data in high 

dimensional feature space is time-consuming. For supporting user feedbacks immediately, in this 

paper we study how to efficiently construct the classifier. Our main idea is to speed up the 

classifier construction process by employing an indexing strategy. The RCE-network classifier is 

good for this purpose due to its high accuracy and simple construction process. A new 

RCE-network construction algorithm which overcomes the defects of the existing algorithms was 

proposed. Moreover, a pruning method with dimension-independent pruning ability was used to 

efficiently construct the classifier in the high dimensional feature space. Compared with several 

existing classification methods, the experiment results show that our method significantly 

promotes the construction efficiency of the classifier for its online uses. 

1. Introduction 
With the growing amount of multimedia contents, many multimedia retrieval systems are 

developed to meet users' needs. In these systems, many techniques are developed to extract 

features to represent various types of multimedia data. The selected features form a high 

dimensional feature space in which a point represents a multimedia datum. For efficiently 

retrieving multimedia data from this feature space, many matching methods and index structures 

have been developed. Moreover, the techniques of data classification [1][4][7] 

[9][12][16][17][26] and feedback [12][13][15][21] of the users are used to improve the retrieval 
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accuracy. 

In [12], for retrieving the images to answer users’ queries, a binary classifier SVM (Support 

Vector Machine) [4][7] is used. It consists of two steps. In the first step, some random sample 

images are chosen from the database and the user selects the images which satisfy the query 

from the sample images. In the second step, based on the feedback, all images in the database are 

classified into two groups: one group satisfies the user's query and the other does not. The former 

group will become a new database to run the first step. The two steps alternate until the user 

finds “enough” images which satisfy the query. 

The classification task consists of two steps. The first step is the training step. In this step, a 

classifier is constructed using training data. The second step is the classifying step. In this step, 

each test datum is classified into a class by the classifier. In general, the training step is more 

time-consuming than the classifying step and many researchers [7][14][19] attempt to reduce the 

cost of the training step. Moreover, in recent years, for more precisely representing the 

multimedia data, some high dimensional feature models are used. For example, in [10], an image 

is represented as 1,740 wavelet coefficients. In this case, when the feedback data violate the 

current data classification, the classifier needs to re-classify the data, which will be very 

time-consuming in the high dimensional feature space. Therefore, how to build an efficient 

classification mechanism with high accuracy for the large training data in a high dimensional 

feature space is a very important subject for research. 

In the past, two strategies are often used to address the efficiency problem. The first strategy is 

feature selection and the second strategy is sampling. In the feature selection strategy, some 

suitable features are selected for representing the data to reduce the number of dimensions of the 

feature space. In [10], the authors design a method to select suitable features for SVM. The main 

idea of this method is to estimate the importance of each feature. A feature is of low importance 

if the data classification without considering this feature changes within a given threshold. Based 

on this idea, a formula is designed to estimate the importance of each feature. In the experiment, 

the performance of this method is better than that of the other feature selection methods. 

Moreover, if all the features are used, the result is better than that of the feature selection 

methods. That is, the feature selection strategy causes accuracy degradation of the classifier.  

 The concept of the sampling strategy is to pick “appropriate” data such that the classification 

result of the sampling data is similar to that of the whole data set. Take SVM as an example and 

see Figure 1. The goal of SVM is to compute a separating boundary (the solid line in Figure 1) 
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such that the data of the two classes can be distinctly separated. A datum is called support vector 

if its distance to the separating boundary is smaller than that of the other data in the same class. 

Figure 1 shows four support vectors for the separating boundary. Since the data other than the 

support vectors only cause limited influence for deciding the separating boundary, approaches 

[19][29] were proposed to sample data which hopefully contain the support vectors to decide the 

separating boundary. In [29], a method was proposed to prune the data which are “at places far 

from the boundary.” The method recursively samples data to compute the separating boundary. 

In each iteration, it uses the sampling data to compute a boundary and selects the data which are 

closer to the boundary as new sampling data for the next iteration. A hierarchical cluster tree is 

used as an index to speed up the sample selection. The authors claim that all support vectors can 

be found by this method. However, in [19], the authors argue that the above method can only be 

used for some data distributions because the distance to the boundary is difficult to compute. To 

address this problem, a k-nearest-neighbors based method is proposed. The main idea of this 

method is that if a datum is close to the boundary, many of its neighbors may have different class 

labels. Therefore, a datum with many neighbors with different class labels is selected as a sample. 

This method can be used for any data distribution. However, some support vectors may not be 

found by this method. For example, given two data sets with different class labels, if the two data 

sets are remote from each other, no neighbor with a different class label can be found. If some 

support vectors are not found, the accuracy of the classifier will be degraded. 

  
Figure 1. Separating boundary and support vectors 

Separating 
boundary

Support vectors

In this paper, we propose an approach to speed up the classifier construction process without 

degrading the classification accuracy by employing an indexing strategy in the process. For 

reaching our goal, we select a suitable classifier and analyze each step of its construction to use 

the indexing strategy. We observe that some queries are needed to be executed in the 

construction process of the selected classifier, and propose an index method for efficient query 

processing. Our approach can also employ the feature selection and sampling strategies to further 
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speed up the classifier construction process.  

The remainder of this paper is organized as follows. The classifier selection is discussed in 

Section 2. Moreover, a new construction algorithm for the selected classifier is also presented in 

this section. In Section 3, we discuss the index methods and select one to speed up the 

construction process. Some properties are also presented to enhance the index method for its use 

in a high dimensional feature space. In Section 4, our method is compared with previous works 

using real data and synthetic data. Finally, we conclude this paper with future research directions 

in Section 5. 

2. Classifier construction 
In this section, we first describe an accurate classifier called RCE-network (restricted coulomb 

energy network) [9][17][22] as our selected classifier. In Section 2.2, we introduce some existing 

construction algorithms of the RCE-network, and point out their shortcomings. Then, in Section 

2.3 we propose a new construction algorithm for the RCE-network to overcome the 

shortcomings of the existing construction algorithms. Finally in Section 2.4, we propose a 

method to solve a problem of the RCE-network in the classifying step. 

2.1. Classifier selection 
In [16], many classifiers are introduced such as neural network, SVM, RCE-network, etc. In this 

subsection, we discuss the advantages and disadvantages of these classifiers and select a suitable 

classifier for our purpose based on three conditions. The first condition is that the classifier must 

have a high accuracy. Second, the construction of the classifier must be efficient. Third, the 

classifier must easily work with an index method. In the following, we use these three conditions 

to select a suitable classifier. 

The neural network methods satisfy the first condition but do not satisfy the second condition. 

The convergence property [16][26] can be used for illustration. In the neural network methods, 

the error function is often defined as the sum of the differences between the output class labels 

and the correct class labels for training data. Many neural network methods such as the 

back-propagation algorithm [14][16][26] must be executed in many iterations to reduce the error. 

The convergence property says that the error gradually converges to zero. The neural network 

methods were proved to have the convergence property [16]. However, the research [14][16][26] 

show the convergence of the neural network methods is slow. It means constructing a neural 

network is time consuming. Therefore, the neural network methods satisfy the first condition but 
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do not satisfy the second condition. 

Next, we consider SVM. From the research [4][7], it was proved that SVM has the 

convergence property and converges fast. Therefore, SVM satisfies the first and second 

conditions. Before examining the third condition, we briefly introduce SVM in the following. 

SVM is a binary classifier, i.e. it can only be used to distinguish between two classes. Given 

the training data (x1, y1), (x2, y2), …, (xn, yn), where yi is the class label of the object xi, which 

can only be 1 (positive data) or -1 (negative data). The goal of SVM is to decide a function [7]:  
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such that the following expression is satisfied: 
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In Formula (1), w is a coefficient vector and b is a bias of f(x). The meaning of Formula (2) is 

that all training data can be classified by f(x). Obviously, f(x) is a separating boundary of the two 

classes. Nevertheless, the two classes can be separated by many boundaries, and we must choose 

the most appropriate boundary from them. The main concept of SVM is to produce a separating 

boundary which has the maximum margin between the two classes. The concept of the 

maximum margin is shown in Figure 2, where d+ denotes the minimum distance from the 

separating boundary to the nearest positive data; d- denotes the minimum distance from the 

separating boundary to the nearest negative data. The maximum margin is defined as the 

maximum value of the sum of d- and d+. Note that the support vectors are the nearest data to the 

separating boundary. The advantage of the separating boundary with the maximum margin (the 

boldface line) can be easily observed from Figure 2. The diamond point, which is close to the 

positive data, will be assigned to the negative data due to a bad separating boundary (the dotted 

line) which has a value of the sum of d- and d+ less than the maximum margin. On the contrary, 

the diamond point will be correctly assigned to the positive data utilizing the separating 

boundary with the maximum margin. In [7], the problem of finding the separating boundary with 

the maximum margin is formulated as an optimization problem with some constraints, and the 

Lagrange multiplier method was used to solve this problem. 
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Figure 2. Maximal margin 
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An important problem of SVM is that the two classes cannot be separated by a separating 

boundary in many cases. In this situation, the main idea is to transform all training data to 

another space such that the data of the two classes can be separated in the new space. However, 

the transformation function between different spaces is difficult to obtain. Therefore, in [7], a 

kernel method is used to replace the transformation function to estimate the separating boundary 

in the new space. In [18], an important property is mentioned, which says all data are mapped to 

the surface of a unit hyper-sphere in the new space. By this property, in [18], when SVM is 

constructed, an index of the new space can be built by the kernel of SVM to retrieval the top-k 

answers of a query. Unfortunately, since the new space is influenced by the chosen kernel, the 

index must be rebuilt when the kernel changes. 

Based on the above discussion, the two spaces should be considered at the same time when 

SVM is constructed. However, in the SVM construction process, when the kernel is changed, the 

new space will be also changed. Therefore, it is hard to build the index structure in the SVM 

construction process. Therefore, SVM is not suitable to work with an indexing strategy. 

Consider the three conditions, the RCE-network [9][17][22] is adopted in our method. In [22], 

fast convergence of the RCE-network is guaranteed. Therefore, the first condition and second 

condition are satisfied. Another advantage of the RCE-network is that only simple arithmetic is 

used when constructing an RCE-network. Therefore, it is easy to work with an indexing strategy. 

2.2. The RCE-network and its construction algorithms 
In this subsection, we introduce the concepts of the RCE-network and two corresponding 

construction algorithms [17][22]. The two algorithms will be compared with our algorithm in 

Section 4. 

2.2.1 The structure of the RCE-network 

The RCE-network uses circles to cover training data with the following constraints: 

(a) For each datum, it must be covered by a circle.  
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(b) The training data which are covered by a circle must be in the same class. 

The structure of the RCE-network is shown in Figure 3. It is divided into three layers: the 

input layer, the hidden layer and the output layer. Each node of the output layer indicates a class, 

such that the number of the nodes of the output layer is equal to the number of the classes. Each 

node of the hidden layer denotes a circle which covers data in a class. From the second constraint, 

each node of the hidden layer has only one edge to link to the output layer because each circle 

only covers data in a class. Each node of the input layer represents one dimension of the feature 

space. 

 
Figure 3. The structure of the RCE-network 
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The weight of the edge between an input node j and a hidden node Ci shows the value of the 

j-th dimension of the center of Ci. Take Figure 3 as an example. The coordinate of the center of 

the circle C1 is (w11, w21, …, wn1). The weight of the edge between a hidden node Ci and an 

output node denotes the radius of the circle Ci. 

When a test datum X with coordinate (x1, x2, …, xn) is to be classified, the RCE-network 

computes the distance between X and each Ci using the Euclidean distance ∑ =
−

n

k kik wx
1

2||  as 

the formula. If the distance is smaller than or equal to ri, then X falls into Ci and the output node 

which is linked by Ci will output one. At the same time, the other nodes of the output layer will 

output zero. If all the outputs are zero (X does not fall into any circle) or more than one node 

outputs 1 (X falls into more than one circle), X cannot be correctly classified. 

 

2.2.2 Two existing construction algorithms of the RCE-network 

When constructing an RCE-network, the main problem is to efficiently decide proper circles to 

cover all training data. Two algorithms [17][22] for constructing the RCE-network are 

introduced in the following. For easy presentation, when given a training datum p, the symbols 

associated with p are summarized as follows: 
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Table 1. Symbol table 

Symbol Meaning 
SAMEp The set of data whose class is the same as that of p.  
DIFFp The set of data whose classes are different from that 

of p.  
DIS(a,b) The distance between datum a and datum b. 

np The nearest datum in DIFFp to p. 
fp 
 

The farthest datum in SAMEp to p, satisfying 
DIS(p,fp) < DIS(p,np). 

The Rajan’s algorithm 

For fast satisfying the constraint (a) in Section 2.2.1, when a circle is produced by the Rajan’s 

algorithm [22], it is given a large radius such that the circle can cover many training data. 

However, the circle with the large radius may cover the training data which have different class 

labels. Therefore, for satisfying the constraint (b) in Section 2.2.1, the radius of a circle needs to 

be shrunk. 

Based on the above discussion, in addition to the training data, the Rajan’s algorithm needs 

more parameters, i.e. an initial radius ϕ and a radius reduction rate δ as the inputs. The value of δ 

is between 0 and 1. The Rajan’s algorithm is shown in Figure 4. For each datum p, the algorithm 

checks whether it is included in any circle. If not, Step 2 will produce a circle whose center is p 

and its radius is set to ϕ. If p is already included in a circle C and the class label of the center of 

C is the same as the class label of p, the algorithm will do nothing. Otherwise, Step 3 will shrink 

the radius of each circle which covers p and the class label of the center of the circle is different 

from the class label of p. This algorithm will scan all training data repeatedly until all the circles 

are not changed. 

Input: training data, initial radius ϕ, radius reduction rate δ (0≤δ<1) 

Output: An RCE-network 

1. For each datum p, execute Steps 2~3. 

2. If p is not included in any circle, produce a circle whose center is p and the radius is ϕ. Go to 

Step 1. 

3. Suppose p is included by a circle C and the center of C is b. If the class label of p is different 

from the class label of b, then compute DIS(p, b) and set the radius of C to DIS(p, b)*δ. 

4. Repeat Steps 1~3 until all the circles are not changed. 

Figure 4. The Rajan’s algorithm 
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For each scan, some data which are included in a circle may escape from the circle due to 

radius shrinking. In the next scan, the algorithm produces some circles for these escaped data. 

Therefore, the main shortcoming of the Rajan’s algorithm is that it needs to scan the data many 

times. 

The Wu’s algorithm 

For satisfying the constraint (a) in Section 2.2.1, the Wu’s algorithm [17] produces a circle for 

each training datum. Moreover, for satisfying the constraint (b) in Section 2.2.1, when given a 

datum p, the Wu’s algorithm finds np first. Then the radius of the circle whose center is p is set to 

DIS(p, np)*δ such that the circle ca not cover any datum in DIFFp. 

  The algorithm is shown in Figure 5. The Wu’s algorithm needs the radius reduction rate δ as 

the input. The value of δ is between 0 and 1. For each datum p, in Step 2, the algorithm finds np 

and DIS(p, np) which are defined in Table 1. In Step 3, a circle is produced for p, and its radius is 

set to DIS(p, np)*δ. Obviously, based on Step 2 and Step 3, all the class labels of the training data 

in the produced circle are the same, i.e. the radius of all the circles which are produced by the 

Wu’s algorithm will not be shrunk. 

Input: training data, radius reduction rate δ (0≤δ<1) 

Output: An RCE-network 

1. For each datum p, execute Steps 2~3. 

2. Find np and DIS(p, np).  

3. Produce a circle whose center is p and radius is DIS(p, np)*δ. 

Figure 5. The Wu’s algorithm 

In this algorithm, the main computational cost comes from Step 2. Moreover, the algorithm 

will produce a large number of circles because each datum will be used to produce a circle by the 

algorithm. The efficiency of the classifier is therefore hampered. 

2.3. Our construction algorithm of the RCE-network 
The same as the Wu’s algorithm, for satisfying the constraint (b) in Section 2.2.1, when given a 

datum p as the center of the produced circle C, our algorithm finds np first. If the radius of C is 

smaller than DIS(p, np), C will not cover any datum in DIFFp. Moreover, for efficiently 

satisfying the constraint (a), we choose an appropriate radius such that C can cover each datum 

p’ which satisfies the condition that DIS(p, p’) is smaller than DIS(p, np). Therefore, the radius of 

C can be set to DIS(p, fp). 
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Based on the above discussion, the main steps of our algorithm are shown in Figure 6. In Step 

1 and Step 2, we check the relationship between each datum and each circle. In Step 3, if DIS(b, 

p) < DIS(b, np), where b is the center of a circle C, then p is covered by C. In Step 4, if DIS(b, p) 

is larger than the current radius of C, the radius of C is changed to DIS(b, p). Since Step 4 comes 

from Step 3, the radius of C must be smaller than DIS(b, np). For satisfying constraint (a) in 

Section 2.2.1, if a datum p which is not covered by any circle is found in Step 5, Step 6 produces 

a circle for it. For satisfying the constraint (b) in Section 2.2.1, the radius of the circle is set to 

zero and the DIS(p, np) is recorded to limit the radius of this circle. For avoiding the drawbacks 

of the previous methods discussed in Section 2.2.2 and fast satisfying the constraint (a) in 

Section 2.2.1, when producing a circle, the circle must cover as many training data as possible in 

one scan. Our algorithm called the Radius Expansion algorithm (RE) expands the radius in Step 

4 to effectively reduce the number of circles. Notice that the RE algorithm does not need the 

parameters of radius reduction rate and initial radius. 

Input: training data 

Output: An RCE-network 

1. For each datum p, execute Step 2. 

2. For each circle C, if the class label of its center, b, is the same as that of p, execute Step 3. 

3. If DIS(b, p) < DIS(b, np), then p is covered by C and execute Step 4. Otherwise, execute Step 

2. 

4. If DIS(b, p) is larger than the radius of C, set the radius of C as DIS(b, p). Execute Step 1. 

5. If p is not covered by any circle, execute Step 6. 

6. Find np and DIS(p, np) and produce a circle whose center is p and radius is zero. Execute Step 

7. 

7. If each datum is covered by a circle, the algorithm terminates. Otherwise, execute Step 1. 

Figure 6. The RE algorithm 

Observing the algorithm, Step 5 needs to do a range query and Step 6 needs to do a 

nearest-neighbor query for finding np. An indexing strategy can be employed to speed up these 

query processing. 

2.4 The classification problem of the RCE-network 
From Section 2.2.1, the test datum cannot be correctly classified if the outputs of the 

RCE-network are all zero or if more than one output is 1. This characteristic can be useful in 
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some applications while in most applications requiring precise classification the RCE-network 

cannot work well. The following two applications illustrate this characteristic. In [17], the 

RCE-network is used on human face recognition. In this application, when a picture cannot be 

recognized, it will be treated as an invader. However, in other applications, each test datum 

needs to be classified into a class. In handwritten digits recognition, each datum must be a digit 

and should be classified into its corresponding class. The accuracy is the ratio of the number of 

data which are correctly classified into their corresponding classes to the number of the data 

which are classified.  Based on our experiment, the accuracy of the RCE-network is 97.26% 

(the accuracy of SVM is 94.46%). However, there are 10.33% data that cannot be classified by 

the RCE-network. 

For addressing this problem, when a test datum cannot be classified, the idea of the KNN 

classifier can be adopted to adjust the classifying mechanism of the RCE-network. Different 

from the general KNN classifier which uses all training data to do the classification, the adjusted 

classifying mechanism only uses the centers of all the circles as a summary to do the 

classification. Based on the adjusted classifying mechanism, each test datum can be classified 

into a class. From our experiment the accuracy of the adjusted classifying mechanism of the 

RCE-network reaches 95.43% when K is set to 7. Although the accuracy of the adjusted 

classifying mechanism drops from the original accuracy of the RCE-network (97.26%), all the 

test data can be classified into a class. Moreover, the accuracy of the adjusted classifying 

mechanism of the RCE-network is better than the accuracy of SVM. The adjusted classifying 

mechanism is used in our experiments because all the test data of our experiments need to be 

assigned a class label. 

3. Finding a suitable index method   
In the RE algorithm, if a circle is produced, a nearest-neighbor query (step 6 in Figure 6) should 

be executed to find np. Therefore, we need to find a suitable index method for efficient query 

processing in a high dimensional feature space. In Section 3.1, we compare existing index 

methods to select one of them, and in Section 3.2, we point out the drawbacks of the selected 

index method to be used in a high dimensional feature space. In Section 3.3, we propose a new 

pruning method which utilizes the selected index method and two properties to reduce the cost of 

query processing in the high dimensional feature space. 
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3.1. Index method selection 

In [18], the index methods are classified into two categories. One is the coordinate-based index 

methods [8][20][23][25][30], and the other is the distance-based index methods [2][3][5][27]. In 

[30], the coordinate-based index methods are further divided into space foundation [20][23] and 

data foundation [8][25][30]. We compare these index methods to select a suitable index method 

for a high dimensional feature space.  

The main idea of the coordinate-based index methods is to separate the space into several 

parts. The major difference between the space foundation and data foundation is the separating 

criterion. The separating criterion of space foundation is to separate the space such that the size 

of each subspace or the number of data in each subspace is similar. On the contrary, the data 

foundation index methods use the rectangle or circle to cover the data. Moreover, these 

rectangles or circles usually form a hierarchical structure. The space foundation index methods 

include the K-D-tree [11], K-D-B-tree [23], and Bkd-tree [20]. The data foundation index 

methods include the R-tree [11], SS-tree [25], and cluster tree [30].  

In [24] the authors propose several properties to show that the coordinate-based index 

methods are not efficient in the high dimensional environment. An important conclusion is that 

for every space foundation and data foundation index method “there is a dimensionality d such 

that, on average, all blocks are accessed if the number of dimensions exceeds d” (excerpts from 

[24]). A data structure VA-file is proposed to avoid the large number of disk accesses. As Figure 7 

shows, the VA-file separates the space into many blocks and uses a bit vector to represent a block. 

The bit vector implies the position of the block represented in the high dimensional feature space. 

For example, the bit vector 1111 represents the block whose lower left corner coordinate is (0.75, 

0.75). For each datum, the bit vector of the block which contains the datum is recorded by the 

VA-file. Therefore, the distance low bound of the query to each datum can be estimated. For 

example, in Figure 7, the distance low bound of the query q to datum C is 0.829. Moreover, the 

size of the bit vectors is smaller than the size of the coordinates of the data. Therefore, the 

VA-file can be loaded into main memory to estimate the distance. In [5], the authors add the 

polar coordinate information to enhance the pruning ability of the VA-file such that the distance 

estimation can be more precise. 

Although the VA-file reduces the cost of disk accesses in the distance low bound computation, 

it is useless in our classification task since the training data often can be loaded to the main 
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memory. In our experiments, all seven real datasets can be loaded to the main memory. 
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Figure 7. A VA-file 

Formula (3) is the Euclidian distance between two given data q and p in an n dimensional 

feature space.  
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The square of the distance can be computed by the followed method. First, set the square of 

the distance to be zero. Then, add the square of the difference one by one between q and p from 

the 1-st dimension to the n-th dimension. That is, 
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In [28], the authors proposed a method called Branch-and-bound ON Decomposed data 

(BOND) to avoid scanning all the dimensions to compute the distance for a KNN query. In an n 

dimensional feature space, BOND scans the first m dimensions to compute a partial distance first. 

The lower bound and the upper bound of the distance are then computed by the partial distance 

and the estimate distance of the remaining n-m dimensions. The lower bound and the upper 

bound of the distance can be used to reduce the search space. This method has a significant 

drawback, that is, it is difficult to choose a good m.   

Next, we introduce the distance-based index methods. The distance-based index methods 

include M-tree [6], and multiple reference points (MRP) methods [2][3][27]. The distance-based 

index methods utilize the triangle inequality to prune the distant data. Take the multiple 

reference points method as an example. First, some data are chosen as the reference points. Then, 
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the distance between each datum and each reference point is computed and recorded. For any 

two data p, q and a reference point r, the distance between p and q is larger than or equal to 

|pr-qr| (triangle inequality), where pr denotes the distance between p and r and qr denotes the 

distance between q and r. Therefore, given a query q and an error parameter ε, if we want to find 

all the data b such that |qb| ≤ ε, we can prune those data p which satisfies |pr-qr| > ε for a 

reference point r. In the method, pr and qr are pre-computed such that the pruning only needs a 

subtraction. This pruning skill is dimension-independent [2], which means the number of 

operations needed is independent of the number of dimensions. The dimension-independent 

characteristic is important in some applications. For example, the number of dimensions of the 

kernel space of SVM may be infinite. In [18], the authors utilize a dimension-independent 

method to efficiently find the top-k answers of SVM. Since the number of the dimensions of the 

feature space can be large in many applications, we design a dimension-independent method to 

find an approximate nearest neighbor for a given query q using the MRP method. The 

approximate nearest neighbor is then used to reduce the computation of the distance between q 

and the other data. 

 

3.2. The MRP method and its drawbacks 

We adopt the MRP method [2][3][27] as our index structure to improve the efficiency of the 

RCE-network construction. In Section 3.2.1, we introduce the MRP method and its index 

structure. In Section 3.2.2, we indicate the drawbacks of the MRP method which can be observed 

from our experiments. 

3.2.1 The MRP method 

Two actions must be done to use the MRP method. First, some points are chosen as the reference 

points. Second, a data structure is used to record the distance between each datum and each 

reference point. In [27], B+-tree is chosen to record the information. As Figure 8 shows, a pointer 

array is used to point to the location of each item in the B+-tree. 

Example 3.1: 

Take Table 2 as an example, point g and point h are chosen as the reference points. Figure 8 

shows the B+-tree structures of the reference points g and h. The B+-tree of reference point g 

stores the distances between g and each other point. 
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Table 2. The database 

Point a b c d e f g h 

Coordinates (5,5) (7,8) (7,5) (7,6) (6,6) (3,7) (3,8) (11,11)

Class 1 1 1 1 1 2 2 3 
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Figure 8. The B+-tree structure of the reference points 

Given a query q and several reference points, if a datum p is close to q, for each reference 

point r, DIS(q, r) should be close to DIS(p, r). Therefore, based on the B+-tree structure, the data 

whose DIS(p, r) are close to DIS(q, r) can be found efficiently.  

The main idea of the pruning skill of the MRP method is as follows. Using the triangle 

inequality property, the distance lower bound and the distance upper bound between the query 

and each datum can be estimated. Then, the distance lower bound and the distance upper bound 

are used to decide whether a datum can be pruned [2]. The distance lower bound and the distance 

upper bound can be estimated as follows. Suppose that p, q, and r are three points in a space. Let 

r be the reference point. The triangle inequality property is as follows: 

 |DIS(p, r)-DIS(q, r)| ≤ DIS(p, q)  (5) 

 |DIS(p, r)+DIS(q, r)| ≥ DIS(p, q)  (6)  

Formula (5) indicates that the distance between p and q is larger than or equal to the difference 

of DIS(p, q) and DIS(q, r). Formula (6) indicates that the distance between p and q is smaller 

than or equal to the sum of DIS(p, r) and DIS(q, r). In the multiple reference points case, the 

triangle inequality property can be extended as follows [3]: 

Property 3.1 

Given the multiple reference points {r1, r2, …, rm} and a query q. For a point p, the distance 

between p and q is bounded as follows: 

),(|}),(),({|max
1

qpDISrpDISrqDIS ii
mi

≤−
≤≤

   (7) 
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),(|}),(),({|min
1

qpDISrpDISrqDIS ii
mi

≥+
≤≤

   (8) 

Given a range query whose center is q and the radius h. Based on Property 3.1, we can prune 

each datum p whose maximum difference between DIS(q, ri) and DIS(p, ri) is larger than h, 

where 1≤i≤m. 

3.2.2 The drawback of the MRP method 

The advantage of the MRP method is that it has the dimension-independent characteristic. 

However, the characteristic cannot ensure that the MRP method works well in a high 

dimensional feature space. We use a simple experiment to verify the pruning rate of the MRP 

method. The pruning rate is the ratio of the number of the pruned data to the total number of the 

data. We vary the number of dimensions from 2 to 30 to create 29 feature spaces. For each 

feature space, we generate 10,000 uniform data in a unit cube. For each datum, its nearest 

neighbor is found using the MRP method. We test two strategies, in which Strategy A uses 10 

reference points and Strategy B uses 20 reference points. In Figure 9, when the number of 

dimensions is larger than 18, the average pruning rate of Strategy A is lower than 10%. 

Moreover, we compare the average pruning rate between Strategy A and Strategy B. In Figure 9, 

the average pruning rate of Strategy B is better than that of Strategy A. However, the higher 

average pruning rate cannot ensure shorter execution time. Figure 10 shows that Strategy A is 

more efficient than Strategy B. Also, we can see that the difference in the execution time of the 

two strategies increases when the number of dimensions increases. The reason is as follows. 

Based on Formula (7) and Formula (8), the costs for estimating the distance lower bound and the 

distance upper bound grow with the number of reference points. For example, in Figure 9, when 

the number of dimensions is larger than 20, the average pruning rates of both strategies are lower 

than 10%. However, Strategy B incurs additional computation cost such that its execution time 

grows faster than that of Strategy A as shown in Figure 10. 

The experiments show that the MRP method is useless when the number of dimensions is 

larger than 30 even though many reference points are used by the method. For overcoming the 

problem, in Section 3.3, we propose a method which is based on the MRP method and is useful 

on a high dimensional feature space whose number of dimensions can be larger than 30. 
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Figure 9. The average pruning rate of the MRP method 
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Figure 10. The run time of the MRP method 

3.3. The dimension pruning method 

In this section, we propose a pruning method which is based on the MRP method for efficient 

query processing. Based on the above discussion, an important characteristic for designing a high 

dimensional pruning method is dimension-independent. Our pruning method consists of two 

steps. In Section 3.3.1, we introduce the first step whose goal is to find an approximate nearest 

neighbor for the query q using the MRP method. We will show that this step is 

dimension-independent. In Section 3.3.2, the square of the distance between q and the 

approximate nearest neighbor is used as a threshold t in the second step to reduce the 

computation of the distance between q and each datum p. Based on Formula (4), the square of 

the distance can be computed dimension by dimension. It is called a partial result if it is the sum 

of the square of the difference from the 1-st dimension to the k-th dimension. k < n. If the partial 

result is larger than the threshold t, the datum p cannot become the answer of the query and 

therefore can be pruned. Moreover, we use some properties and experiments to show that the 

pruning method is efficient. 

3.3.1 Finding an approximate nearest neighbor by multiple reference points 
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In this section, we first introduce a simple method which is called random selection to find the 

approximate nearest neighbor, which can be easily analyzed. Based on the information of the 

MRP method, a better method is proposed to find the approximate nearest neighbor. 

When given a dataset of size N and a query q, the random selection method randomly selects λ 

data and computes the distance between q and each selected datum. The datum p which has the 

minimum DIS(q, p) of all the selected data is set as the approximate nearest neighbor of q. 

Moreover, we can rank all the data by the distance between q and each selected datum. A datum 

with a smaller rank means it is closer to q. Therefore, before analyzing the random selection 

method, we define the minimum rank as follows. 

Definition 3.1 Minimum Rank 

Given a query q, a dataset of size N, and a method to find an approximate nearest neighbor of 

q by computing the minimum DIS(q, p) from selected λ data. In the dataset, if p is the k-nearest 

neighbor of q, we say the minimum rank of the selected λ data is k. 

Example 3.2: 

Take Table 2 as an example, and let a be the query. Suppose we randomly select four data: b, 

d, g, and h. The DIS(a, d) is smaller than the other three selected data and d is the 3-nearest 

neighbor of a in the database. Then, the minimum rank of the four selected data is 3. 

Based on Definition 3.1, the result of the random selection method can be estimated by the 

following property. 

Property 3.2 

Given a query q and a dataset of size N. If the random selection method is adopted to select λ 

data to find an approximate nearest neighbor of q, the average minimum rank of the found 

approximate nearest neighbor is (N+1)/(λ+1). 

Proof: 

The average minimum rank is computed by dividing the sum of the minimum ranks of all 

different selection cases by the total number of all different selection cases. The total number of 

all different selection cases is . In these selection cases, the number of the selection cases 

whose minimum rank of the selected data is 1 is . It means that the nearest neighbor 

datum is selected and the other λ-1 data can be selected from the remaining N-1 data. The 

number of the selection cases whose minimum rank of the selected data is 2 is . It means 

NCλ

1
1
−
−

NCλ

2
1
−
−

NCλ
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that the 1-nearest neighbor datum cannot be selected and the 2-nearest neighbor datum is 

selected and the other λ-1 data can be selected from the remaining N-2 data. Based on the same 

reason, the number of the selection cases whose minimum rank of the selected data is 3 is 

, the number of the selection cases whose minimum rank of the selected data is 4 is 

, and so on. Therefore, the formula of the average minimum rank is as follow: 

3
1
−
−

NCλ

4
1
−
−

NCλ

(
(

1
∑
−

=

λN

i
)1/()1()

)1

1 ++=÷⋅
−

−
− λλλ NCCi NiN   (9)           

The details of Formula (9) can be seen in the Appendix. 

From Formula (9), we can see that the random selection method is dimension-independent 

because the variables are not influenced by the number of dimensions. 

Now, we introduce a greedy method which is based on the information of the MRP method to 

select better data, such that the average minimum rank of the selected data can be smaller than 

that of the randomly selected data. The method is called MRP-based selection. In the following, 

we first introduce the B+-tree structure of the MRP method, as shown in Figure 11. For each 

reference point, a B+-tree is built and each leaf node of the B+-tree records a datum and the 

distance between the reference point and the datum. The B+-tree is sorted by the distance. 

Therefore, the first leaf node of each B+-tree records the reference point itself because the 

distance between the reference point and itself is zero. For example, in the B+-tree of reference 

point j, the first node is j. When given a nearest neighbor query q and q is at the third node of the 

B+-tree of reference point j, it means that q is the 2-nearest neighbor of j. 

The main idea of MRP-based selection is described as follows. If a datum p is close to q, for 

each reference point r, DIS(q, r) should be close to DIS(q, p). Based on the idea and the B+-trees, 

MRP-based selection first selects those data whose locations are close to q in each B+-tree. For 

each reference point, we first find the location of q in its B+-tree. Then, we select the data from 

both sides of the location. For example, in Figure 11, we start from the B+-tree of reference point 

i. Because the location of q in the B+-tree is i3, the first two selected data are i2 and i4. The next 

two selected data are j1 and j3. After l5 and l6 are selected, if more data are needed, i1 and i5 are 

selected. Here, we do not care the order of reference points selection because the importance of 

each reference point is the same. The selection process will terminate when the number of 

selected data reaches a given value λ. For each selected datum p, we compute DIS(q, p). When 
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the selection process stops, p which has the minimum DIS(q, p) is set as the approximate nearest 

neighbor of q. Since the information of the dimensions is not considered in the selection process, 

MRP-based selection is dimension-independent. 
• • •
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B+-tree of reference point i

• • •

•
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Figure 11. The B+-tree structure 

The following experiment shows that the performance of MRP-based selection is better than 

that of the random selection method. Three real datasets USPS, MNIST, and LETTER (the three 

datasets can be obtained from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/) are used 

in the experiment. The number of dimensions of USPS is 256, the number of dimensions of 

MNIST is 784, and the number of dimensions of LETTER is 16. Since the number of the 

dimensions of the three datasets is different, we fix the number of the data of the three datasets 

for the experiment. We pick 7291 data from MNIST and LETTER respectively because USPS 

only has 7291 data. In these datasets, we execute an approximate 1-nearest neighbor query for 

each datum. The average minimum rank of MRP-based selection is shown in Figure 12. The 

x-axis denotes the number of the selected data of MRP-based selection. It is distinct that our 

method is dimension-independent since the average minimum ranks of the three datasets whose 

dimensions are very different are similar when the number of the selected data is 200. Moreover, 

based on Formula (9), the average minimum rank for the random selection method on 7291 data 

and 200 selected data is 36.27. The average minimum rank for MRP-based selection on USPS 

under the same setting is 11.47. The result shows that MRP-based selection is better than the 

random selection method in a high dimensional feature space. 
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Figure 12. The average minimum rank 

3.3.2 The dimension pruning  

The approximate nearest neighbor can be used to prune the data which cannot be an answer in 

the nearest neighbor query. The main idea of the pruning method is described as follows. Given 

a query q and its approximate nearest neighbor a. For each datum p, when we compute the 

distance between q and p, the Euclidian distance which is shown in Formula (3) is used. Our 

pruning method use (DIS(q, a))2 as a constraint. When , where 

1≤k≤n, p cannot be the nearest neighbor of q since DIS(q, a) is smaller than DIS(q, p). The 

smallest k is called the Number of the Computed Dimensions (NCD) of p. Given a data set X, the 

Average Number of the Computed Dimensions (ANCD) of X is the sum of the NCD’s of the data 

in X divided by the number of the data in X. Although the pruning method is simple, it is useful 

in a high dimensional feature space to be shown in the following. 

∑
=

>−
k

i
ii aqDISpq

1

22 )),(()(

In an n dimensional feature space, given a query q and a data set X={xi| xi is a datum in the 

space and DIS(q, xi) is d}. Assume the data in X are uniformly distributed on the surface of a 

hyper-sphere whose center is q and radius is d. An array with n buckets is used to record the sum 

of (qj-xij)2 for all xi, where j indicates the j-th dimension, which is stored at the j-th bucket. Since 

the data of X are uniformly distributed on the surface of a hyper-sphere whose center is q and 

radius is d, the value of each bucket is t*(d2/n) and the average value of each bucket is 

(t*(d2/n))/t = d2/n. Take Figure 13 as an example. There are 5 data which are distributed on the 

surface of 6 dimensions sphere. We use an array of six buckets to record the sum of (qj-xij)2 for 

all xi for qj respectively, where 1≤ j ≤ 6. The value of each bucket is close to 5*(102/6)=83.33 and 

the average value of each bucket is close to 102/6=16.67. Therefore, we say that the average 
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value of each dimension is d2/n because the average value of each dimension is close to d2/n if 

the data distribution is close to uniform distribution. 

d=10

5
2015

30
20

10

25 10
30

10

20 5

20
301520 15

30 15 520
20

10

85 80 90 80 75 90

3030
10

10 10
10

17 16 18 16 15 18

x1

Sum of each (Qj-xij)2

j=1
j=2

j=3 j=5
j=4 j=6

Q x2

x1

x2

x3

x4

x5

x3

x4

x5

d2/n = 100/6 ≈ 16.67

d=10

5
2015

30
20

10

25 10
30

10

20 5

20
301520 15

30 15 520
20

10

85 80 90 80 75 9085 80 90 80 75 90

3030
10

10 10
10

17 16 18 16 15 1817 16 18 16 15 18

x1

Sum of each (Qj-xij)2

j=1
j=2

j=3 j=5
j=4 j=6

Q x2

x1

x2

x3

x4

x5

x3

x4

x5

d2/n = 100/6 ≈ 16.67  
Figure 13. An example of average value of each dimension 

Property 3.3 

In an n dimensional feature space, given a query q and its approximate nearest neighbor a. 

Suppose that X and Y are two data sets: X={x| x is a datum in the feature space and DIS(q, x) is d} 

and Y={y| y is a datum in the feature space and DIS(q, y) is r*d}. Moreover, the data of X are 

uniformly distributed on the surface of a hyper-sphere whose center is q and radius is d. The data 

of Y are uniformly distributed on the surface of a hyper-sphere whose center is q and radius is 

r*d. If the ANCD of X is m, m < n, then the ANCD of Y is m/(r2). 

Proof: 

Since the data of X are uniformly distributed on the surface of a hyper-sphere whose center is q 

and radius is d, the average value of each dimension is d2/n. Since the ANCD of X is m and the 

average value of each dimension is d2/n, we can derive the following formula: 

 ),(
2

aqDIS
n

dm >⋅      (10) 

The data of Y are uniformly distributed on the surface of a hyper-sphere whose center is q and 

radius is r*d, the average value of each dimension is 
n
dr 22

. Suppose the ANCD of Y is g, we 

can derive the following formula: 
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By Formula (10) and Formula (11), we have . Therefore, the ANCD of Y is mrg =⋅ 2

2r
mg = .                  

Property 3.3 shows that the ANCD will be reduced with the square of the distance between the 

data and query. We use synthetic data to show Property 3.3. In a 100 dimensional feature space, 

we generate a query q and its approximate nearest neighbor a, DIS(q, a)=90. Then, we produce 

the data on the surface of five hyper-spheres. The center of the five hyper-spheres is q and their 

radii range from 100 to 500. For each hyper-sphere, 100,000 data are produced whose 

distribution is uniform on its surface. Figure 14 shows the pruning rate of the dimension pruning 

method in each dimension, i.e., the ratio of the number of the pruned data in the dimension to the 

total number of the data. The ANCD of the hyper-sphere whose radius is 100 is about 82 because 

the peak of the blue line is about 82. Based on the same reason, the ANCD of the hyper-sphere 

whose radius is 200 is about 21. The ANCD of the hyper-sphere whose radius is 300 is about 9. 

The ANCD of the hyper-sphere whose radius is 400 is about 5. The ANCD of the hyper-sphere 

whose radius is 500 is about 3. By Property 3.3, if the ANCD of the hyper-sphere whose radius 

is 100 is about 82, then the ANCD of the hyper-sphere whose radius is 500 is 82/(52)=3.28. The 

experiment result is close to the claim stated in Property 3.3. 

0
0.

05
0.

1
0.

15
0.

2
0.

25
0.

3

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97
Dimension

P
ru

ni
ng

 r
at
e

100

200

300

400

500

 
Figure 14. The average pruning rate for each dimension 

Based on Property 3.3, we know that choosing a good parameter m for BOND [28], which is 

discussed in Section 3.1, is difficult because the data are pruned at different dimensions which 

are dependent on the distances between the query and the data. 

Our pruning method can also be used to address the range query, as shown in Property 3.4. 
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Property 3.4 

In an n dimensional feature space, given a query q and a radius d. Suppose that X and Y are two 

data sets: X={x| x is a datum in the space and DIS(q, x) is d+ε} and Y={y| y is a datum in the 

space and DIS(q, y) is r*(d+ε)}, where ε > 0. Moreover, the data of X are uniformly distributed 

on the surface of a hyper-sphere whose center is q and radius d+ε. The data of Y are uniformly 

distributed on the surface of a hyper-sphere whose center is q and radius r*(d+ε). If the ANCD 

of X is m, then the ANCD of Y is m/(r2). 

Proof: 

Since the data of X are uniformly distributed on the surface of a hyper-sphere whose center is 

q and radius is d+ε, m is smaller than n. Based on Property 3.3, Property 3.4 is proved.   

In Property 3.4, if ε is very small, we know that our pruning method is also efficient in the 

range query. 

Property 3.3 describes the pruning ability of the dimension pruning method when the 

distribution of data is uniform. However, the uniform distribution is not a good distribution for 

our dimension pruning method. If the distribution of the data is not uniform, we can analyze the 

variance of each dimension and change the computation order of the Euclidian distance. If the 

variance of a dimension is zero, the values of all the data in the dimension are the same, i.e., the 

average distance of the data in the dimension is zero. On the contrary, the large variance of a 

dimension implies that the average distance of each datum in the dimension is large. Therefore, 

we can adjust the computation order of the Euclidian distance such that the dimensions whose 

variances are large are computed first. The original dimension pruning method is called the 

direct dimension pruning and the adjusted dimension pruning method is called the variance 

affected dimension pruning. We use the experiments to show the pruning ability of these two 

dimension pruning methods in Section 4.2. Moreover, the variance affected dimension pruning 

method is used in all the experiments on real databases since the distributions of real databases 

are not uniform.  

4. Experiments 
In this section, SVM and three RCE-network construction algorithms are executed to observe 

their training times and accuracy. In the experiments, we implement the Wu’s algorithm, the 

Rajan’s algorithm, and the RE algorithms. We also compare three RCE-network algorithms with 

LIBSVM, which can be found in the following webpage: 
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http://www.csie.ntu.edu.tw/~cjlin/libsvm/index.html. The real data and synthetic data are both 

used to test the above algorithms. The experimental results of all the algorithms on the synthetic 

data are taken to observe the performance of each algorithm with various parameters. The 

experimental results of all the algorithms on the different real databases can reflect the 

performance of each algorithm in the real environment. The experiments are made upon the Intel 

Pentium 4 CPU 2.8GHz with 1024 MB main memory and Microsoft Windows XP Professional. 

In Section 4.1, we discuss the experiments on synthetic data and the experiments on real data 

will be discussed in Section 4.2. 

4.1. The experiments on synthetic data 

The data generator generates the synthetic data in a hype-cube. The parameters of the data 

generator are shown in Table 3. We simply introduce the main steps of the data generator. First, 

the data generator randomly produces the center C of each class. Then, for a center C, the 

shortest distance S between C and the centers of the other classes is computed. In order to avoid 

the generated data from being covered by the other classes, the radius of the class is set to 0.49*S. 

The data generator randomly produces N data in a circle whose center is C and radius is 0.49*S. 

Table 3: The descriptions of major parameters 

Parameter Description 
D The number of dimensions 
C The number of classes 
N The number of nodes of each part

In the experiments, all programs are executed on three varied synthetic data. The parameter 

settings of the three varied synthetic data are shown in Table 4. First, we increase the number of 

data to obverse the variation of the training time. We fix the parameters D and C, and vary N 

such that the data size are generated from 5000 to 50000. The results are shown in Figure 15. The 

training time of all the algorithms grows linearly with data size except the Wu’s algorithm. For 

each datum q, the Wu’s algorithm must execute a 1-nearest neighbor query for q to find the 

nearest datum whose class is different from that of q. Therefore, the training time of the Wu’s 

algorithm is worse than that of the other algorithms. 

Table 4: The parameter settings 

 D C N Data size 
Varied Data size 500 20 10~100 5000~50000 
Varied Number of Dimensions 200~2000 20 20 10000 
Varied Number of Classes 1000 100~1000 180~18 About 18000 
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Figure 15. Varied data size 

Second, we fix the parameters C and N, and vary D. The results are shown in Figure 16. The 

training time of all the algorithms grows linearly with the number of dimensions. Third, we fix 

the parameters D and N, and vary C. The results are shown in Figure 17. Almost all the training 

time of the algorithms grows linearly with the number of classes except the Wu’s algorithm. 

Observe Figure 17, the Wu’s algorithm is not influenced by the number of classes because the 

Wu’s algorithm must produce a circle for each training datum no matter what the number of 

classes is. 

0

200
400

600

800

1000
1200

1400

1600
1800

2000

200 400 600 800 1000 1200 1400 1600 1800 2000
The number of dimensions

T
im

e 
(s

ec
on

d)

SVM
Wu
Rajan
RE

 
Figure 16. Varied the number of dimensions 
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Figure 17. Varied the number of classes 

4.2. The experiments on real data 
Executing all algorithms on real data to test their performance is necessary because the 

distributions of the real data are very different from the synthetic data. The different distributions 

will cause the different performances of each algorithm. Seven real databases are used to test the 

training time and the accuracy of all the algorithms. The data are collected from different 

applications and the parameters of each database are listed in Table 5. For example, LETTER is a 

handwritten letter database. MNIST is a handwritten digital database. ML FACE and UM FACE 

are the human face databases. The first five data sets can be got from 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/. ML FACE can be got from 

http://www.cs.cmu.edu/afs/cs.cmu.edu/user/mitchell/ftp/faces.html. UM FACE can be got from 

http://images.ee.umist.ac.uk/danny/database.html.  

Table 5: The parameters of real data sets 

Dataset Class Training size Testing size The total number of 
dimensions 

SHUTTLE 7 43,500 14,500 9 
LETTER 26 15,000 5,000 16 
IJCNN 2 49,990 91,701 22 
USPS 10 7,291 2,007 256 

MNIST 10 60,000 10,000 780 
ML FACE 20 564 60 15,360 
UM FACE 20 912 100 32,400 

First, we compare the pruning abilities of our pruning methods discussed in Section 3.3 on the 

real data. For each real database, we randomly pick 500 data to find the 1-nearest neighbor for 

them respectively. The pruning results are shown in Table 6. The ANCD is defined in Section 

3.3.2. For example, in UM FACE, it shows that after about 2562.92 dimensions are computed for 
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a datum, we know whether the datum is the answer, i.e., 92.1% dimensions need not be 

computed. In Table 6, the average dimension pruning rate (ADPR) shows the ratio of the ANCD 

to the total number of the dimensions. Moreover, in Section 3.3, the variance affected dimension 

pruning is presented. The ANCD of the variance affected dimension pruning and the ADPR of 

the variance affected dimension pruning are also shown in Table 6. The experiment shows that 

the variance affected dimension pruning is better than the direct dimension pruning in six real 

databases. The ADPR’s of the variance affected dimension pruning method are larger than 87% 

in the seven real databases. Since the data pruning rate is the ratio of the number of data which 

are pruned to the total number of the data, in our viewpoint, the ADPR is equivalent to the data 

pruning rate. For example, a database has 300,000 data and the number of the dimensions of its 

feature space is 2,000. When given a 1-nearest neighbor query, if 87% dimensions are not 

computed between the query and each datum, the computation cost is 300,000*260 because the 

query and each datum should compute 260 dimensions. If 87% data are pruned, the computation 

cost is 39,000*2,000 because the query and 13% data should compute 2,000 dimensions. Since 

300,000*260 is equal to 39,000*2,000, the ADPR and the data pruning rate are equivalent. 

Therefore, the experiments show that the dimension pruning method is useful in the high 

dimensional feature space. 

Table 6: The average pruning dimension for 1-NN query 

Database SHUTTLE LETTER IJCNN USPS MNIST ML 
FACE 

UM 
FACE

The total number of 
dimensions 9 16 22 256 780 15360 32400 

The ANCD of direct 
dimension pruning 1.16 2.32 1.12 51.41 45.7 5270.48 2562.92

The ADPR of direct 
dimension pruning 87.1% 85.5% 94.9% 79.9% 94.1% 65.7% 92.1%

The ANCD of variance 
affected dimension pruning 1.11 1.73 1.06 26.01 46.18 1041.5 1410.92

The ADPR of variance 
affected dimension pruning 87.7% 89.2% 95.2% 89.8% 94.1% 93.2% 95.6%

Second, we discuss the accuracy of each algorithm. The accuracy of each algorithm at each 

database is shown in Table 7. To address the classification problem of the RCE-network which is 

mentioned in Section 2.4, the KNN classifier is adopted to adjust the classifying mechanism of 

the RCE-network. In the experiments, k is 7. Compare the accuracy of the RE algorithm with 
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SVM on the seven databases, the RE algorithm only loses 1.44% accuracy on USPS. However, 

the accuracy of the RE algorithm is better than that of SVM 10.86% on LETTER.  

Table 7: The accuracy of each algorithm on each database 

     Database 
Algorithm 

SHUTTLE LETTER IJCNN USPS MNIST ML FACE UM FACE

RE 99.16% 93.10% 94.90% 92.33% 95.43% 98.33% 99% 

Rajan 99.74% 93.98% 95.69% 93.37% 96.40% 98.33% 99% 

Wu 99.90% 95.80% 97.37% 95.32% 97.04% 98.33% 100% 

SVM 97.61% 82.24% 92.79% 93.77% 94.46% 98.33% 94% 

In Table 7, the accuracy of the Wu’s algorithm are better then that of the Rajan’s algorithm, 

and the accuracy of the Rajan’s algorithm are better then that of the RE algorithm. However, the 

differences between the accuracy of the RE algorithm and that of the Wu’s algorithm are all 

within 3% in the seven databases. The number of circles of the RCE-network can be used to 

explain why the accuracy of the RE algorithm is worse than that of the other two RCE-network 

construction algorithms. The number of circles indicates how many circles are used by the 

RCE-network construction algorithms to cover all the training data. The RCE-network can be 

considered as using the circles to represent the training data. In general, the representation 

capability is better when the number of circles is larger. In Table 8, the numbers of circles of the 

three RCE-network algorithms on each database are listed. Clearly, the number of circles of the 

Wu’s algorithms is larger than that of the Rajan’s algorithm and the number of circles of the 

Rajan’s algorithms is larger than that of the RE algorithm. Therefore, the accuracy of the Wu’s 

algorithm is better than that of the Rajan’s algorithm and the RE algorithm. However, two 

drawbacks are caused by the large number of circles. First, the training time grows with the 

number of circles. Second, when a test datum will be classified, the large number of circles 

causes the huge computation cost to compute the distances between the center of all the circles 

and the test datum to decide the class label of the test datum. The first drawback can be observed 

from Table 9. The training time of the Rajan’s algorithm and the Wu’s algorithm are worse than 

that of the RE algorithm. The training time of the Rajan’s algorithm is about 9.72 times of that of 

the RE algorithm on IJCNN. The training time of the Wu’s algorithm is about 78.24 times of that 

of the RE algorithm on SHUTTLE. 
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Table 8: The number of circles of the three RCE-network algorithms on each database 

     Database 
Algorithm 

SHUTTLE LETTER IJCNN USPS MNIST ML FACE UM FACE

RE 192 2863 5375 849 7106 88 95 

Rajan 230 3514 6281 1194 10791 98 115 

Wu 43500 15000 49990 7291 60000 564 912 

For comparing the training time of the three RCE-network construction algorithms with that 

of SVM, the results also can be seen in Table 9. In the best case, the training time of SVM is 

about 49.65 times of that of the RE algorithm on SHUTTLE. In the high dimensional database 

UM FACE, the training time of SVM is also about 9.81 times of that of the RE algorithm. 

Moreover, in the seven real databases, the performance of the RE algorithm is better than that of 

SVM. 

Table 9: The training time (second) of each algorithm on each database 

     Database 
Algorithm 

SHUTTLE LETTER IJCNN USPS MNIST ML FACE UM FACE

RE 1.937 14.422 67.687 12.328 1377.531 10.328 37.406 
Rajan 5.938 68.313 657.906 52.297 3753.938 24.828 89.861 

Wu 151.547 51.313 155.281 136.25 7893.406 81.75 387.782 

SVM 96.172 49.172 155.047 22.859 1380.063 65.375 366.86 

In the synthetic data and real data, the training time and the accuracy of the RE algorithm are 

almost all better than that of SVM. To compare with the Wu’s algorithm and the Rajan’s 

algorithm, the differences between the accuracy of the RE algorithm and that of the two 

RCE-network construction algorithms are all within 3% in the seven databases. Moreover, in the 

best case of the seven real databases, the training time of the Wu’s algorithm is about 78.24 times 

of that of the RE algorithm. Based on these experimental results, the performance of the RE 

algorithm is almost better than all the other algorithms. 

5. Conclusion   
In this paper, we propose a new RCE-network construction algorithm. Moreover, for reducing 

the computation cost in the high dimensional feature space, we also propose a new pruning 

method which is based on the MRP method. Two properties are used to explain why the pruning 

method works well in the high dimensional feature space. In the experiments, we compare the 

RE algorithm with SVM and two past RCE-network construction algorithms. The results show 

an outstanding performance of the RE algorithm in training time and accuracy.  
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In the following, we discuss how to improve the dimension pruning method and RE algorithm 

and how to use them in other situations. 

(a) Enhance the dimension pruning method considering disk accesses. The dimension 

pruning method assumes all training data are loaded into the main memory for 

classification. However, in many applications, disk accesses are required. How to 

reduce the number of disk accesses using our pruning method is a problem to solve. 

(b) Utilize the dimension pruning method for other tasks. The dimension pruning 

method is efficient in the high dimensional feature space. It can be used for other tasks 

such as clustering and similarity search. For example, in the clustering task, when given 

a new datum q, q should be assigned to a cluster. In general, q is assigned to a cluster 

whose center is closest to q. Therefore, the dimension pruning method can be used to 

address the nearest neighbor query. 

(c) Utilize the RCE-network to solve the classification problem in a streaming 

environment. The RCE-network produces the circles as the summary to represent all 

the training data. This idea can be adopted such that the circles can be a suitable 

summary to keep the huge number of streaming data. Moreover, RE algorithm can be 

adjusted to meet the classification requirement in the streaming environment. We are 

currently working on employing our RE algorithm and the pruning method to classify 

data in a streaming environment. 
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Appendix 
The detailed proof of Formula (9) is as follows. 
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