

Appendix C: Advanced Normalization Theory

- Reasoning with MVDs
- Higher normal forms
 - Join dependencies and PJNF
 - > DKNF

Theory of Multivalued Dependencies

- Let D denote a set of functional and multivalued dependencies. The closure D⁺ of D is the set of all functional and multivalued dependencies logically implied by D.
- Sound and complete inference rules for functional and multivalued dependencies:
- **1. Reflexivity rule**. If α is a set of attributes and $\beta \subseteq \alpha$, then $\alpha \to \beta$ holds.
- **2. Augmentation rule**. If $\alpha \to \beta$ holds and γ is a set of attributes, then $\gamma \alpha \to \gamma \beta$ holds.
- **3. Transitivity rule**. If $\alpha \to \beta$ holds and $\gamma \alpha \to \gamma \beta$ holds, then $\alpha \to \gamma$ holds.

Theory of Multivalued Dependencies (Cont.)

- 4. Complementation rule. If $\alpha \longrightarrow \beta$ holds, then $\alpha \longrightarrow R \beta \alpha$ holds.
- 5. **Multivalued augmentation rule.** If $\alpha \rightarrow \beta$ holds and $\gamma \subseteq R$ and $\delta \subseteq \gamma$, then $\gamma \alpha \rightarrow \delta \beta$ holds.
- 6. Multivalued transitivity rule. If $\alpha \Longrightarrow \beta$ holds and $\beta \Longrightarrow \gamma$ holds, then $\alpha \Longrightarrow \gamma \beta$ holds.
- 7. **Replication rule.** If $\alpha \rightarrow \beta$ holds, then $\alpha \rightarrow \beta$.
- 8. **Coalescence rule.** If $\alpha \longrightarrow \beta$ holds and $\gamma \subseteq \beta$ and there is a δ such that $\delta \subseteq R$ and $\delta \cap \beta = \emptyset$ and $\delta \to \gamma$, then $\alpha \to \gamma$ holds.

Simplification of the Computation of D⁺

- We can simplify the computation of the closure of D by using the following rules (proved using rules 1-8).
 - Multivalued union rule. If $\alpha \longrightarrow \beta$ holds and $\alpha \longrightarrow \gamma$ holds, then $\alpha \longrightarrow \beta \gamma$ holds.
 - ▶ Intersection rule. If $\alpha \longrightarrow \beta$ holds and $\alpha \longrightarrow \gamma$ holds, then $\alpha \longrightarrow \beta \cap \gamma$ holds.
 - ▶ **Difference rule.** If If $\alpha \longrightarrow \beta$ holds and $\alpha \longrightarrow \gamma$ holds, then $\alpha \longrightarrow \beta \gamma$ holds and $\alpha \longrightarrow \gamma \beta$ holds.

Example

■
$$R = (A, B, C, G, H, I)$$

 $D = \{A \rightarrow>> B$
 $B \rightarrow>> HI$
 $CG \rightarrow H\}$

- Some members of *D*⁺:
 - Since $A \rightarrow CGHI$. Since $A \rightarrow B$, the complementation rule (4) implies that $A \rightarrow R - B - A$. Since R - B - A = CGHI, so $A \rightarrow CGHI$.
 - A →> HI.
 Since A →> B and B →> HI, the multivalued transitivity rule (6) implies that B →> HI B.
 Since HI B = HI, A →> HI.

Example (Cont.)

- Some members of D⁺ (cont.):
 - B → H.
 Apply the coalescence rule (8); B → HI holds.
 Since H ⊆ HI and CG → H and CG ∩ HI = Ø, the coalescence rule is satisfied with α being B, β being HI, δ being CG, and γ being H. We conclude that B → H.
 - $A \longrightarrow CG$. $A \longrightarrow CGHI$ and $A \longrightarrow HI$. By the difference rule, $A \longrightarrow CGHI - HI$. Since CGHI - HI = CG, $A \longrightarrow CG$.

Normalization Using Join Dependencies

- Join dependencies constrain the set of legal relations over a schema R to those relations for which a given decomposition is a lossless-join decomposition.
- Let R be a relation schema and R_1 , R_2 ,..., R_n be a decomposition of R. If $R = R_1 \cup R_2 \cup ... \cup R_n$, we say that a relation r(R) satisfies the join dependency $*(R_1, R_2,..., R_n)$ if:

$$r = \prod_{R_1} (r) \quad \prod_{R_2} (r) \quad \dots \quad \prod_{R_n} (r)$$

A join dependency is *trivial* if one of the R_i is R itself.

- A join dependency $*(R_1, R_2)$ is equivalent to the multivalued dependency $R_1 \cap R_2 \longrightarrow R_2$. Conversely, $\alpha \longrightarrow \beta$ is equivalent to $*(\alpha \cup (R \beta), \alpha \cup \beta)$
- However, there are join dependencies that are not equivalent to any multivalued dependency.

Project-Join Normal Form (PJNF)

A relation schema R is in PJNF with respect to a set D of functional, multivalued, and join dependencies if for all join dependencies in D⁺ of the form

*
$$(R_1, R_2, ..., R_n)$$
 where each $R_i \subseteq R$ and $R = R_1 \cup R_2 \cup ... \cup R_n$

at least one of the following holds:

- \rightarrow *(R_1 , R_2 ,..., R_n) is a trivial join dependency.
- \triangleright Every R_i is a superkey for R.
- Since every multivalued dependency is also a join dependency, every PJNF schema is also in 4NF.

Example

- Consider Loan-info-schema = (branch-name, customer-name, loan-number, amount).
- Each loan has one or more customers, is in one or more branches and has a loan amount; these relationships are independent, hence we have the join dependency
- *(=(loan-number, branch-name), (loan-number, customer-name), (loan-number, amount))
- Loan-info-schema is not in PJNF with respect to the set of dependencies containing the above join dependency. To put Loaninfo-schema into PJNF, we must decompose it into the three schemas specified by the join dependency:
 - (loan-number, branch-name)
 - (loan-number, customer-name)
 - (loan-number, amount)

Domain-Key Normal Form (DKNY)

- **Domain declaration**. Let A be an attribute, and let **dom** be a set of values. The domain declaration $A \subseteq \text{dom}$ requires that the A value of all tuples be values in **dom**.
- **Key declaration**. Let R be a relation schema with $K \subseteq R$. The key declaration **key** (K) requires that K be a superkey for schema R ($K \rightarrow R$). All key declarations are functional dependencies but not all functional dependencies are key declarations.
- General constraint. A general constraint is a predicate on the set of all relations on a given schema.
- Let **D** be a set of domain constraints and let **K** be a set of key constraints for a relation schema R. Let **G** denote the general constraints for R. Schema R is in DKNF if $D \cup K$ logically imply **G**.

Example

- Accounts whose account-number begins with the digit 9 are special high-interest accounts with a minimum balance of 2500.
- General constraint: ``If the first digit of t [account-number] is 9, then t [balance] ≥ 2500."
- DKNF design:

Regular-acct-schema = (branch-name, account-number, balance) Special-acct-schema = (branch-name, account-number, balance)

- Domain constraints for {Special-acct-schema} require that for each account:
 - The account number begins with 9.
 - > The balance is greater than 2500.

DKNF rephrasing of PJNF Definition

- Let $R = (A_1, A_2, ..., A_n)$ be a relation schema. Let $dom(A_i)$ denote the domain of attribute A_i , and let all these domains be infinite. Then all domain constraints **D** are of the form $A_i \subseteq dom(A_i)$.
- Let the general constraints be a set **G** of functional, multivalued, or join dependencies. If F is the set of functional dependencies in **G**, let the set **K** of key constraints be those nontrivial functional dependencies in F⁺ of the form $\alpha \to R$.
- Schema R is in PJNF if and only if it is in DKNF with respect to D, K, and G.

