

\checkmark Theory of Multivalued Dependencies

- Let D denote a set of functional and multivalued dependencies. The closure D^{+}of D is the set of all functional and multivalued dependencies logically implied by D.
- Sound and complete inference rules for functional and multivalued dependencies:

1. Reflexivity rule. If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \rightarrow \beta$ holds.
2. Augmentation rule. If $\alpha \rightarrow \beta$ holds and γ is a set of attributes, then $\gamma \alpha \rightarrow \gamma \beta$ holds.
3. Transitivity rule. If $\alpha \rightarrow \beta$ holds and $\gamma \alpha \rightarrow \gamma \beta$ holds, then $\alpha \rightarrow \gamma$ holds.

Theory of Multivalued Dependencies (Cont.)

4. Complementation rule. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow>-\beta-\alpha$ holds.
5. Multivalued augmentation rule. If $\alpha \rightarrow \beta$ holds and $\gamma \subseteq R$ and $\delta \subseteq$ γ, then $\gamma \alpha \gg \delta \beta$ holds.
6. Multivalued transitivity rule. If $\alpha \rightarrow \beta$ holds and $\beta \rightarrow \gamma$ holds, then $\alpha \rightarrow \gamma-\beta$ holds.
7. Replication rule. If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow \beta$.
8. Coalescence rule. If $\alpha \rightarrow \beta$ holds and $\gamma \subseteq \beta$ and there is a δ such that $\delta \subseteq R$ and $\delta \cap \beta=\varnothing$ and $\delta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ holds.

Simplification of the Computation of D^{+}

- We can simplify the computation of the closure of D by using the following rules (proved using rules 1-8).
> Multivalued union rule. If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \gamma$ holds.
$>$ Intersection rule. If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta \cap \gamma$ holds.
$>$ Difference rule. If If $\alpha \rightarrow \beta$ holds and $\alpha \rightarrow \gamma$ holds, then $\alpha \rightarrow \beta-\gamma$ holds and $\alpha \rightarrow \gamma-\beta$ holds.

Example

- $R=(A, B, C, G, H, I)$
$D=\{A \rightarrow B$
$B \rightarrow H I$
$C G \rightarrow H\}$
- Some members of D^{+}:
- $A \rightarrow$ CGHI.

Since $A \gg B$, the complementation rule (4) implies that $A \rightarrow R-B-A$.
Since $R-B-A=C G H I$, so $A \rightarrow C G H$.

- $A \rightarrow H$.

Since $A \rightarrow B$ and $B \rightarrow H$, the multivalued transitivity rule (6) implies that $B \rightarrow H$ I $-B$. Since $\mathrm{HI}-B=H I, A \rightarrow H$.

Example (Cont.)

- Some members of D^{+}(cont.):
> $B \rightarrow H$.
Apply the coalescence rule (8); $B \rightarrow H$ I holds.
Since $H \subseteq H I$ and $C G \rightarrow H$ and $C G \cap H I=\varnothing$, the
coalescence rule is satisfied with α being B, β being $H I, \delta$ being $C G$, and γ being H. We conclude that $B \rightarrow H$.
$>A \rightarrow C$.
$A \rightarrow \mathrm{CGHI}$ and $A \rightarrow H$.
By the difference rule, $A \rightarrow \mathrm{CGHI}-\mathrm{HI}$. Since CGHI - HI =CG, $A \rightarrow C G$.

Normalization Using Join Dependencies

- Join dependencies constrain the set of legal relations over a schema R to those relations for which a given decomposition is a lossless-join decomposition.
- Let R be a relation schema and $R_{1}, R_{2}, \ldots, R_{n}$ be a decomposition of R. If $R=R_{1} \cup R_{2} \cup \ldots \cup R_{n}$, we say that a relation $r(R)$ satisfies the join dependency * $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ if:

$$
r=\Pi_{R 1}(r) \quad \Pi_{R 2}(r) \quad \ldots \ldots \quad \Pi_{R n}(r)
$$

A join dependency is trivial if one of the R_{i} is R itself.

- A join dependency ${ }^{*}\left(R_{1}, R_{2}\right)$ is equivalent to the multivalued dependency $R_{1} \cap R_{2} \rightarrow R_{2}$. Conversely, $\alpha \rightarrow \beta$ is equivalent to ${ }^{*}(\alpha \cup(R-\beta), \alpha \cup \beta)$
- However, there are join dependencies that are not equivalent to any multivalued dependency.

Project-Join Normal Form (PJNF)

- A relation schema R is in PJNF with respect to a set D of functional, multivalued, and join dependencies if for all join dependencies in D^{+} of the form
${ }^{*}\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ where each $R_{i} \subseteq R$
and $R=R_{1} \cup R_{2} \cup \ldots \cup R_{n}$
at least one of the following holds:
> ${ }^{*}\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ is a trivial join dependency.
- Every R_{i} is a superkey for R.
- Since every multivalued dependency is also a join dependency, every PJNF schema is also in 4NF.

Example

- Consider Loan-info-schema = (branch-name, customer-name, loannumber, amount).
- Each loan has one or more customers, is in one or more branches and has a loan amount; these relationships are independent, hence we have the join dependency
- *(=(loan-number, branch-name), (loan-number, customer-name), (loan-number, amount))
- Loan-info-schema is not in PJNF with respect to the set of dependencies containing the above join dependency. To put Loan-info-schema into PJNF, we must decompose it into the three schemas specified by the join dependency:
- (loan-number, branch-name)
- (loan-number, customer-name)
- (Ioan-number, amount)

Domain-Key Normal Form (DKNY)

- Domain declaration. Let A be an attribute, and let dom be a set of values. The domain declaration $A \subseteq \operatorname{dom}$ requires that the A value of all tuples be values in dom.
- Key declaration. Let R be a relation schema with $K \subseteq R$. The key declaration key (K) requires that K be a superkey for schema $R(K \rightarrow R)$. All key declarations are functional dependencies but not all functional dependencies are key declarations.
- General constraint. A general constraint is a predicate on the set of all relations on a given schema.
- Let \mathbf{D} be a set of domain constraints and let \mathbf{K} be a set of key constraints for a relation schema R. Let \mathbf{G} denote the general constraints for R. Schema R is in DKNF if $\mathbf{D} \cup \mathrm{K}$ logically imply G.

Example

- Accounts whose account-number begins with the digit 9 are special high-interest accounts with a minimum balance of 2500 .
- General constraint: "If the first digit of t [account-number] is 9 , then t [balance] ≥ 2500."
- DKNF design:

Regular-acct-schema $=($ branch-name, account-number, balance $)$
Special-acct-schema $=$ (branch-name, account-number, balance $)$

- Domain constraints for \{Special-acct-schema\} require that for each account:
- The account number begins with 9 .
- The balance is greater than 2500 .

\checkmark DKNF rephrasing of PJNF Definition

- Let $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ be a relation schema. Let $\operatorname{dom}\left(A_{i}\right)$ denote the domain of attribute A_{i}, and let all these domains be infinite. Then all domain constraints D are of the form $A_{i} \subseteq \operatorname{dom}\left(A_{i}\right)$.
- Let the general constraints be a set \mathbf{G} of functional, multivalued, or join dependencies. If F is the set of functional dependencies in \mathbf{G}, let the set \mathbf{K} of key constraints be those nontrivial functional dependencies in F^{+}of the form $\alpha \rightarrow R$.
- Schema R is in PJNF if and only if it is in DKNF with respect to \mathbf{D}, \mathbf{K}, and \mathbf{G}.

