
3D-List: A Data Structure for Efficient Video Query Processing

Chih-Chin Liu and Arbee L. P. Chen*

Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 300, R.O.C.

Email : alpchen@cs.nthu.edu.tw

Abstract

In this paper, a video query model based on the content of video and iconic

indexing is proposed. We extend the notion of two-dimensional strings to three-

dimensional strings (3D-Strings) for representing the spatial and temporal

relationships among the symbols in both a video and a video query. The problem of

video query processing is then transformed into a problem of three-dimensional

pattern matching. To efficiently match the 3D-Strings, a data structure called 3D-List

and its related algorithms are proposed. In this approach, the symbols of a video in

the video database are retrieved from the video index and organized as a 3D-List

according to the 3D-String of the video query. The related algorithms are then

applied on the 3D-List to determine whether this video is an answer to the video

query. Based on this approach, we have started a project called Vega. In this project,

we have implemented a user friendly interface for specifying video queries, a video

index tool for constructing the video index, and a video query processor based on the

notion of 3D-List. Some experiments are also performed to show the efficiency and

effectiveness of the proposed algorithms.

1. Introduction
Many multimedia applications such as World-Wide-Web, video-on-demand, and digital

library are getting popular recently. These applications need the support of a video database

system to efficiently manage video data and to provide a friendly user interface for the users

to retrieve video objects by their content. Compared with other media types such as text,

image, and audio, video contains richer information[11][21]. However, this richness results

in the lack of generally accepted representation of the content of video. Recent proposals

regard the representation of the content of video in several ways [11][12][18][20][22]. Based

on the object model, Oomoto and Tanaka[18] consider a video object as a sequence of video

frames and represent the content of a video object as a collection of attribute/value pairs

which are attached to the video object. Weiss et al.[22] view a video object as a three

2

dimensional box and use algebraic operators to assemble video objects. Smoliar and Zhang

[2 0] m o d e l t h e c o n t e n t o f

* To whom all correspondence should be sent.

3

video objects in two ways. First, according to their topics, video objects are classified into

classes and these classes form a tree structure of topical categories. Second, each video shot

is represented as a movie icon called a micon which consists of a volume of pixels. By taking

a horizontal or vertical slice on the micon, the movement of a symbol in the video object can

be traced. Chang et al. [5][6] propose the concept of 2D-string for representing the content of

images. In this approach, each object in an image is represented by a symbol and the orders

of all symbols along the x-axis and y-axis are stored in two strings. We extend the notion of

2D-string with some modifications to meet the characteristics of video and define 3D-String

for the representation of a video query. The problem of video query processing is then

transformed into a problem of three-dimensional pattern matching. Many string matching

algorithms [1][4][9][13] and pattern matching algorithms [2][3][10] were proposed in the

past. However, they are not suitable to apply on the 3D-Strings since the relationships

between the symbols in a 3D-String are much more complex than those between symbols in

a string or pattern.

In this paper we develop an efficient three-dimensional pattern matching mechanism. To

process a video query, we first construct a 3D-String for representing the spatial and

temporal relationships between symbols in the video query. Then, the symbol objects of a

video object to be evaluated in the video database are retrieved and organized as a 3D-List

according to the 3D-String. The 3D-List is a compact graph representation of the spatial-

temporal relationships between symbol objects in a video object. Then the 3D-List

refinement algorithm is applied on the 3D-List to reduce the number of symbol objects in

the 3D-List. Finally, the refined 3D-List is traversed to determine whether the video object

is an answer to the video query.

The rest of this paper is organized as follows. Section 2 provides an overview of the Vega

video database system implemented at our database laboratory. The function of each

component in this system is discussed. Section 3 describes the motivation of our approach

for video query processing. The concept of the 3D-Strings for representing video queries and

the algorithms for constructing the 3D-String from a video query are discussed in Section 4.

The 3D-List data structure and its related algorithms for processing video queries are

proposed in Section 5. To show the efficiency and effectiveness of our approach, a series of

experiment results are provided in Section 6. Section 7 concludes this paper and describes

our future work. Appendix lists the detail of the algorithms for video query processing.

4

2. Overview of Vega
2.1 Architecture of the Vega Video Database System

Target
Video
Raw
Data

Motion
Track

Extractor

Symbol
Object

Detector

Shot
Detector

DBA

Symbolic
Video
Player

Video
Query

Command

Video
Query

Interface

Video
Player

User

Video
Synchronizer

Video
Storage

Manager

Video
Query

Processor

Video
Database

Video
Index

Decompressed
Video

Symbolic
Video

Target
Video
Index

Video
Query
(3D-String,
3D-Curves)

Video
Query
(3D-String,
3D-Curves)

Video
Query
(GUI) Video

Query
(Language)

Multimedia
Network

Video Raw DataVideo Index

Video
Raw Data

Video Index

Video
Query

Target
Video Index

Target Video
Raw Data

Target Video
Raw Data

Target
Video
OID

Target
Video
OID

Video
Index
Tool

Figure 1: Architecture of the Vega video database system.

Figure 1 illustrates the architecture of the Vega video database system which consists of a

video database server and one or more video clients. The video database server provides two

basic functions, i.e., the storage management of video data and content-based video

retrieval. The first function is supported by the video storage manager (we use EOS [24]

object storage manager to manage video objects) and its detail will not be discussed in this

paper. The components which provide video indexing, video query interface, and video query

processing are described in the following:

y Video Indexing : A video object consists of a sequence of shots in general. Since the

relationships between two symbol objects in a shot is semantically stronger than those in

two different shots, it is convenient to adopt a shot as a basic index unit. Therefore, a shot

detector is needed to automatically parse the compressed raw data of a video object into a

sequence of shots [14]. A symbol object detector is then needed to detect the symbol objects

from the shots. As a video object plays, the appearance of each symbol object contained in

the video object forms a three-dimensional curve(3D-Curve). This is called the motion track

of the symbol object. The motion track is one of the major features of a symbol object. A

motion track extractor traces the motion of a symbol object in continous frames that the

5

symbol object appears, and encodes and stores the motion track in the video database [7][17].

Since the automatical index derivation techniques are still under investigation, a video

index tool is first implemented for manually constructing the video index for video objects.

This index tool will be further discussed in Section 2.3.

y Video Query Interface: To support content-based video retrieval, a graphical video query

interface tool is required for the users to specify video queries. This will be further discussed

in Section 2.2. We have also developed a content-based video query language [15]. Users can

specify the relationships between any pair of symbol objects as the query conditions using

this language.

y Video Query Processor : A typical video query processor provides many kinds of feature

matching mechanisms. These features depend on which content model the video queries are

based. It compares the similarity of a video query and the video index of the video objects

and generates target video OIDs as output. Currently, a curve matching method and a 3D-

String matching method are implemented in Vega. In traditional databases, the results of a

query are sent to the user right after the query is processed. However, since video objects

are large, the result of a video query is transmitted to the user site in certain data rate

controlled by a video synchronizer.

2.2 Video Query Interface

Figure 2: The video query interface.

Figure 2 shows a video query interface we have implemented in Vega. It consists of a

video query area, an icon list, a time diagram, and a motion track list. We use an example to

illustrate how to use this interface to specify a video query. Assume a user wants to retrieve

the video objects that contain a tree located on the lower-left corner of the screen, a horse

running from the right side of the tree to the lower-right corner of the screen, and an eagle

6

flying across the screen from the upper-left corner to the lower-right corner. To specify this

video query, a tree icon, a horse icon, and an eagle icon from the icon list are selected and

located at the relative places in the video query area. Two motion tracks are then drawn for

the horse and the eagle using the functions provided in the motion track list. Finally, a time

interval is attached to each icon using the time diagram. This video query is also shown in

Figure 2.

2.3 Video Index Tool and Video Index Structures

Figure 3: The video index tool.

The video index tool shown in Figure 3 is a graphical interface for building the video

index of the video objects. It consists of a video index windows and a video playout window.

The video index window consists of a set of VCR buttons, an icon list, and an index display

area. It allows users to interactively select interesting symbol objects of a video object and

build corresponding indices for these symbol objects. First, the video object to be indexed is

selected and played. When an interesting symbol object appears, the user presses the VCR

button to pause the playout and chooses an icon representing the symbol object from the

icon list and put it at the position that the symbol object appears in the video playout

window. The corresponding symbol object will appear in the index display window. Repeat

this step for interesting symbol object in this video frame. The object identifiers of the video

object, the icon that the symbol object belongs to, and the symbol object itself, and the x, y

coordinate values of the central point of the symbol object, and the frame number that the

symbol object starts to appear in the video object are stored in a table called video index

table. Table 1 illustrates an example video index table. The video object V0001 contains ten

symbol objects. These symbol objects belong to three icons.

video_oid icon_oid symbol_oid x y frame

7

V0001 E S0001 0 2 4
V0001 E S0002 2 0 15
V0001 E S0003 1 1 20
V0001 T S0004 0 1 1
V0001 T S0005 0 2 25
V0001 T S0006 2 0 40
V0001 H S0007 2 1 1
V0001 H S0008 1 1 31
V0001 H S0009 2 2 22
V0001 H S0010 0 2 40

Table 1: An example video index table.

In addition to the video index table, a video signature is constructed for each video object.

Table 2 shows that there are two video objects: V0001 and V0002. The bits in a video

signature from left to right represent the existence of the symbol objects which belong to the

Icon class, the Tree class (IS-A Icon), the Animal class (IS-A Icon), the Pine class (IS-A Tree),

the Olive class (IS-A Tree), the Eagle class (IS-A Animal), and the Horse class (IS-A Animal).

Therefore, video object V0001 contains the symbol objects belonging to the Icon class, the

Tree class, the Animal class, the Pine class, and the Horse class.

video_oid signature
V0001 1111001
V0002 1010010

Table 2: A video signature file.

The video signatures can be used to fast preprocess a video query to reduce the number of

video objects needed to be further evaluated. When a user specifies a video query using the

video interface, a query signature is constructed according to the icons of the video query.

Each bit of the query signature denotes whether the corresponding type of symbol objects

exists in the video query. The query signature is then compared with every video signature

to decide whether the associated video object contains all types of symbol objects in the

video query. If it does, the video object needs to be further evaluated to decide whether it is

one of the query answers.

3. A Motivative Example
Before we formally describe the concept of the 3D-Strings for representing video queries

and the data structure 3D-List for processing video queries, in this section, we use an

example to motivate our approach.

8

Assume a video query Q contains three icons A, B, and C. Icons A and B are at the same

place in the x-axis and icon C on the right side of icon B (and icon A). This information can

be denoted as the string A≡BÖC. This notation can also be used to represent the relative

positions between symbol objects in a video object. For example, assume a video object V has

16 symbol objects a1, a2, a3, b1, b2, c1, c2, c3, d1, d2, d3, e1, e2, f1, f2, and f3 (where a1, a2, and a3

belong to icon A, b1 and b2 icon B, etc.) and their relative positions are denoted as

a1≡e2≡b2Öf1≡d1≡f2Öa3≡b1≡a2≡c1≡d2Öe1Öc2≡d3≡c3Öf3. We say the video object V is an answer

of the video query Q, if V contains three symbol objects ai, bj, and ck such that ai≡bjÖck.

To decide whether V is an answer of Q, a straightforward method is to match the two

associated strings. However, due to the complexity of the relationships between the symbol

objects, this method will be very inefficient. For example, when we find a1 and b2 match A≡B,

we have to check Öf1≡d1≡f2Öa3≡b1≡a2≡c1≡d2Öe1Öc2≡d3≡c3Öf3 to find the symbol object that

matchs ÖC.

a1

a3

a2

b2

b1

c1

c2

c3

(a)

 A ≡ B Ö C

a1

a3

a2

b2

b1

c1

c2

c3

(b)

 A ≡ B Ö C

a1

a3

a2

b2

b1

c1

c2

c3

(c)

 A ≡ B Ö C

a1

a3

a2

b2

b1

c1

c2

c3

(d)

a1

a3

a2

b2

b1

c1

c2

c3

(e)

 A ≡ B Ö C A ≡ B Ö C

a1

a3

a2

b2

b1

c1

c2

c3

(f)

 A ≡ B Ö C

Figure 4: A Motivative Example for Video Query Processing.

Instead of directly matching the two strings, we use the string associated with a video

query as a template and a data structure to see whether the symbol objects of a video object

can fit the template. Only those symbol objects of a video object that belong to the icons of a

video query need to be retrieved and checked. In this example, only a1, a2, a3, b1, b2, c1, c2,

and c3 are retrieved and three sets {a1, a2, a3}, {b1, b2}, and {c1, c2, c3} are formed. The next

9

step is to check whether there exist three symbol objects selected from {a1, a2, a3}, {b1, b2},

and {c1, c2, c3}, respectively, that match A≡BÖC. Instead of checking 3*2*3 = 18

combinations of these symbol objects, we develop a data structure to efficiently perform the

matching process. First these symbol objects belonging to the same icon are arranged

according to their sequence in the string as shown in Figure 4 (a). Then a3 and a2 are linked

since they are at the same position which implies that they can be treated as a symbol object

for the checking. Similarly, c2 and c3 are linked. The number of the combinations is reduced

to 2*2*2 = 8. Checking the relative position between a1 and b2, we find they match A≡B. a1

and b2 are thus linked as shown in Figure 4 (b). a1 and b2 need not be checked since b2 and b1

are not at the same position (they are not linked). Similarly, a3 and b2 need not be checked

since a3 and a1 are not at the same position. Also, a2 and b2 need not be checked since a2 and

a3 are not at the same position. The remaining checking process is as shown in Figure 4 (c)

to Figure 4 (f). Totally, only six checkings are needed.

The discussion above only considers the relationships between symbol objects in the x-

axis. When we evaluate a video object against a video query, the relationships between the

symbol objects in the x-axis, y-axis, and time-axis should all be checked. An efficient

algorithm should be developed to combine the one-dimensional results into the three-

dimensional results. This is another important problem we have to deal with when we

process a video query.

4. The Representation of Video Queries
In this section, we describe the video query model and introduce the notion of 3D-Strings

which are used to represent the spatial and temporal relationships between the icons in a

video query.

As described in Section 2, the symbol objects which represent the same kind of real world

entities are grouped into an icon. The icons in the video database system form an icon

hierarchy. Each icon has a graphical notation. A user can operate the query interface tool to

select the icons of a video query, to place these icons at some locations in the screen to

specify their spatial relationships, and to attach each icon a time interval to specify the

period the icon appears. We define the position of an icon by combining the geometrical

location and the temporal location of the icon.

Definition 1 Position of an Icon

10

Assume the resolution of the screen of the query interface tool is Xmax * Ymax pixels. The

position of an icon in a video query is defined to be a triple (x, y, t), where x and y are the

coordinate values in the x-axis and y-axis of the central point of the icon, and t is the

number of the frame that the icon begins to appear in the video query.

According to this definition, we only recognize the central point of the icon. The

information about the shape or size of the icon are omitted to reduce the complexity of query

processing. We will relax this limitation in the future.

Because the resolution of the screen of the query interface tool and the resolution (size) of

each video object in the video database can be different, a uniform resolution model should

be provided as the basis to perform similarity comparison between video queries and the

index of video objects. Thus, the screen area is divided into Xrank * Yrank grids of equal sizes

where Xrank and Yrank are user specified. This concept can be extended to the time dimension.

The total time intervals of a video query and each video object are both divided into Trank

time intervals. The position of an icon in the uniform resolution model, also called the rank

of the icon, can be defined as follows.

Definition 2 Rank of an Icon

Assume the position of an Icon I is (x, y, t), the screen resolution of the query interface

tool is Xmax * Ymax pixels and is divided into Xrank * Yrank grids, and the total time interval of a

video query is set to Tmax frames and is divided into Trank time intervals. The rank of the icon I

is defined to be the triple (Rx(I), Ry(I), Rt(I)), where Rx(I) =  x ∗ Xrank / Xmax , Ry(I) =  y ∗ Yrank /

Ymax , and Rt(I) =  t ∗ Trank / Tmax .

For any two icons in a video query, basically, there are two kinds of spatial/temporal

relationships between them, i.e., the adjacent relationships and the appositional

relationships as defined in the following.

Definition 3 Adjacent Relationships

For any two icons I1 and I2 in a video query, I1 is adjacent to I2 in the x-axis with distance

n, denoted by I1 |n I2, if and only if Rx(I1) - Rx(I2) = n. Similarly, I1 is adjacent to I2 in the y-axis

or t-axis with distance n, if and only if Ry(I1) - Ry(I2) = n or Rt(I1) - Rt(I2) = n, respectively.

Definition 4 Appositional Relationships

For any two icons I1 and I2 in a video query, I1 is appositional to I2 in the x-axis, denoted

by I1 ≡ I2, if and only if Rx(I1) = Rx(I2). Similarly, I1 is appositional to I2 in the y-axis or t-axis, if

and only if Ry(I1) = Ry(I2) or Rt(I1) = Rt(I2), respectively.

11

The adjacent relationship and the appositional relationship form the normal spatial-

temporal relationship set {|n, ≡}.

Having defined the adjacent relationships and the appositional relationships, we can

further define the 1D-String and the 3D-String notation for the representation of the

spatial-temporal relationships between icons of a video query.

Definition 5 Normal 1D-Strings

A normal 1D-String of length k is a string of the form I1α1I2α2 I3... αk-1Ik, where each Ii is an

icon and each α j is in {|n, ≡}.

Definition 6 Normal 3D-Strings

A normal 3D-String of length k is a triple (X, Y, T), where X, Y, and T are 1D-Strings of

the forms I1α1I2α2I3...αk-1Ik, I1′β1I2′β2I3′...βk-1Ik′, and I1″γ1I2″γ2I3″...γk-1Ik″, respectively. In these

strings, each Ii , I1′ , and I1″ is an icon, each α j, βj, and γj is in {|n, ≡}, and { I1, I2, I3,..., Ik } = { I1′,

I2′, I3′,...,Ik′} = { I1″, I2″, I3″,...,Ik″}.

Example 1

Assume A, B, C, and D are four icons. (A ≡ B|1 C|2 D, B|1 C ≡ A|2 D, C|2 D ≡ B ≡ A) is a 3D-

String, since ≡,|1, and |2 are in{|n, ≡}, and {A, B, C, D} = {B, C, A, D} = {C, D, B, A}. (A ≡ B|1 C,

B|1 C |2 D, C|2 D ≡ A) is not a 3D-String, since {A, B, C} ≠ {B, C, D} ≠ {C, D, A}.

The adjacent relationships and the appositional relationships are a straightforward

explanation of the spatial-temporal relationships between icons of a video query. There may

exist other explanations for them. For example, a user specifies an eagle icon above a tree

icon, but he or she may not know how far between them or does not care about their relative

position. Therefore, we further define the precedent relationships and the unknown

relationships for these situations.

Definition 7 Precedent Relationships

For any two icons I1 and I2 in a video query, I1 is precedent to I2 in the x-axis, denoted I1 Ö

I2, if and only if Rx(I1) < Rx(I2). Similarly, I1 is precedent to I2 in the y-axis or t-axis, if and only

if Ry(I1) < Ry(I2) or Rt(I1) < Rt(I2), respectively.

Definition 8 Unknown Relationships

For any two icons I1 and I2, there is an unknown relationship between I1 and I2, denoted I1 ?

I2, if and only if I1 and I2 appear in the same video query and their relative position is

unknown.

The adjacent relationships, the appositional relationships, the percedent relationships,

12

and the unknown relationships form the extended spatial-temporal relationship set {|n, ≡,

Ö, ?}.

Definition 9 Video Query

A video query Q is a triple (I, R, Q-type), where I is the set of all icons referred to in the

query, R is the set of the ranks of icons in I, and Q-type is a number whose value is 0, 1, or 2

denoting the way to translate the spatial-temporal relationships between the icons in I. If

Q-type is 0, all spatial-temporal relationships between icons in I are translated into

unknown relationships. If Q-type is 1, the adjacent relationships between icons in I are

translated into precedent relationships. If Q-type is 2, the adjacent relationships and the

appositional relationships between icons in I are retained.

We define the extended 1D-Strings and the extended 3D-Strings for representing video

queries.

Definition 10 Extended 1D-Strings

An extended 1D-String of length k is a string of the form I1α1I2α2 I3... αk-1Ik, where each Ii

is an icon and each α j is in {|n, ≡, Ö, ?}.

Definition 11 Extended 3D-Strings

An extended 3D-String of length k is a triple (X, Y, T), where X, Y, and T are 1D-Strings

of the forms I1α1I2α2I3...αk-1Ik, I1′β1I2′β2I3′...βk-1Ik′, and I1″γ1I2″γ2I3″...γk-1Ik″, respectively. In these

strings, each Ii , I1′ , and I1″ is an icon, each α j, βj, and γj is in {|n, ≡, Ö, ?}, and { I1, I2, I3,..., Ik }

= { I1′, I2′, I3′,...,Ik′} = { I1″, I2″, I3″,...,Ik″}.

A video query can be transformed into an extended 3D-String. The transformation takes

two steps. First, a video query is transformed into a normal 3D-String according to the

ranks of the icons in the video query as stated in Algorithm 1 and Algorithm 2. Second, the

normal 3D-String is transformed into an extended 3D-String according to the query type as

stated in Algorithm 3 and Algorithm 4.

Algorithm 1 Build_1D_String(Q, X)
/* input : a video query Q */
/* output : a normal 1D-String */
0: begin
1: n ← 1
2: X ← φ
3: for i = 1 to Rx

4: begin
5: if do not exist any icon I with Rx(I) = i
6: n ← n+1

13

7: else
8: begin
9: pick an icon with Rx(I) = i
10: if X = φ
11: X← I
12: else
13: X← X + “|n” + I
14: end if
15: n ← 1
16: for each icon I′ with Rx(I′) = i and I′ ≠ I
17: X← X + “≡” + I
18: end
19: end if
20: end
21: end

Algorithm 1 constructs a normal 1D-String from a video query in the x-axis. The icons in

the video query are sorted according to their Rx values in the rank. If the Rx values of two

adjacent icons are the same, an appositional relationship “≡” is inserted between them (as

shown in line 17). Otherwise, an adjacent relationship “|n” is inserted (as shown in line 13),

where n is the difference of their Rx values. Similarly, this algorithm can be applied in the

y-axis or t-axis by changing the Rx values to Ry or Rt values, respectively.

Algorithm 2 Build_3D_String(Q, (X, Y, T))
/* input : a video query Q */
/* output : a normal 3D-String (X, Y, T) */
0: begin
1: Build_1D_String(Q, X)
2: Build_1D_String(Q, Y)
3: Build_1D_String(Q, T)
4: end

Algorithm 2 constructs a normal 3D-String from a video query by applying Algorithm 1 in

the x-axis, y-axis, and t-axis.

After a normal 3D-String is constructed from a video query, the next step is to change the

spatial-temporal relationships in the normal 3D-String according to the query type specified

by the user. This can be done by applying the following two algorithms.

Algorithm 3 Transform_1D_String(X, Q-type)
/* input : a normal 1D-String X = I1α1I2α2 I3... αk-1Ik and the query type Q-type*/
/* output : an extended 1D-String X′ = I1β1I2β2 I3... βk-1Ik */
0: begin
1: begin case
2: case Q-type = 0

14

3: for i = 1 to k-1
4: α i ← “?”
5: case Q-type = 1
6: for i = 1 to k-1
7: if α i = “|n”
8: α i ← “Ö”
9: end if
10: end case
11: X′ ← X
12: return X′
13: end

Algorithm 4 Transform_3D_String((X, Y, T), Q-type)
/* input : a normal 3D-String (X, Y, T) and the query type Q-type*/
/* output : an extended 3D-String (X′, Y′, T′) */
0: begin
1: X′ ← Transform_1D_String(X, Q-type)
2: Y′ ←Transform _1D_String(Y, Q-type)
3: T′ ←Transform _1D_String(T, Q-type)
4: return (X′, Y′, T′)
5: end

Algorithm 4 constructs an extended 3D-String from a normal 3D-String by applying

Algorithm 3 in the x-axis, y-axis, and t-axis. Table 3 summarizes the transformation of the

spatial-temporal relationships used in Algorithm 3.

Normal
1D-String

Type 0 Extended
1D-String

Type 1 Extended
1D-String

Type 2 Extended
1D-String

A|n B A ? B A Ö B A |n B
A ≡ B A ? B A ≡ B A ≡ B

Table 3: Transformation rules for normal 1D-Strings.

[20, 59]

[0, 59] [0, 59]

Figure 5: A video query example.

Example 2 Assume there is a video query Q1 as shown in Figure 5, which contains three

15

icons: an Eagle E, a tree T, and a horse H. The screen resolution of the query interface tool is

1024 * 768 pixels and is divided into 4 * 4 grids, and the total time interval of a video query

is set to 60 frames and is divided into 4 time intervals. The positions of E, T, and H are (120,

670, 20), (125, 85, 0), and (384, 110, 0), respectively. The ranks of the three icons are

computed as follows.

Rank E = (Rx(E), Ry(E), Rt(E))

 = (120∗ 4 /1024 , 670∗ 4 /768 , 20∗ 4/60) = (0, 3, 1)

Rank T = (Rx(T), Ry(T), Rt(T))

 = (125∗ 4 /1024 , 85∗ 4 /768 , 0∗ 4/60) = (0, 0, 0)

Rank H = (Rx(H), Ry(H), Rt(H))

 = (384∗ 4 /1024 , 110∗ 4 /768 , 0∗ 4/60) = (1, 0, 0)

Applying Algorithm 2, the normal 3D-String representation of Q1 is:

(X, Y, T) = (E ≡ T |1 H, T ≡ H|3 E, E |1 T ≡ H)

Applying Algorithm 4, the extended 3D-String representation of Q1 of type 1 is:

(X′, Y′, T′) = (E ≡ T Ö H, T ≡ HÖ E, E Ö T ≡ H)

5. Video Query Processing
To check whether the symbol objects of a video object and the spatial and temporal

relationships between them satisfies a video query, we introduce a data structure called

3D-List and its related algorithms in this section. First, we will describe the structure and

algorithms of 1D-List, the one-dimensional special case of 3D-List. The algorithms for

combining and refining the three one-dimensional results are then proposed. Finally, the

algorithm for generating the three-dimensional final results will be discussed.

5.1 Generating 1D Results

As we have described in the previous section, a video query can be represented as a 3D-

String. The video objects which contain one or more sets of symbol objects that match the

3D-String of a video query are the answers of the video query. Since a 3D-String consists of

three 1D-Strings, we first define the solutions of 1D-String. Let Icon() be a function which

returns the corresponding icon of a symbol object.

Definition 12 Solutions and Solution Set of a 1D-String

Assume there is a 1D-String X of length k where X = I1α1I2α2…αk-1Ik. A set of k symbol

objects S = {s1, s2, …, sk} is a solution of X, if and only if for each symbol si, Icon(si) = Ii, 1 ≤ i ≤

16

k, and s1α1s2α2 …αk-1sk holds. The solution set of the 1D-String X is the set of all solutions of

X.

Our approach for video query processing is based on the notion of the equivalence

relationships. Equivalence relationships are defined to reduce the complexity of the

representation of the relationships between objects. For example, assume there are five

numbers 1, 2, 3, 6, and 7 and six great-than relationships needed to be recorded between

them: 1 < 6, 1 < 7, 2 < 6, 2 < 7, 3 < 6, and 3 < 7. These great-than relationships can be more

concisely represented as {1, 2, 3} < {6, 7} where {1, 2, 3} and {6, 7} are two equivalence sets

and there is an equivalence relationship between each pair of numbers in an equivalence set.

We define equivalence relationships as follows.

Definition 13 Complete Solution Set, Equivalence Set, and Equivalence Relationships

A complete solution set S of a 1D-String X of length k where X = I1α1I2α2…αk-1Ik is a

solution set {{s1, s2, ..., sk}|s1∈ S1, s2∈ S2, …, sk∈ Sk} of X, where Si is a set of symbol objects and

Icon(s) = Ii for each s∈ Si, 1 ≤ i ≤ k, and for each s1∈ S1, s2∈ S2, …, sk∈ Sk, s1α1s2α2 …αk-1sk holds.

Each set of symbol objects Si is called an equivalence set of X and every pair of symbol objects

in an equivalence set has an equivalence relationship between them.

Definition 14 Equivalence Group of S with respect to α i-1Iiα i

Assume there is a 1D-String X = I1α1I2α2…αk-1Ik and a set of symbol objects S. Let α0 and αk

be “Ö”. The ordered list of symbol objects G = <s1, s2, …, sn>, Icon(sj) = Ii, 1 ≤ j ≤ n, is an

equivalence group of S with respect to α i-1Iiα i, if and only if for any two symbol objects s1 and

s2 of G and any two symbol objects s1′ and s2′, if s1′ α i-1 s1 α i s2′ holds, s1′ α i-1 s2 α i s2′ holds. For

every pair of symbol objects in an equivalence group with respect to α i-1Iiα i, there is an

equivalence relationship (with respect to α i-1Iiα i) between them. These equivalence

relationships are denoted as ε. For example, the equivalence group G = <s1, s2, …, sn> can be

denoted as s1 ε s2 ε …ε sn.

We use the video object shown in Table 1 to illustrate the concept of the equivalence

group. Assume there is a 1D-String X = E≡TÖH. The ordered list of symbol objects G =

<s0004, s0005> is an equivalence group with respect to ≡TÖ, since Icon(s0004) = Icon(s0005)

= T and the two symbol objects have the same Rx value which means for any two symbol

objects s1′ and s2′, if s1′ ≡ s0004 Ö s2′ holds, s1′ ≡ s0005 Ö s2′ holds.

Except for the first icon and the last icon, there are two extended spatial-temporal

relationships an icon Ii can be involved in a 1D-String, i.e., α i-1 and α i. Since there are four

17

types of extended spatial-temporal relationships, there are 4 * 4 = 16 cases we should

consider when we build the equivalence groups with respect to α i-1Iiα i. Since the unknown

relationship and the other types of extended spatial-temporal relationships never appear

together in the same 1D-String, the number of cases reduces to 3 * 3 = 9. Further, the

adjacent relationships and the appositional relationships follow the same rules to construct

the equivalence groups, the number of cases reduces to 2 * 2 = 4. By analyzing the four cases,

the following rule is derived to link the symbol objects with equivalence relationships to

form equivalence groups.

Assume there is a 1D-String X = I1α1I2α2…αk-1Ik and a set of symbol objects S. Let α0 and αk

be “Ö”. For each icon Ii, if α i-1 = α i = “Ö”, then the equivalence group of S with respect to α i-

1Iiα i is the ordered list of n symbols G = < s1, s2, …, sn > where s1, s2, …, sn are symbols in S,

Icon(sj) = Ii for 1 ≤ j ≤ n, and Rx(sj) ≤ Rx(sj+1) for 1 ≤ j < n (Note that Rx(si) represents the Rx

value of si in the rank); otherwise, symbols sj, Icon(sj) = Ii, with the same Rx value will form

an equivalence group.

Note that, if α i-1 = α i = “Ö”, there is only one equivalence group of S with respect to α i-1Iiα i;

otherwise, the number of equivalence groups of S with respect to α i-1Iiα i is the number of

different Rx values of all symbol objects in Ii.

Having defined the extended spatial-temporal relationships and the equivalence

relationships with respect to α i-1Iiα i, now we can define 1D-List, the data structure used to

perform 1D-String matching.

Definition 15 1D-List

A 1D-List is a 5-tuple (X, S, {sstart, send}, R, E), where X is a 1D-String, S is a set of symbol

objects, R is the set of relationships among S over the extended relationship set {|n, ≡, Ö, ?},

and E is the set of equivalence relationships among the symbol objects of the equivalence

groups of S. sstart and send are two dummy symbol objects defined to mark the start point and

end point of the 1D-List.

Figure 6 (d) shows a 1D-List example. The 1D-String X = E ≡ T Ö H. The symbol object S

= {s0001, s0002, s0003, ..., s0010} forms six equivalence groups {s0001}, {s0002}, {s0003},

{s0004, s0005}, {s0006}, and {s0007, s0008, s0009, s0010}. The equivalence relationship with

respect to ≡ T Ö is s0004 ε s0005. The three equivalence relationships with respect to Ö H Ö

is s0010 ε s0008, s0008 ε s0007, and s0007 ε s0009. The extended spatial-temporal

relationships between S are denoted as dashed arrow in the Figure.

18

The goal of the construction of the 1D-List is to find the solutions of its associated 1D-

String. However, a 1D-List may contain symbol objects that are not involved in any

solutions of the 1D-String. Therefore, the 1D-List should be refined to remove these

redundant symbol objects.

Definition 16 Path

Let α0 and αk be “Ö”. A path of a 1D-List L = (X, S, {sstart, send}, R, E) is sstartα0s1α1s2α2 …αk-

1skαksend where si is in S for 1 ≤ i ≤ k, and α i is in R ∪ E for 1 ≤ i ≤ k-1.

From a path of a 1D-List a complete solution set of the associated 1D-String can be

directly derived.

Having defined the necessary terms for the 1D-List, now we describe how to find the

solution of a 1D-String using 1D-Lists. The construction of the 1D-List for the 1D-String X =

I1α1I2α2…αk-1Ik and the video object V goes through the following steps(Algorithm 5 in the

Appendix):

Step 1: Retrieve every symbol object s and its rank Rx(s) from the video index where s is

in V and Icon(s) = Ii. For each icon Ii, we store the symbol objects that belong to it

as Si. Let us use an example to illustrate the construction. Assume the video

object V is as shown in Table 2 and the extended 1D-String X is E ≡ T Ö H. The

symbol objects s0001, s0002, s0003, ..., s0010 are retrieved from Table 2 and form

three symbol object sets S1 = {s0001, s0002, s0003}, S2 = {s0004, s0005, s0006},

and S3 = {s0007, s0008, s0009, s0010} as shown in Figure 6 (a).

Step 2: Sort the symbol objects in each symbol object set Si according to their rank

values. In this example, the three symbol object sets are sorted into S1 = {s0001,

s0003, s0002}, S2 = {s0004, s0005, s0006}, and S3 = {s0010, s0008, s0007, s0009} as

shown in Figure 6 (b).

Step 3: Build the equivalence relationships between the symbol objects in each symbol

object set Si, for 1≤ i ≤ k. If the two spatial-temporal relationship α i-1 and α i are

both “Ö”, all symbol objects in Si are linked into an equivalence group. Otherwise,

the symbol objects with the same Rx value in Si are linked to form an equivalence

group. In this example, S1 has three equivalence groups {s0001}, {s0002}, and

{s0003}, since α1 = “≡” ≠ “Ö” and s0001, s0002, and s0003 all have different Rx

values. S3 has only one equivalence group {s0010, s0008, s0007, s0009} since both

α2 and α3 are “Ö” as shown in Figure 6 (c). This algorithm for constructing the

19

equivalence relationships is stated in Algorithm 6 in the Appendix.

Step 4: Build the spatial-temporal relationships between each pair of sequential symbol

object sets Si and Si+1 , for 1≤ i ≤ k-1. This construction is based on the distribution

property of the spatial-temporal relationship to the equivalence relationship. It

can be denoted as follows: let α be an spatial-temporal relationship, ε be an

equivalence relationship, s1, s2, s3, and s4 be four symbol objects. Then s1 ε s2 α s3 ε

s4 if and only if s1 α s3, s2 α s3, s1 α s4, and s2 α s4. The formal algorithm for the

construction of the spatial-temporal relationships is described in Algorithm 7 in

the Appendix. In this example, three spatial-temporal relationships are

constructed. They are s0001 α s0004, s0002 α s0006, and s0005 α s0008 as shown

in Figure 6 (d).

 Now we have constructed a 1D-List for the video object V with respect to the 1D-

String X. The next step we have to do is to remove the symbol objects not included in any

solution of X. These symbol objects are also the symbol objects that do not appear in any

path of the 1D-List. For each k equivalence groups G1, G2, ..., Gk of the symbol object sets

S1, S2, ...,Sk, respectively, if there exists a path in these equivalence groups, the symbol

objects above the uppermost path or below the lowest path in these equivalence groups

can be removed since these symbol objects do not appear in any path of the 1D-List.

Step 5: Forward remove the equivalence relationships above the uppermost path of the

equivalence groups. In this example, the uppermost path is s0001 α s0004 ε

s0005 α s0008 ε s0007 ε s0009 and s0010 is removed as shown in Figure 6 (e).

Step 6: Backward remove the equivalence relationships below the lowest path of the

equivalence groups. In this example, the lowest path is also s0001 α s0004 ε s0005 α

s0008 ε s0007 ε s0009. Three symbol objects s0003, s0002, and s0006 are removed

since they do not belong to any path as shown in Figure 6 (f). Now, we get the 1D-List

representation of the solutions of the extended 1D-String X = E ≡ T Ö H. Traverse

the 1D-List from sstart to send, the path that contains the solutions is s0001 α s0004 ε

s0005 α s0008 ε s0007 ε s0009. The six solutions are: {s0001, s0004, s0007}, {s0001,

s0004, s0008}, {s0001, s0004, s0009}, {s0001, s0005, s0007}, {s0001, s0005, s0008},

and {s0001, s0005, s0009}.

The algorithm performs forward and backward removing is stated in Algorithm 8 in the

Appendix.

20

5.2 Combining and Refining the 1D Results

In this subsection, we discuss how to combine the three one-dimensional results of 1D-

Strings. First we define the solution of a 3D-String:

Definition 17 Solutions and Solution Set of a 3D-String

Assume there is a 3D-String (X, Y, T) of length k where X = I1α1I2α2…αk-1Ik, Y =

I1′β1I2′β2I3′...βk-1Ik′, and T = I1″γ1I2″γ2I3″...γk-1Ik″. A set of k symbol objects S = {s1, s2, …, sk} is a

solution of (X, Y, T), if and only if there exist solutions S1, S2, and S3 of 1D-Strings X, Y, and

T, respectively, such that S = S1 = S2 = S3. The solution set of the 3D-String (X, Y, T) is the

set of all solutions of (X, Y, T).

21

0

2

1

0

0

0

2

2

1

2

S0001 S0004

S0002

S0003

S0005

S0006

S0007

S0008

S0009

S0010

(a)

X : E ≡ T Ö H

0

1

2

2

0

0

2

0

1

2

S0001 S0004

S0003

S0002

S0005

S0006

S0010

S0008

S0007

S0009

(b)

X : E ≡ T Ö H

0

1

2

2

0

0

2

0

1

2

S0001 S0004

S0003

S0002

S0005

S0006

S0010

S0008

S0007

S0009

(c)

X : E ≡ T Ö H

0

2

0

0 1

2

S0001 S0004

S0005 S0008

S0007

S0009

(f)

X : E ≡ T Ö H

0

1

2

2

0

0

2

0

1

2

S0001 S0004

S0003

S0002

S0005

S0006

S0010

S0008

S0007

S0009

(d)

X : E ≡ T Ö H

0

1

2

2

0

0

2

1

2

S0001 S0004

S0003

S0002

S0005

S0006

S0008

S0007

S0009

(e)

X : E ≡ T Ö H

Sstart Send Sstart Send

SendSstart SendSstart

Send SendSstart
Sstart

Figure 6: A 1D-List example.

The concept of the complete solution sets of a 1D-String is extended to the 3D-String:

Definition 18 Complete Solution Sets of a 3D-String

A complete solution set of a 3D-String (X, Y, T) of length k is the solution set S of (X, Y, T)

and S is also the complete solution set of each of the 1D-Strings X, Y, and T.

22

Definition 19 3D-List

A 3D-List L consists of 1D-Lists Lx, Ly, and Lt where Lx = (X, S, {sstart, send}, Rx, Ex), Ly =(Y, S,

{sstart, send}, Ry, Ey), Lt =(T, S, {sstart, send}, Rt, Et), and (X, Y, T) is a 3D-String.

The construction of the 3D-List for a video query Q and a video object V goes as follows:

First, we transform the video query Q into the corresponding 3D-String (X, Y, T). Then

three 1D-Lists are constructed with respect to the three 1D-Strings X, Y, and T and the

video object V (Algorithm 9 in the Appendix). The three 1D-Lists compose a 3D-List since (X,

Y, T) is a 3D-String.

Example 3 Build the 3D-List for the 3D-String (X, Y, T) of the video query Q1 (assume

the type of query is 1) in Figure 5 and the video object whose index is shown in Table 2.

First, we transform the video query Q1 into the extended 3D-String (X, Y, T) = (E≡TÖH,

T≡HÖE, T≡HÖE).

Then, we apply 1D-List construction algorithm three times, the 3D-List is constructed as

shown in Figure 7 (a).

Checking the 3D-List shown in Figure 7 (a), we find that there are many symbol objects

that are not contained in any path of one of the three 1D-Lists. Moreover, even if a symbol

object is contained in a path in a 1D-List, it may not be contained in the other two 1D-Lists.

Before we apply the algorithm to generate the solutions of the 3D-List, which will be

discussed in the next subsection, we should remove the symbol objects that are not included

in any solution of the 3D-String of the video query as much as possible. This can reduce the

number of symbol objects to be checked. We call this removing process as 3D-List refinement.

We propose an algorithm to perform the 3D-List refinement. This refinement algorithm

uses the forward and backward removing algorithm proposed in the previous subsection on

each 1D-List and lets the new symbol objects sets of the resultant 1D-Lists be the

intersection of the symbol objects sets of the resultant 1D-Lists. Then, this process is

repeatedly applied until no more redundant symbol objects can be removed. This algorithm

is stated in Algorithm 10 in the Appendix. We use the following example to illustrate the

3D-List refinement algorithm.

23

{S0001, S0004, S0007}

(d)

X : E T H Y : T H E T : T H E

(a)

0

1

2

2

0

0

2

0

1

2

S0001 S0004

S0003

S0002

S0005

S0006

S0010

S0008

S0009

S0007

0

1

2

2

1

1

2

0

1

2

S0006 S0007

S0004

S0005

S0008

S0009

S0002

S0003

S0001

S0010

1

25

40

40

1

22

31

4

15

20

S0004 S0007

S0005

S0006

S0009

S0008

S0001

S0002

S0003

S0010

Sstart Send SendSstartSendSstart

Ö≡ ≡ Ö Ö≡

(b)

X : E T H Y : T H E T : T H E

0

2

0

0

0

1

2

S0001 S0004

S0005

S0010

S0008

S0009

S0007

1

1

1

2

S0007

S0004 S0008

S0001

1 1 4

15

20

S0004 S0007 S0001

S0002

S0003

Sstart Send SendSstartSendSstart

Ö≡ ≡ Ö Ö≡

X : E T H Y : T H E T : T H E

0

2

0
S0001 S0004

S0007

1

1

2

S0007

S0004

S0001

1 1 4
S0004 S0007 S0001

Sstart Send SendSstartSendSstart

Ö≡ ≡ Ö Ö≡

(c)

Figure 7: A 3D-List refinement example.

Example 4 Assume the 3D-List constructed in Example 3 is to be refined using the 3D-

24

List refinement algorithm. First, we apply the forward and backward removing algorithm

on each 1D-List. The result is shown in Figure 7 (b). The intersection of the three symbol

object sets in the resultant 1D-Lists is {s0001, s0004, s0007}. Adjusting the three 1D-Lists,

the result is shown in Figure 7 (c) and no more symbol objects can be removed by the

forward and backward removing algorithm. Therefore, the 3D-List shown in Figure 3(c) is

the result of the 3D-List refinement algorithm.

5.3 Generating the 3D Results

By applying one of the two refinement algorithms described in the previous subsection

we get a refined 3D-List. However, to find the final solutions of the 3D-String of a video

query, we still have to traverse the refined 3D-List to generate a set of paths in each 1D-List.

Assume paths P1, P2 and P3 are generated from the 1D-Lists Lx, Ly, and Lt, respectively. By

intersecting the symbol object sets of P1, P2 and P3, we can decide whether the combination

of P1, P2 and P3 contains the final solutions. If every icon in the video query has one or more

corresponding symbol objects in the intersection result, from the intersection result a

complete solution set of the 3D-String can be directly derived. That is, the decision depends

on whether the total number of different icons associated with the intersection result equals

to the number of icons in the 3D-String. This algorithm is stated in Algorithm 11 in the

Appendix.

We use the result of Example 4 to illustrate the generating process. In Example 4, each

1D-List has only one path. For Lx, the path is s0001 α s0004 ε s0005 α s0010 ε s0008 ε s0009

ε s0007, for Ly, the path is s0004 α s0007 ε s0008 α s0001, and for Lt, the path is s0004 α

s0007 α s0001 ε s0002 ε s0003. Intersecting the three symbol sets of the paths we get: S =

{s0001, s0004, s0005, s0010, s0008, s0009, s0007}∩{s0004, s0007, s0008, s0001}∩{s0004,

s0007, s0001, s0002, s0003} = {s0004, s0007, s0001}. Since Icon(s0004) = T, Icon(s0007) = H,

and Icon(s0001) = E, the total number of different icons of S is three which is equal to the

number of icons in the 3D-String. Therefore {s0004, s0007, s0001} is a solution of the 3D-

String.

6. Performance Analysis
To show the efficiency and effectiveness of our video query processing techniques, we

perform a series of experiments which can be classified into two groups. The first group of

experiments is made on the synthesized video indexes. There are five cost factors

25

dominating the performance of the video query processing algorithms: the number of icons

in the video queries, the number of video objects, the total number of different icons in the

video database, the average number of symbol objects in a video object, and the maximum

rank in each axis. We can freely set the values of the five cost factors in the synthesized

video indexes. Since the string matching algorithms proposed in the past are not suitable to

apply on the 3D-Strings, we use a direct string matching algorithm for the comparison. The

direct string matching algorithm goes quite simple: to match an extended 1D-String

I1α1I2α2I3...αk-1Ik with a set of n ordered symbol objects S = [s1, s2, …, sn] (sorted according to

their ranks) in a video object, we select the first k symbol objects from S. Then each symbol

object selected is checked one by one from the right. If a selected symbol object si matches

(i.e. Icon(si) = Ii and si-1α1si holds), the next symbol object will be checked. If si does not match

and si+1 is not selected, si is replaced with si+1 and si+1 will be checked. If si does not match and

si+1 is selected, the checking process will go back to the previous selected symbol object. This

process continues until the first selected is matched (which means the video object is an

answer of the 1D-String) or no more symbol object left while the first selected is still not

matched (which means the video object is not an answer of the 1D-String).

The second group of experiments is made on 200 real video objects. Each video object is a

MPEG video clip about one minute long. The symbol objects in each video object are

specified by the DBA using the video index tool. All algorithms are implemented on a Sun

Sparc20 workstation with SunOS 4.1.4.

6.1 Video Index Construction

In our approach, a preprocessing phase is needed to construct the video index for all video objects in

the video database. The first experiment shows the index construction cost. Since the video index

construction algorithm is not necessary for the synthesized video indexes, we use real video objects to

perform this experiment. We measure the execution time versus the number of symbol objects. As

illustrated in Figure 8, the index construction cost is linear to the number of symbol objects. Since

video index construction can be done off-line, we do not add this cost to the execution time of the

following 3D-String matching experiments.

26

±

¶

²±

²¶

³±

³¶

´±

´¶

µ±

¶
±
±

²
±
±
±

²
¶
±
±

³
±
±
±

³
¶
±
±

´
±
±
±

´
¶
±
±

µ
±
±
±

µ
¶
±
±

¶
±
±
±

ïöîãæó ðç ôúîãðí ðãëæäõô

õê
î
æ
©ô
æä
¯ª

Figure 8: Indexing time vs. number of symbol objects.

6.2 Synthesized Video Indexes

In this subsection, we show the efficiency of our 3D-List matching algorithms and compare with the

direct string matching approach.

The execution cost of every experiment is measured by the average elapsed time of 100

video queries. Since the icons in the video queries are specified by users, we assume the

number of icons to be in the range between 1 and 10. We generate the video index for 1000

video objects. For each video object, we assign randomly from 100 to 1000 symbol objects to

it. The total number of different icons in the video database is set in the range between 100

and 500. The maximum rank in each axis is set in the range between 2 and 10. Based on

these synthesized video index, we perform five experiments. In each experiment we change

one cost factor and fix the other four cost factors. The values we choose for the fixed cost

factors are 4 icons in a video query, 200 video objects, 100 symbol objects in a video object,

128 different icons in the video database, and the maximum rank in each axis is 4. The

experiment results are shown as follows.

Figure 9 illustrates the execution time versus the number of icons in the video query of

type 0, type 1, and type 2. Since for video queries of type 0, the 3D-List approach only needs

to check whether there exist corresponding symbol objects in a video object for each icon in

the video query, the least execution time is required. In all cases, compared with the direct

string matching algorithms, the 3D-List algorithms only need 1/6 execution time to process

the video queries. Video queries of type 2 take more execution time since more relationships

have to be checked. Note that for the 3D-List approach, the execution time becomes smaller

27

when the number of icons in the video queries is larger than seven. This is because there

does not exist an answer in the video database for these video queries.

Figure 10 illustrates the execution time versus the number of video objects in the video

database. The execution time grows linear as the number of video objects increases for both

approaches in all three types of video queries. This may not be acceptable for very large

video databases. However, we can implement video signature for the video index to reduce

the number of video objects needed to be checked.

±

¶

²±

²¶

³±

³¶

´±

´¶

µ±

² ³ ´ µ ¶ · ¸ ¹ º ²±

ïöîãæó ðç êäðïô êï õéæ ÷êåæð òöæóú

õê
î
æ
©ô
æä
¯ª

ÅêóæäõàÕúñæ±

´ÅàÍêôõàÕúñæ±

ÅêóæäõàÕúñæ²

´ÅàÍêôõàÕúñæ²

ÅêóæäõàÕúñæ³

´ÅàÍêôõàõúñæ³

Figure 9: Execution time vs. number of icons in the video query.

±

³±

µ±

·±

¹±

²±±

²³±

²
±
±

´
±
±

¶
±
±

¸
±
±

º
±
±

ïöîãæó ðç ÷êåæð ðãëæäõô

õê
î
æ
©ô
æä
¯ª

ÅêóæäõàÕúñæ±

´ÅàÍêôõàÕúñæ±

ÅêóæäõàÕúñæ²

´ÅàÍêôõàÕúñæ²

ÅêóæäõàÕúñæ³

´ÅàÍêôõàõúñæ³

Figure 10: Execution time vs. number of video objects.

Figure 11 illustrates the execution time versus total number of different icons in the

video database. Both approaches benefit when the total number of different icons increases.

28

However, the execution time of the 3D-List approach reduces faster since the number of

symbol objects retrieved from the video index is reverse proportional to the total number of

different icons in the video database. Also note that when the total number of different icons

is larger than 300, it is very possible that there does not exist an answer in the video

database for these video queries. In this case the 3D-List algorithms terminate quickly.

±

³

µ

·

¹

²±

²³

²±± ³±± ´±± µ±± ¶±±

õðõâí ïöîãæó ðç åêççæóæïõ êäðïô

êï õéæ ÷êåæð åâõâãâôæ

õê
î
æ
©ô
æä
¯ª

ÅêóæäõàÕúñæ±

´ÅàÍêôõàÕúñæ±

ÅêóæäõàÕúñæ²

´ÅàÍêôõàÕúñæ²

ÅêóæäõàÕúñæ³

´ÅàÍêôõàõúñæ³

Figure 11: Execution time vs. total number of different icons in the video database.

29

±

¶

²±

²¶

³±

³¶

´±

´¶

µ±

µ¶

²
±
±

³
±
±

´
±
±

µ
±
±

¶
±
±

·
±
±

¸
±
±

¹
±
±

º
±
±

²
±
±
±

â÷æóâèæ ïöîãæó ðç ôúîãðí ðãëæäõô

êï â ÷êåæð ðãëæäõ

õê
î
æ
©ô
æä
¯ª

ÅêóæäõàÕúñæ±

´ÅàÍêôõàÕúñæ±

ÅêóæäõàÕúñæ²

´ÅàÍêôõàÕúñæ²

ÅêóæäõàÕúñæ³

´ÅàÍêôõàõúñæ³

Figure 12: Execution time vs. average number of symbol objects in a video object.

Figure 12 illustrates the execution time versus average number of symbol objects in a

video object. For each video query of type 0, since both algorithms will terminate when they

find an answer of the video query, the execution time increases slowly as the average

number of symbol objects in a video object increases. However, for video queries of type 1

and type 2, the execution time of the direct string matching algorithms increase sharply

since they have to check most combinations of the symbol objects in each video object. On

the other hand, since the extra time needed to spend for the 3D-List algorithms is to

retrieve the increased symbol objects from the video index and to check the relationships

between them, the execution time grows slowly.

Figure 13 illustrates the execution time versus maximum rank in each axis. For video

queries of type 0, since the answers are independent of the ranks of the symbol objects, the

execution time for both algorithms remain the same as the maximum rank in each axis

increases. For video queries of type1 and type 2, the execution time of the direct string

matching algorithms decreases as the maximum rank in each axis increases. This is

because less combinations of symbol objects in a video objects are needed to be checked. For

video queries of type 1 and type 2, the execution time of the 3D-List algorithms increases as

the maximum rank in each axis increases since the number of paths in each 1D-List

increases. However, for video queries of type 2, when the maximum rank in each axis is

30

large (larger than 7 in this case), it is very possible that there does not exist an answer in

the video database. Therefore, the execution time is reduced.

±

³

µ

·

¹

²±

²³

²µ

²·

³ ´ µ ¶ · ¸ ¹ º ²±

îâù¯ óâïì êï æâäé âùêô

õê
î
æ
©ô
æä
¯ª

ÅêóæäõàÕúñæ±

´ÅàÍêôõàÕúñæ±

ÅêóæäõàÕúñæ²

´ÅàÍêôõàÕúñæ²

ÅêóæäõàÕúñæ³

´ÅàÍêôõàõúñæ³

Figure 13: Execution time vs. maximum rank in each axis.

6.3 Real Video Data

In this subsection, we show the effectiveness of our video query processing techniques. Since the

performance of both indexing and query processing algorithms depends on the number of symbol objects,

the first thing we want to know is how many symbol objects are contained in a video object in

average. In our example video database, there are 70 video objects of wild animals, 40 video

objects of cartoons, 40 video objects of movies, and 50 video objects of TV news. All video

objects are one minute long. In general, we specify five symbol objects from each frame in a

video object. Typically, a video object of one minute long contains 1800 frames. To represent

the movements of symbol objects, at least a frame should be indexed for every 10 frames.

Thus, the average number of symbol objects in a video object is about 900 (883 in our

example video database).

The second measurement is the number of icons in the video database. We found for

different areas of video objects, for example, wild animals and cartoons, there are few icons

in common. Therefore, designing an icon hierarchy for every area of video data is suggested.

In our sample database, we design four specialized icon hierarchies with 48 icons and a

general icon hierarchy with 64 icons. Thus the total number of icons is 256.

For real video databases, the clustering effect of video objects is very apparent, i.e., two

video objects of the same area tend to contain similar symbol objects. Therefore, if we pose a

31

video query with two icons which are selected from two specialized icon hierarchies, the

query will return no answer in general. On the other hand, if we pose a video query with a

person icon, almost all video objects satisfy this query (except for video objects of wild

animals). According to our experiment, the execution time of every video query is smaller

than 3 seconds, no matter now many icons are specified in the video queries.

7. Conclusion
This paper discusses a methodology for the indexing and retrieval of video objects. Based on the well

known representation of images  the 2D-String, we define the notion of 3D-String for the

representation of the spatial and temporal relationships between icons in a video query. Based on the 3D-

Strings, the problem of video query processing is transformed into a problem of three-dimensional

pattern matching. Since the string matching algorithms proposed in the past cannot solve this problem,

the 3D-List data structure and its related algorithms are proposed. There are two major techniques

involved in the proposed algorithms. First, the video index enables us to retrieve only the symbol objects

which are related to the icons involved in the video queries for further processing. Second, the

equivalence groups constructed for two sets of symbol objects based on the notion of equivalence

relationships prevent us from exhaustively checking every pair of symbol objects in the two sets of

symbol objects.

To show the efficiency and effectiveness of the proposed algorithms, we perform a series of

experiments on the synthesized video indexes in which the influence of the five major cost factors is

illustrated. The time complexity is shown to be equal to or smaller than O(n) for each cost factor.

Compared with the direct string matching algorithm, more than 80% query processing speedup is

achieved. For the real video database, our experiments show that the execution time of each video query

is smaller than three seconds.

Video data modeling has been an active research topic. The related work can be classified according

to whether the symbol objects in the video objects are modeled. Our video data model can strengthen the

video data models without the notion of symbol objects [11][12][18][20][21][22]. Since the notion of

3D-String in the video databases is an extension of 2D-String in the image databases, the 3D-List data

structure and its related algorithms can be easily applied to image or video queries based on the notion of

symbol objects [5][6][15][25][26].

We are currently working on extending the proposed methodology in many ways. First,

we will develop an index structure for the video signature and the video index to avoid

exhaustively searching all video objects in the video database. Second, we are developing a

32

curve matching scheme for the motion tracks of symbol objects [27]. An automatic symbol

object and motion track detection technique is also under development. Finally, the video

query processing and synchronization mechanisms in the distributed environment will be

investigated.

References:

[1] Aho, A. V. and M. J. Corasick, “Efficient String Matching: An Aid to Bibliographic

Search,” Comm. ACM, Vol. 18, pp. 333-340, June 1979.

[2] Baker, T. P., “A Technique for Extending Rapid Exact-Match String matching to Arrays

of More Than One Dimension,” SIAM J. Comput. Vol. 7, pp. 533-541, Nov. 1978.

[3] Bird, R. S., “Two Dimensional Pattern Matching,” Information Processing Letters, Vol. 6,

No. 5, pp. 168-170, Oct. 1977.

[4] Boyer, R. S. and J. S. Moore, “A Fast String Searching Algorithm,” Comm. ACM, Vol. 20,

pp. 762-772, Oct. 1977.

[5] Chang, S. K., Q. Y. Shi, and C. W. Yan, “Iconic Indexing by 2-D Strings,” IEEE Trans.

on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 3, pp. 413-428, May

1987.

[6] Chang, S. K., C. W. Yan, D. C. Dimitroff, and T. Arndt, “An Intelligent Image Database

System,” IEEE Trans. on Software Eng., Vol. 14, No. 5, pp.681-688, May 1988.

[7] Chen, A. L. P., C. C. Liu, K. L. Lee, and C. C. Chen, “The Design of a Video Database System,”

Proc. of Real-Time and Media Systems Conf., 1995.

[8] Chiueh, Tzi-cker, “Content-Based Image Indexing,” in Proc. of the 20th VLDB Conf.,

pp.582-593, 1994.

[9] Fan, J. J. and K. Y. Su, “An Efficient Algorithm for Matching Multiple Patterns,” IEEE

Trans. on Knowledge and Data Engineering, Vol. 5, pp. 339-351, Dec. 1993.

[10] Fan, J. J. and K. Y. Su, “The Design of Efficient Algorithms for Two-Dimensional

Pattern Matching,” IEEE Trans. on Knowledge and Data Engineering, Vol. 7, No. 2, pp.

318-327, Apr. 1995.

[11] Gibbs, S., C. Breiteneder, and D. Tsichritzis, “Audio/Video Database: An Object-

Oriented Approach,” in Proc. on Intl. Conf. on Data Eng., pp. 381-390, 1993.

[12] Hjelsvold, R. and R. Midstraum, “Modeling and Querying Video Data,” in Proc. of the

20th VLDB Conf., pp. 686-694, 1994.

[13] Knuth, D. E., J. H. Morris, and V. R. Pratt, “Fast Pattern Matching in Strings,” SIAM

J. Comput., Vol 6, pp.323-350, June 1977.

[14] Kuo, C. T., Y. B. Lin, and A. L. P. Chen, “An Approach for Efficient Shot Change

Detection on Compressed Video Data,” Proc. of IEEE Intl. Workshop on Multimedia

33

Database Management Systems, 1996.

[15] Kuo, C. T. and A. L. P. Chen, “A Content-Based Query Language for Video Databases,”

in Proc. of IEEE Multimedia Systems Conf., 1996.

[16] Lee, S. Y., M. K. Shan, and W. P. Yang,“Similarity Retrieval of Iconic Image Database,”

Pattern Recognition, Vol. 22, No. 6, pp. 675-682, 1989.

[17] Liu, C. C. and A. L. P. Chen, "Vega: A Multimedia Database System Supporting Content-Based

Retrieval," Journal of Information Science and Engineering, to appear.

[18] Oomoto, E. and K. Tanaka, “OVID: Design and Implementation of a Video-Object

Database System,” IEEE Trans. on Knowledge and Data Eng., Vol. 5, No. 4, pp. 629-643,

Aug. 1993.

[19] Petrakis, E. G. M. and S. C. Orphanoudakis, “Methodology for the Representation,

Indexing and Retrieval of Images by Content,” Image and Vision Computing, Vol. 11, No.

8, pp.504-521, 1993.

[20] Smoliar, S. W. and H. J. Zhang, “Content-Based Video Indexing and Retrieval,” IEEE

Multimedia, Vol. 1, No. 2, pp. 62-72, 1994.

[21] Tonomura, Y. et al., “Structured Video Computing,” IEEE Multimedia, Vol. 1, No. 3, pp.

34-43, Fall 1994.

[22] Weiss, R., A. Duda, and D. K. Gifford, “Content-Based Access to Algebraic Video,” in

Proc. of the Intl. Conf. on Multimedia Computing and Systems, pp. 140-151, May 1994.

[23] Zhu, R. F. and T. Takaoka, “A Technique for Two-Dimensional Pattern Matching,”

Comm. ACM, Vol. 32, No. 9, pp. 1110-1120, Sep. 1989.

[24] Biliris, A. and E. Panagos, EOS Users‘ Guide, Release 2.2., AT&T Bell Laboratories.

[25] S.Y. Lee, M.K. Shan, and W.P. Yang, “Similarity Retrieval of Iconic Image Database,”

Pattern Recognition, Vol. 22, No. 6, 1992.

[26] N. Dimitrova and F. Golshani, “Motion Recovery for Video Content Classification,”

ACM Trans. Information Systems, Vol. 13, No. 4, pp. 408-439, 1995.

[27] T.T.Y. Wai and A.L.P. Chen, "Retrieving Video Data via Motion Tracks of Content

Symbols," Proc. ACM International Conference on Information and Knowledge

Management (CIKM).

Appendix:

This appendix collects the algorithms for video query processing used in this paper.

Algorithms 5, 6, and 7 are used to construct the 1D-List. Given a 1D-String and a 1D-List,

Algorithm 8 generates the solution of the 1D-String. Algorithm 9 constructs the 3D-List by

applying Algorithm 5 three times. Algorithm 10 refines the 3D-List. Algorithm 11 generates

34

the solutions of a 3D-String.

Algorithm 5 Build_1D_List(X, V)
/* input : an extended 1D-String X = I1α1I2α2…αk-1Ik and the OID of a video object */
/* output : a 1D-List L = (X, S, {sstart, send}, R, E) */
0: begin
1: α0 ← “Ö”
2: αk ← “Ö”
3: E ← φ
4: for i = 1 to k
5: begin
6: retrieve every symbol object s and Rx(s) where s is in V and Icon(s) = Ii and
7: store these pairs of symbol object and rank as Si

8: sort the symbol objects in Si according to their rank value
9: E ← E ∪ Build_Equ_Relationship(Si, α i-1, α i)
10: end
11: R ← φ
12: S0 ← {sstart }
13: Sk+1 ← {send}
14: for I = 0 to k
15: R ← R ∪ Build_ST_Relationship(Si, Si+1,α i-1 ,α i,α i+1)
16: end

Algorithm 5 describes how to construct a 1D-List for each video object V in the video

database with respect to one of the three 1D-Strings of a video query. It first sets the

relationship between sstart and the first icon and the relationship between send and the last

icon to be “Ö”. Then the symbol objects of V which are related to the video query are

retrieved from the video index and arranged according to their icon types and rank values

(line 6-8). The equivalent relationships (line 9) and the extended spatial-temporal

relationships (line 14-15) are built by applying the following two algorithms.

Algorithm 6 Build_ Equ_Relationship(S, α1, α2)
/* input : a symbol object set S and two extended spatial-temporal */
/* relationships α1 ,and α2 */
/* output : an equivalent relationship set E among S */
0: begin
1: E ← φ
2: if (α1 = “Ö”) and (α2 = “Ö”)
3: for i = 1 to Num(S) - 1
4: E ← E ∪ (si, si+1)
5: else
6: for i = 1 to Num(S) - 1
7: if Rx(si) = Rx(si+1)
8: E ← E ∪ (si, si+1)
9: end if
10: end if

35

11: return E
12: end

Algorithm 6 constructs equivalent relationships among a symbol object set S with respect

to two extended spatial-temporal relationships α1 and α2. As we have discussed in Definition

15, if both α1 and α2 are precedent relationships (line 2), S forms a single equivalent group.

Since the symbol objects in S are sorted and equivalent relationships possess transitivity

property, we just link each pair of adjacent symbol objects in S (line 3-4). If one of α1 and α2

is not precedent relationships, the symbol objects which have the same rank values in S will

form an equivalent group (line 7-8). The time complexity of this algorithm is O(n) where n is

the number of symbol objects in the equivalence group S.

Algorithm 7 Build_ ST_Relationship(Si, Si+1,α i-1 ,α i,α i+1)
/* input : two symbol object set Si and Si+1 and three extended spatial-temporal */
/* relationships α i-1 ,α i, and α i+1 */
/* output : an ST relationship set R */
0: begin
1: R ← φ
2: if i = 0 /* build ST relationships from sstart to S1 */
3: begin
4: R ← R ∪ (sstart, s1,1)
5: for j = 1 to Num(S1) - 1
6: if there do not exist an equivalent relationship between s1,j and s1,j+1

7: R ← R ∪ (sstart, s1,j+1)
8: endif
9: end
10: else if i = k /* build ST relationships from Sk to send */
11: begin
12: R ← R ∪ (s1,Num(Sk), send)
13: for j = 1 to Num(Sk) - 1
14: if there do not exist an equivalent relationship between sk,j and sk,j+1

15: R ← R ∪ (sk,j, send)
16: endif
17: end
18: else /* build ST relationships from Si to Si+1 */
19: /* Assume Si = <G1, G2, ..., Gm> and Si+1 = <G1′, G2′, ..., Gn′> */
20: /* where each Gj and Gj′ is an equivalent group */
21: begin case
22: case (α i-1 =“Ö”) and (α i =“Ö”) and (α i+1 =“Ö”)
23: for each si in G1

24: for each sj in G1′
25: if (Rx(si) < Rx(sj)) and (Rx(si+1) ≥ Rx(sj)) and (Rx(si) ≥ Rx(sj-1))
26: R ← R ∪ (si, sj)
27: end if
28: case (α i-1 = “Ö”) and (α i = “Ö”) and ((α i+1 = “≡”) or (α i+1 = “|n”))

36

29: for each si in G1

30: for each first symbol object sj in Gj′, 1≤ j ≤ n
31: if (Rx(si) < Rx(sj)) and (Rx(si+1) ≥ Rx(sj))
32: R ← R ∪ (si, sj)
33: end if
34: case ((α i-1 = “≡”) or (α i-1 = “|n”)) and (α i = “Ö”) and (α i+1 = “Ö”)
35: for each last symbol object si in Gi, 1≤ i ≤ m
36: for each sj in G1′
37: if (Rx(si) < Rx(sj)) and (Rx(si) ≥ Rx(sj+1))
38: R ← R ∪ (si, sj)
39: end if
40: case ((α i-1 = “≡”) or (α i-1 = “|n”)) and (α i = “Ö”) and ((α i+1 = “≡”) or (α i+1 = “|n”))
41: for each last symbol object si in Gi, 1≤ i ≤ m
42: for each first symbol object sj in Gj′, 1≤ j ≤ n
43: if (Rx(si) < Rx(sj))
44: R ← R ∪ (si, sj)
45: end if
46: case (α i = “≡”)
47: for each last symbol object si in Gi, 1≤ i ≤ m
48: for each first symbol object sj in Gj′, 1≤ j ≤ n
49: if (Rx(si) = Rx(sj))
50: R ← R ∪ (si, sj)
51: end if
52: case (α i = “|k”)
53: for each last symbol object si in Gi, 1≤ i ≤ m
54: for each first symbol object sj in Gj′, 1≤ j ≤ n
55: if (Rx(si) - Rx(sj) = k)
56: R ← R ∪ (si, sj)
57: end if
58: end case
59: end if
60: return R
61: end

Algorithm 7 constructs the extended spatial-temporal relationships between the symbol

objects of the two symbol object sets Si and Si+1 according to the three extended spatial-

temporal relationships α i-1 ,α i, and α i+1. Its time complexity is O(n) where n is the total

number of symbol objects in the equvalence groups Si and Si+1. The time complexity of

Algorithm 5 is O(k⋅nlogn), where k is the number of icons in the video query and n is the

maximal number of the symbol objects belonging to each icon.

Algorithm 8 Generate_1D_Result(L)
/* input : a 1D-List L = (X, S, {sstart, send}, R, E) */
/* output : the 1D-List L′ which represents the one-dimensional result */
0: begin
1: /* Forward Remove */

37

2: Stack ← φ
3: Push(Stack, sstart)
4: for each s′ such that (s, s′) ∈ R
5: Push(Stack, s′)
6: while (Stack ≠ φ) do
7: begin
8: Pop(Stack, s)
9: if exist (s′, s) ∈ E
10: remove (s′, s) from E
11: end if
12: if exist (s, s′) ∈ E
13: Push(Stack, s′)
14: end if
15: if exist (s, s′) ∈ R
16: if s′ = send

17: Pop(Stack, s) until Icon(s) = I1

18: Push(Stack, s)
19: else
20: Push(Stack, s′)
21: end if
22: end if
23: end
24: /* Backward Remove */
25: Stack ← φ
26: Push(Stack, send)
27: for each s′ such that (s′, s) ∈ R
28: Push(Stack, s′)
29: while (Stack ≠ φ) do
30: begin
31: Pop(Stack, s)
32: if exist (s, s′) ∈ E
33: remove (s, s′) from E
34: end if
35: if exist (s′, s) ∈ E
36: Push(Stack, s′)
37: end if
38: if exist (s′, s) ∈ R
39: if s′ = sstart

40: Pop(Stack, s) until Icon(s) = Ik

41: Push(Stack, s)
42: else
43: Push(Stack, s′)
44: end if
45: end if
46: end
47: end

Algorithm 9 Build_3D_List((X, Y, T), V)

38

/* input : an extended 3D-String (X, Y, T) and the OID of a video object */
/* output : a 3D-List L = (Lx, Ly, Lt) */
0: begin
1: Lx = Build_1D_List(X, V)
2: Ly = Build_1D_List(Y, V)
3: Lt = Build_1D_List(T, V)
4: return (Lx, Ly, Lt)
5: end

Algorithm 9 constructs the 3D-List by applying Algorithm 5 three times. Its time

complexity is the same as Algorithm 5.

Algorithm 10 Refine_3D_Result(L)
/* input : a 3D-List L = (Lx, Ly, Lt) where Lx = (X, Sx, {sstart, send}, Rx, Ex), */
/* Ly =(Y, Sy, {sstart, send}, Ry, Ey), Lt =(T, St, {sstart, send}, Rt, Et) */
/* output : a refined 3D-List L′ = (Lx′, Ly′, Lt′) */
0: begin
1: do
2: Sold ← Sx ∪ Sy ∪ St

3: Sx ← Sold

4: Sy ← Sold

5: Sy ← Sold

6: Lx′ ← (X, Sx, {sstart, send}, Rx, Ex)
7: Ly′ ← (Y, Sy, {sstart, send}, Ry, Ey)
8: Lt′ ← (T, St, {sstart, send}, Rt, Et)
9: Generate_1D_Result(Lx′)
10: Generate_1D_Result(Lx′)
11: Generate_1D_Result(Lx′)
12: Snew ← Sx ∪ Sy ∪ St

13: until Snew = Sold

14: end

Algorithm 11 Generate_Complete_Sol(L)
/* input : a 3D-List L = (Lx, Ly, Lt) where Lx = (X, Sx, {sstart, send}, Rx, Ex), */
/* Ly =(Y, Sy, {sstart, send}, Ry, Ey), Lt =(T, St, {sstart, send}, Rt, Et) */
/* output : the complete solution sets of the 3D-String(X, Y, T) */
0: begin
1: for each path sstartα0s1α1s2α2 …αp-1spαpsend in Lx
2: for each path sstartβ0s1′β1s2′β2 …βq-1sq′βqsend in Ly
3: for each path sstartγ0s1″γ1s2″γ2 …γr-1sr″γrsend in Lt
4: begin
5: S ← { s1, s2, …, sp} ∩ { s1′, s2′, …,sq′} ∩ { s1″, s2″, …,sr″}
6: if NumOfIcon(S) = k
7: output(S)
8: end if
9: end
10: end

39

