
©Silberschatz, Korth and SudarshanB.1Database System Concepts

Chapter B: Hierarchical ModelChapter B: Hierarchical Model

! Basic Concepts
! Tree-Structure Diagrams
! Data-Retrieval Facility
! Update Facility
! Virtual Records
! Mapping of Hierarchies to Files
! The IMS Database System

©Silberschatz, Korth and SudarshanB.2Database System Concepts

Basic ConceptsBasic Concepts

! A hierarchical database consists of a collection of records which
are connected to one another through links.

! a record is a collection of fields, each of which contains only one
data value.

! A link is an association between precisely two records.
! The hierarchical model differs from the network model in that the

records are organized as collections of trees rather than as
arbitrary graphs.

©Silberschatz, Korth and SudarshanB.3Database System Concepts

TreeTree--Structure DiagramsStructure Diagrams

! The schema for a hierarchical database consists of
" boxes, which correspond to record types
" lines, which correspond to links

! Record types are organized in the form of a rooted tree.
" No cycles in the underlying graph.
" Relationships formed in the graph must be such that only

one-to-many or one-to-one relationships exist between a parent and
a child.

©Silberschatz, Korth and SudarshanB.4Database System Concepts

General StructureGeneral Structure

! A parent may have an arrow pointing to a child, but a child must
have an arrow pointing to its parent.

©Silberschatz, Korth and SudarshanB.5Database System Concepts

TreeTree--Structure Diagrams (Cont.)Structure Diagrams (Cont.)

! Database schema is represented as a collection of tree-structure
diagrams.
" single instance of a database tree
" The root of this tree is a dummy node
" The children of that node are actual instances of the appropriate

record type

! When transforming E-R diagrams to corresponding tree-structure
diagrams, we must ensure that the resulting diagrams are in the
form of rooted trees.

©Silberschatz, Korth and SudarshanB.6Database System Concepts

Single RelationshipsSingle Relationships

©Silberschatz, Korth and SudarshanB.7Database System Concepts

Single relationships (Cont.)Single relationships (Cont.)

! Example E-R diagram with two entity sets, customer and
account, related through a binary, one-to-many relationship
depositor.

! Corresponding tree-structure diagram has
" the record type customer with three fields: customer-name,

customer-street, and customer-city.
" the record type account with two fields: account-number and

balance
" the link depositor, with an arrow pointing to customer

©Silberschatz, Korth and SudarshanB.8Database System Concepts

Single Relationships (Cont.)Single Relationships (Cont.)

! If the relationship depositor is one to one, then the link depositor
has two arrows.

! Only one-to-many and one-to-one relationships can be directly
represented in the hierarchical mode.

©Silberschatz, Korth and SudarshanB.9Database System Concepts

Transforming ManyTransforming Many--ToTo--Many RelationshipsMany Relationships

! Must consider the type of queries expected and the degree to
which the database schema fits the given E-R diagram.

! In all versions of this transformation, the underlying database
tree (or trees) will have replicated records.

©Silberschatz, Korth and SudarshanB.10Database System Concepts

ManyMany--To Many Relationships (Cont.)To Many Relationships (Cont.)

©Silberschatz, Korth and SudarshanB.11Database System Concepts

ManyMany--ToTo--Many Relationships (Cont.)Many Relationships (Cont.)

! Create two tree-structure diagrams, T1, with the root customer,
and T2, with the root account.

! In T1, create depositor, a many-to-one link from account to
customer.

! In T2, create account-customer, a many-to-one link from
customer to account.

©Silberschatz, Korth and SudarshanB.12Database System Concepts

Sample DatabaseSample Database

©Silberschatz, Korth and SudarshanB.13Database System Concepts

General RelationshipsGeneral Relationships

! Example ternary E-R diagram and corresponding tree-structure
diagrams are shown on the following page.

©Silberschatz, Korth and SudarshanB.14Database System Concepts

Sample Ternary Databases. (a) TSample Ternary Databases. (a) T11 (b) T(b) T22

©Silberschatz, Korth and SudarshanB.15Database System Concepts

Several RelationshipsSeveral Relationships

! To correctly transform an E-R diagram with several relationships,
split the unrooted tree structure diagrams into several diagrams,
each of which is a rooted tree.

! Example E-R diagram and transformation leading to diagram
that is not a rooted tree:

©Silberschatz, Korth and SudarshanB.16Database System Concepts

Several Relationships (Cont.)Several Relationships (Cont.)

©Silberschatz, Korth and SudarshanB.17Database System Concepts

Several Relationships (Cont.)Several Relationships (Cont.)

! Corresponding diagrams in the form of rooted trees.

©Silberschatz, Korth and SudarshanB.18Database System Concepts

Several Relationships (2nd Example)Several Relationships (2nd Example)

! Diagram (b) contains a cycle.
! Replicate all three record types, and create two separate

diagrams.

©Silberschatz, Korth and SudarshanB.19Database System Concepts

Several Relationships (2nd Example)Several Relationships (2nd Example)

! Each diagram is now a rooted tree.

©Silberschatz, Korth and SudarshanB.20Database System Concepts

Data Retrieval FacilityData Retrieval Facility

! We present querying of hierarchical databases via a simplified
version of DL/I, the data-manipulation language of IMS.

! Example schema: customer-account-branch
! A branch can have several customers, each of which can have

several accounts.
! An account may belong to only one customer, and a customer

can belong to only one branch.

©Silberschatz, Korth and SudarshanB.21Database System Concepts

Example SchemaExample Schema

©Silberschatz, Korth and SudarshanB.22Database System Concepts

Program Work AreaProgram Work Area

! A buffer storage area that contains these variables
" Record templates
" Currency pointers
" Status flag

! A particular program work area is associated with precisely one
application program.

! Example program work area:
" Templates for three record types: customer, account, and branch.
" Currency pointer to the most recently accessed record of branch,

customer, or account type.
" One status variable.

©Silberschatz, Korth and SudarshanB.23Database System Concepts

The The getget CommandCommand

! Data items are retrieved through the get command
" locates a record in the database and sets the currency pointer to

point to it
" copies that record from the database to the appropriate program

work-area template

! The get command must specify which of the database trees is to
be searched.

! State of the program work area after executing get command to
locate the customer record belonging to Freeman
" The currency pointer points now to the record of Freeman.
" The information pertaining to Freeman is copied into the customer

record work-area template.
" DB-status is set to the value 0.

©Silberschatz, Korth and SudarshanB.24Database System Concepts

The The getget Command (Cont.)Command (Cont.)

! To scan all records in a consistent manner, we must impose an
ordering on the records.

! Preorder search starts at the root, and then searches the
subtrees of the root from left to right, recursively.
" Starts at the root, visits the leftmost child, visits its leftmost child,

and so on, until a leaf (childless) node is reached.
" Move back to the parent of the leaf and visit the leftmost unvisited

child.
" Proceed in this manner until the entire three is visited.

! Preordered listing of the records in the example database three:
Parkview, Fleming, A-522, A-561, Freeman, A533,
Seashore, Boyd, A-409, A-622

©Silberschatz, Korth and SudarshanB.25Database System Concepts

Access Within A Database TreeAccess Within A Database Tree

! Locates the first record (in preorder), of type <record type> that
satisfies the <condition> of the where clause.

! The where clause is optional <condition> is a predicate that
involves either an ancestor of <record type> or the <record type>
itself.

! If where is omitted, locate the first record of type
<record-type>
" Set currency pointer to that record
" Copy its contents into the appropriate work-area template.

! If no such record exists in the tree, then the search fails, and
DB-status is set to an appropriate error message.

©Silberschatz, Korth and SudarshanB.26Database System Concepts

Example QueriesExample Queries

! Print the address of customer Fleming:
get first customer

where customer.customer-name = “Fleming”;
print (customer.customer-address);

! Print an account belonging to Fleming that has a balance greater
than $10,000.

get first account
where customer.customer-name = “Fleming”;

and account.balance > 10000;
if DB-status = 0 then print (account.account-number);

©Silberschatz, Korth and SudarshanB.27Database System Concepts

Access Within a Database Tree (Cont.)Access Within a Database Tree (Cont.)

get next <record type>
where <condition>

! Locates the next record (in preorder) that satisfies
<condition>.

! If the where clause is omitted, then the next record of type
<record type> is located.

! The currency pointer is used by the system to determine where
to resume the search.

! As before, the currency pointer, the work-area template of type
<record-type>, and DB-status are affected.

©Silberschatz, Korth and SudarshanB.28Database System Concepts

Example QueryExample Query

! Print the account number of all the accounts that have a balance
greater than $500

get first account
where account.balance > 500;

while DB-status = 0 do
begin

print (account.account-number);
get next account

where account.balance > 500;
end

! When while loop returns DB-status ≠ 0, we exhausted all
account records with account.balance > 500.

©Silberschatz, Korth and SudarshanB.29Database System Concepts

Access Within a Database Tree (Cont.)Access Within a Database Tree (Cont.)

get next within parent <record type>
where <condition>

! Searches only the specific subtree whose root is the most recent
record that was located with either get first or get next.

! Locates the next record (in preorder) that satisfies <condition> in
the subtree whose root is the parent of current of <record type>.

! If the where clause is omitted, then the next record of type
<record type> within the designated subtree to resume search.

! Use currency pointer to determine where to resume search.
! DB-status is set to a nonzero value if no such record exists in the

designated subtree (rather than if none exists in the entire tree).

©Silberschatz, Korth and SudarshanB.30Database System Concepts

Example QueryExample Query

! Print the total balance of all accounts belonging to Boyd:
sum := 0;
get first customer

where customer.customer-name = “Boyd”;
get next within parent account;
while DB-status = 0 do

begin
sum = sum + account.balance;
get next within parent account;

end
print (sum);

! We exit from the while loop and print out the value of sum only
when the DB-status is set to a value not equal to 0. This value
exists after the get next within parent operation fails.

©Silberschatz, Korth and SudarshanB.31Database System Concepts

Update FacilityUpdate Facility

! Various mechanisms are available for updating information in the
database.

! Creation and deletion of records (via the insert and delete
operations).

! Modification (via the replace operation) of the content of existing
records.

©Silberschatz, Korth and SudarshanB.32Database System Concepts

Creation of New RecordsCreation of New Records

! To insert <record type> into the database, first set the
appropriate values in the corresponding <record type> work-area
template. Then execute

insert <record type>
where <condition>

! If the where clause is included, the system searches the
database three (in preorder) for a record that satisfies the
<condition> in the where clause.

! Once such a record — say, X — is found, the newly created
record is inserted in the tree as the leftmost child of X.

! If where is omitted, the record is inserted in the first position (in
preorder) in the tree where <record type> can be inserted in
accordance with the specified schema.

©Silberschatz, Korth and SudarshanB.33Database System Concepts

Example QueriesExample Queries

! Add a new customer, Jackson, to the Seashore branch:
customer.customer-name := “Jackson”;
customer.customer-street := “Old Road”;
customer.customer-city := “Queens”;
insert customer

where branch.branch-name = “Seashore”;
! Create a new account numbered A-655 that belongs to customer

“Jackson”;
account.account-number := “A-655”;
account.balance := 100;
insert account

where customer.customer-name = “Jackson”;

©Silberschatz, Korth and SudarshanB.34Database System Concepts

Modification of an Existing RecordModification of an Existing Record

! To modify an existing record of type <record type>, we must get
that record into the work-area template for <record type>, and
change the desired fields in that template.

! Reflect the changes in the database by executing
replace

! replace dies not have <record type> as an argument; the record
that is affected is the one to which the currency pointer points.

! DL/I requires that, prior to a record being modified, the get
command must have the additional clause hold, so that the
system is aware that a record is to be modified.

©Silberschatz, Korth and SudarshanB.35Database System Concepts

Example QueryExample Query

! Change the street address of Boyd to Northview:
get hold first customer

where customer.customer-name = “Boyd”;
customer.customer-street := “Northview”;
replace;

! If there were more than one record containing Boyd’s address,
the program would have included a loop to search all Boyd
records.

©Silberschatz, Korth and SudarshanB.36Database System Concepts

Deletion of a RecordDeletion of a Record

! To delete a record of type <record type>, set the currency pointer
to point to that record and execute delete.

! As a record modification, the get command must have the
attribute hold attached to it. Example: Delete account A-561:

get hold first account
where account.account-number = “A-561”;

delete;
! A delete operation deletes not only the record in question, but

also the entire subtree rooted by that record. Thus, to delete
customer Boyd and all his accounts, we write

get gold first customer
where customer.customer-name = “Boyd”;

delete;

©Silberschatz, Korth and SudarshanB.37Database System Concepts

Virtual RecordsVirtual Records

! For many-to-many relationships, record replication is necessary
to preserve the tree-structure organization of the database.
" Data inconsistency may result when updating takes place
" Waste of space is unavoidable

! Virtual record — contains no data value, only a logical pointer to
a particular physical record.

! When a record is to be replicated in several database trees, a
single copy of that record is kept in one of the trees and all other
records are replaced with a virtual record.

! Let R be a record type that is replicated in T1, T2, . . ., Tn. Create
a new virtual record type virtual-R and replace R in each of the
n – 1 trees with a record of type virtual-R.

©Silberschatz, Korth and SudarshanB.38Database System Concepts

Virtual Records (Cont.)Virtual Records (Cont.)

! Eliminate data replication in the diagram shown on page B.11;
create virtual-customer and virtual-account.

! Replace account with virtual-account in the first tree, and replace
customer with virtual-customer in the second tree.

! Add a dashed line from virtual-customer to customer, and from
virtual-account to account, to specify the association between a
virtual record and its corresponding physical record.

©Silberschatz, Korth and SudarshanB.39Database System Concepts

Sample DatabaseSample Database

©Silberschatz, Korth and SudarshanB.40Database System Concepts

Mapping Hierarchies to FilesMapping Hierarchies to Files

! Implementations of hierarchical databases do not use
parent-to-child pointers, since these would require the use of
variable-length records.

! Can use leftmost-child and next-sibling pointers which allow each
record to contain exactly two pointers.
" The leftmost-child pointer points to one child.
" The next-sibling pointer points to another child of the same parent.

©Silberschatz, Korth and SudarshanB.41Database System Concepts

Mapping Hierarchies to Files (Cont.)Mapping Hierarchies to Files (Cont.)

! Implementation with parent-child pointers.

! Implementation with leftmost child and next-sibling pointers.

©Silberschatz, Korth and SudarshanB.42Database System Concepts

Mapping Hierarchies to Files (Cont.)Mapping Hierarchies to Files (Cont.)

! In general, the final child of a parent has no next sibling; rather
than setting the next-sibling filed to null, place a pointer (or
preorder thread) that points to the next record in preorder.

! Using preorder threads allows us to process a tree instance in
preorder simply by following pointers.

©Silberschatz, Korth and SudarshanB.43Database System Concepts

Mapping Hierarchies to Files (Cont.)Mapping Hierarchies to Files (Cont.)

! May add a third child-to-parent pointer which facilitates the
processing of queries that give a value for a child record and
request a value from the corresponding parent record.

! the parent-child relationship within a hierarchy is analogous to
the owner-member relationship within a DBTG set.
" A one-to-many relationship is being represented.
" Store together the members and the owners of a set occurrence.
" Store physically close on disk the child records and their parent.
" Such storage allows a sequence of get first, get next, and

get next within parent statements to e executed with a minimal
number of block accesses.

©Silberschatz, Korth and SudarshanB.44Database System Concepts

The IMS Database SystemThe IMS Database System

! IBM Information Management System — first developed in the
late 1960s; historically among the largest databases.

! Issue queries through embedded calls which are part of the IMS
database language DL/I.

! Allows the database designer a broad number of options in the
data-definition language.
" Designer defines a physically hierarchy as the database schema.
" Can define several subschemas (or view) by constructing a logical

hierarchy from the record types constituting the schema.
" Options such as block sizes, special pointer fields, and so on, allow

the database administrator to tune the system.

©Silberschatz, Korth and SudarshanB.45Database System Concepts

Record Access SchemesRecord Access Schemes

! Hierarchical sequential-access method (HSAM) — used for
physically sequential files (such as tape files). Records are
stored physically in preorder.

! Hierarchical indexed-sequential-access method (HISAM) — an
index-sequential organization at the root level of the hierarchy.

! Hierarchical indexed-direct-access method (HIDAM) — index
organization at the root level with pointers to child records.

! Hierarchical direct-access method (HDAM) — similar to HIDAM,
but with hashed access at the root level.

©Silberschatz, Korth and SudarshanB.46Database System Concepts

IMS Concurrency ControlIMS Concurrency Control

! Early versions handled concurrency control by permitting only
one update application program to run at a time. Read-only
applications could run concurrent with updates.

! Later versions included a program-isolation feature
" Allowed for improved concurrency control
" Offered more sophisticated transaction-recovery techniques (such

as logging); important to online transactions.

! The need for high-performance transaction processing led to the
introduction of IMS Fast Path.

©Silberschatz, Korth and SudarshanB.47Database System Concepts

IMS Fast PathIMS Fast Path

! Uses an alternative physical data organization that allows the
most active parts of the database to reside in main memory.

! Instead of updates to disk being forced at the end of a
transaction, update is deferred until a checkpoint or
synchronization point.

! In the event of a crash, the recovery subsystem must redo all
committed transactions whose updates were not forced to disk.

! Allows for extremely high rates of transaction throughput.
! Forerunner of main-memory database systems.

©Silberschatz, Korth and SudarshanB.48Database System Concepts

Sample DatabaseSample Database

©Silberschatz, Korth and SudarshanB.49Database System Concepts

Sample Database Corresponding to Sample Database Corresponding to
Diagram of Figure B.4Diagram of Figure B.4

©Silberschatz, Korth and SudarshanB.50Database System Concepts

Sample Database Corresponding To Sample Database Corresponding To
Diagram of Figure B.8bDiagram of Figure B.8b

©Silberschatz, Korth and SudarshanB.51Database System Concepts

TreeTree--Structure Diagram With Structure Diagram With
ManyMany--ToTo--Many RelationshipsMany Relationships

©Silberschatz, Korth and SudarshanB.52Database System Concepts

EE--RR Diagram and Its Corresponding Diagram and Its Corresponding
TreeTree--Structure DiagramsStructure Diagrams

©Silberschatz, Korth and SudarshanB.53Database System Concepts

Sample Database Corresponding To Sample Database Corresponding To
Diagram of Figure B.12bDiagram of Figure B.12b

©Silberschatz, Korth and SudarshanB.54Database System Concepts

New Database TreeNew Database Tree

©Silberschatz, Korth and SudarshanB.55Database System Concepts

New Database TreeNew Database Tree

©Silberschatz, Korth and SudarshanB.56Database System Concepts

ClassClass--enrollment Eenrollment E--R DiagramR Diagram

©Silberschatz, Korth and SudarshanB.57Database System Concepts

ParentParent––Child EChild E--R DiagramR Diagram

©Silberschatz, Korth and SudarshanB.58Database System Concepts

CarCar--insurance Einsurance E--R DiagramR Diagram

