
1

©Silberschatz, Korth and Sudarshan13.1Database System Concepts

Chapter 13: Query ProcessingChapter 13: Query Processing

! Overview
! Measures of Query Cost
! Selection Operation
! Sorting
! Join Operation
! Other Operations
! Evaluation of Expressions

©Silberschatz, Korth and Sudarshan13.2Database System Concepts

Basic Steps in Query ProcessingBasic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

2

©Silberschatz, Korth and Sudarshan13.3Database System Concepts

Basic Steps in Query Processing Basic Steps in Query Processing
(Cont.)(Cont.)

! Parsing and translation
! translate the query into its internal form. This is then

translated into relational algebra.
!Parser checks syntax, verifies relations

! Evaluation
! The query-execution engine takes a query-evaluation plan,

executes that plan, and returns the answers to the query.

©Silberschatz, Korth and Sudarshan13.4Database System Concepts

Basic Steps in Query Processing : Basic Steps in Query Processing :
OptimizationOptimization

! A relational algebra expression may have many equivalent
expressions
! E.g., σbalance<2500(∏balance(account)) is equivalent to

∏balance(σbalance<2500(account))

! Each relational algebra operation can be evaluated using one of
several different algorithms
! Correspondingly, a relational-algebra expression can be evaluated in

many ways.

! Annotated expression specifying detailed evaluation strategy is
called an evaluation-plan.
! E.g., can use an index on balance to find accounts with balance < 2500,
! or can perform complete relation scan and discard accounts with

balance ≥ 2500

3

©Silberschatz, Korth and Sudarshan13.5Database System Concepts

Basic Steps: Optimization (Cont.)Basic Steps: Optimization (Cont.)

! Query Optimization: Amongst all equivalent evaluation plans
choose the one with lowest cost.
! Cost is estimated using statistical information from the

database catalog
"e.g. number of tuples in each relation, size of tuples, etc.

! In this chapter we study
! How to measure query costs
! Algorithms for evaluating relational algebra operations
! How to combine algorithms for individual operations in order to

evaluate a complete expression

! In Chapter 14
! We study how to optimize queries, that is, how to find an evaluation

plan with lowest estimated cost

©Silberschatz, Korth and Sudarshan13.6Database System Concepts

Measures of Query CostMeasures of Query Cost
! Cost is generally measured as total elapsed time for

answering query
! Many factors contribute to time cost

"disk accesses, CPU, or even network communication

! Typically disk access is the predominant cost, and is also
relatively easy to estimate. Measured by taking into
account
! Number of seeks * average-seek-cost
! Number of blocks read * average-block-read-cost
! Number of blocks written * average-block-write-cost

"Cost to write a block is greater than cost to read a block
– data is read back after being written to ensure that

the write was successful

4

©Silberschatz, Korth and Sudarshan13.7Database System Concepts

Measures of Query Cost (Cont.)Measures of Query Cost (Cont.)
! For simplicity we just use number of block transfers from disk as the

cost measure
! We ignore the difference in cost between sequential and random I/O for

simplicity
! We also ignore CPU costs for simplicity

! Costs depends on the size of the buffer in main memory
! Having more memory reduces need for disk access
! Amount of real memory available to buffer depends on other concurrent

OS processes, and hard to determine ahead of actual execution
! We often use worst case estimates, assuming only the minimum

amount of memory needed for the operation is available

! Real systems take CPU cost into account, differentiate between
sequential and random I/O, and take buffer size into account

! We do not include cost to writing output to disk in our cost
formulae

©Silberschatz, Korth and Sudarshan13.8Database System Concepts

Selection OperationSelection Operation

! File scan – search algorithms that locate and retrieve records
that fulfill a selection condition.

! Algorithm A1 (linear search). Scan each file block and test all
records to see whether they satisfy the selection condition.
! Cost estimate (number of disk blocks scanned) = br

"br denotes number of blocks containing records from relation r

! If selection is on a key attribute, cost = (br /2)
"stop on finding record

! Linear search can be applied regardless of
"selection condition or
"ordering of records in the file, or
"availability of indices

5

©Silberschatz, Korth and Sudarshan13.9Database System Concepts

Selection Operation (Cont.)Selection Operation (Cont.)

! A2 (binary search). Applicable if selection is an equality
comparison on the attribute on which file is ordered.
! Assume that the blocks of a relation are stored contiguously
! Cost estimate (number of disk blocks to be scanned):

"log2(br) — cost of locating the first tuple by a binary search
on the blocks

"Plus number of blocks containing records that satisfy
selection condition
– Will see how to estimate this cost in Chapter 14

©Silberschatz, Korth and Sudarshan13.10Database System Concepts

Selections Using IndicesSelections Using Indices
! Index scan – search algorithms that use an index

! selection condition must be on search-key of index.

! A3 (primary index on candidate key, equality). Retrieve a single record
that satisfies the corresponding equality condition
! Cost = HTi + 1

! A4 (primary index on nonkey, equality) Retrieve multiple records.
! Records will be on consecutive blocks
! Cost = HTi + number of blocks containing retrieved records

! A5 (equality on search-key of secondary index).
! Retrieve a single record if the search-key is a candidate key

" Cost = HTi + 1
! Retrieve multiple records if search-key is not a candidate key

" Cost = HTi + number of records retrieved
– Can be very expensive!

" each record may be on a different block
– one block access for each retrieved record

6

©Silberschatz, Korth and Sudarshan13.11Database System Concepts

Selections Involving ComparisonsSelections Involving Comparisons
! Can implement selections of the form σA≤V (r) or σA ≥ V(r) by using

! a linear file scan or binary search,
! or by using indices in the following ways:

! A6 (primary index, comparison). (Relation is sorted on A)
"For σA ≥ V(r) use index to find first tuple ≥ v and scan relation

sequentially from there
"For σA≤V (r) just scan relation sequentially till first tuple > v; do not

use index
! A7 (secondary index, comparison).

"For σA ≥ V(r) use index to find first index entry ≥ v and scan index
sequentially from there, to find pointers to records.

"For σA≤V (r) just scan leaf pages of index finding pointers to records,
till first entry > v

" In either case, retrieve records that are pointed to
– requires an I/O for each record
– Linear file scan may be cheaper if many records are

to be fetched!

©Silberschatz, Korth and Sudarshan13.12Database System Concepts

Implementation of Complex SelectionsImplementation of Complex Selections
! Conjunction: σθ1∧ θ2∧ . . . θn(r)
! A8 (conjunctive selection using one index).

! Select a combination of θi and algorithms A1 through A7 that
results in the least cost forσθi (r).

! Test other conditions on tuple after fetching it into memory buffer.
! A9 (conjunctive selection using multiple-key index).

! Use appropriate composite (multiple-key) index if available.
! A10 (conjunctive selection by intersection of identifiers).

! Requires indices with record pointers.
! Use corresponding index for each condition, and take intersection

of all the obtained sets of record pointers.
! Then fetch records from file
! If some conditions do not have appropriate indices, apply test in

memory.

7

©Silberschatz, Korth and Sudarshan13.13Database System Concepts

Algorithms for Complex SelectionsAlgorithms for Complex Selections
! Disjunction:σθ1∨ θ2 ∨ . . . θn (r).
! A11 (disjunctive selection by union of identifiers).

! Applicable if all conditions have available indices.
"Otherwise use linear scan.

! Use corresponding index for each condition, and take union of all the
obtained sets of record pointers.

! Then fetch records from file

! Negation: σ¬θ(r)
! Use linear scan on file

! If very few records satisfy ¬θ, and an index is applicable to θ
" Find satisfying records using index and fetch from file

©Silberschatz, Korth and Sudarshan13.14Database System Concepts

SortingSorting

! We may build an index on the relation, and then use the index to
read the relation in sorted order. May lead to one disk block
access for each tuple.

! For relations that fit in memory, techniques like quicksort can be
used. For relations that don’t fit in memory, external
sort-merge is a good choice.

8

©Silberschatz, Korth and Sudarshan13.15Database System Concepts

External SortExternal Sort--MergeMerge

1. Create sorted runs. Let i be 0 initially.
Repeatedly do the following till the end of the relation:

(a) Read M blocks of relation into memory
(b) Sort the in-memory blocks
(c) Write sorted data to run Ri; increment i.

Let the final value of I be N
2. Merge the runs (N-way merge). We assume (for now) that N < M.

1. Use N blocks of memory to buffer input runs, and 1 block to buffer
output. Read the first block of each run into its buffer page

2. repeat
1. Select the first record (in sort order) among all buffer pages
2. Write the record to the output buffer. If the output buffer is full

write it to disk.
3. Delete the record from its input buffer page.

If the buffer page becomes empty then
read the next block (if any) of the run into the buffer.

3. until all input buffer pages are empty:

Let M denote memory size (in pages).

©Silberschatz, Korth and Sudarshan13.16Database System Concepts

External SortExternal Sort--Merge (Cont.)Merge (Cont.)

! If i ≥ M, several merge passes are required.
! In each pass, contiguous groups of M - 1 runs are

merged.
! A pass reduces the number of runs by a factor of M -1,

and creates runs longer by the same factor.
"E.g. If M=11, and there are 90 runs, one pass

reduces the number of runs to 9, each 10 times the
size of the initial runs

! Repeated passes are performed till all runs have been
merged into one.

9

©Silberschatz, Korth and Sudarshan13.17Database System Concepts

Example: External Sorting Using SortExample: External Sorting Using Sort--MergeMerge

©Silberschatz, Korth and Sudarshan13.18Database System Concepts

External Merge Sort (Cont.)External Merge Sort (Cont.)

! Cost analysis:
! Total number of merge passes required: logM–1(br/M).
! Disk accesses for initial run creation as well as in each pass is 2br

" for final pass, we don’t count write cost
– we ignore final write cost for all operations since the output of

an operation may be sent to the parent operation without
being written to disk

Thus total number of disk accesses for external sorting:

br (2 logM–1(br / M) + 1)

10

©Silberschatz, Korth and Sudarshan13.19Database System Concepts

Join OperationJoin Operation

! Several different algorithms to implement joins
! Nested-loop join
! Block nested-loop join
! Indexed nested-loop join
! Merge-join
! Hash-join

! Choice based on cost estimate
! Examples use the following information

! Number of records of customer: 10,000 depositor: 5000
! Number of blocks of customer: 400 depositor: 100

©Silberschatz, Korth and Sudarshan13.20Database System Concepts

NestedNested--Loop JoinLoop Join
! To compute the theta join r θ s

for each tuple tr in r do begin
for each tuple ts in s do begin

test pair (tr,ts) to see if they satisfy the join condition θ
if they do, add tr • ts to the result.

end
end

! r is called the outer relation and s the inner relation of the join.
! Requires no indices and can be used with any kind of join

condition.
! Expensive since it examines every pair of tuples in the two

relations.

11

©Silberschatz, Korth and Sudarshan13.21Database System Concepts

NestedNested--Loop Join (Cont.)Loop Join (Cont.)
! In the worst case, if there is enough memory only to hold

one block of each relation, the estimated cost is
nr ∗ bs + br

disk accesses.
! If the smaller relation fits entirely in memory, use that as the

inner relation. Reduces cost to br + bs disk accesses.
! Assuming worst case memory availability cost estimate is

! 5000 ∗ 400 + 100 = 2,000,100 disk accesses with depositor as
outer relation, and

! 1000 ∗ 100 + 400 = 1,000,400 disk accesses with customer as
the outer relation.

! If smaller relation (depositor) fits entirely in memory, the cost
estimate will be 500 disk accesses.

! Block nested-loops algorithm (next slide) is preferable.

©Silberschatz, Korth and Sudarshan13.22Database System Concepts

Block NestedBlock Nested--Loop JoinLoop Join
! Variant of nested-loop join in which every block of inner

relation is paired with every block of outer relation.

for each block Br of r do begin
for each block Bs of s do begin

for each tuple tr in Br do begin
for each tuple ts in Bs do begin

Check if (tr,ts) satisfy the join condition
if they do, add tr • ts to the result.

end
end

end
end

12

©Silberschatz, Korth and Sudarshan13.23Database System Concepts

Block NestedBlock Nested--Loop Join (Cont.)Loop Join (Cont.)
! Worst case estimate: br ∗ bs + br block accesses.

! Each block in the inner relation s is read once for each block in
the outer relation (instead of once for each tuple in the outer
relation

! Best case: br + bs block accesses.
! Improvements to nested loop and block nested loop

algorithms:
! In block nested-loop, use M — 2 disk blocks as blocking unit for

outer relations, where M = memory size in blocks; use remaining
two blocks to buffer inner relation and output

" Cost = br / (M-2) ∗ bs + br
! If equi-join attribute forms a key or inner relation, stop inner loop

on first match
! Scan inner loop forward and backward alternately, to make use of

the blocks remaining in buffer (with LRU replacement)
! Use index on inner relation if available (next slide)

©Silberschatz, Korth and Sudarshan13.24Database System Concepts

Indexed NestedIndexed Nested--Loop JoinLoop Join
! Index lookups can replace file scans if

! join is an equi-join or natural join and
! an index is available on the inner relation’s join attribute

"Can construct an index just to compute a join.
! For each tuple tr in the outer relation r, use the index to look up

tuples in s that satisfy the join condition with tuple tr.
! Worst case: buffer has space for only one page of r, and, for each

tuple in r, we perform an index lookup on s.

! Cost of the join: br + nr ∗ c
! Where c is the cost of traversing index and fetching all matching s

tuples for one tuple or r
! c can be estimated as cost of a single selection on s using the join

condition.
! If indices are available on join attributes of both r and s,

use the relation with fewer tuples as the outer relation.

13

©Silberschatz, Korth and Sudarshan13.25Database System Concepts

Example of NestedExample of Nested--Loop Join CostsLoop Join Costs

! Compute depositor customer, with depositor as the outer
relation.

! Let customer have a primary B+-tree index on the join attribute
customer-name, which contains 20 entries in each index node.

! Since customer has 10,000 tuples, the height of the tree is 4, and
one more access is needed to find the actual data

! depositor has 5000 tuples
! Cost of block nested loops join

! 400*100 + 100 = 40,100 disk accesses assuming worst case
memory (may be significantly less with more memory)

! Cost of indexed nested loops join
! 100 + 5000 * 5 = 25,100 disk accesses.

! CPU cost likely to be less than that for block nested loops join

©Silberschatz, Korth and Sudarshan13.26Database System Concepts

MergeMerge--JoinJoin
1. Sort both relations on their join attribute (if not already sorted on the

join attributes).
2. Merge the sorted relations to join them

1. Join step is similar to the merge stage of the sort-merge algorithm.
2. Main difference is handling of duplicate values in join attribute — every

pair with same value on join attribute must be matched
3. Detailed algorithm in book

14

©Silberschatz, Korth and Sudarshan13.27Database System Concepts

MergeMerge--Join (Cont.)Join (Cont.)

! Can be used only for equi-joins and natural joins
! Each block needs to be read only once (assuming all tuples for

any given value of the join attributes fit in memory
! Thus number of block accesses for merge-join is

br + bs + the cost of sorting if relations are unsorted.
! hybrid merge-join: If one relation is sorted, and the other has a

secondary B+-tree index on the join attribute
! Merge the sorted relation with the leaf entries of the B+-tree .
! Sort the result on the addresses of the unsorted relation’s tuples
! Scan the unsorted relation in physical address order and merge with

previous result, to replace addresses by the actual tuples
"Sequential scan more efficient than random lookup

©Silberschatz, Korth and Sudarshan13.28Database System Concepts

HashHash--JoinJoin
! Applicable for equi-joins and natural joins.
! A hash function h is used to partition tuples of both relations
! h maps JoinAttrs values to {0, 1, ..., n}, where JoinAttrs denotes

the common attributes of r and s used in the natural join.
! r0, r1, . . ., rn denote partitions of r tuples

"Each tuple tr ∈ r is put in partition ri where i = h(tr [JoinAttrs]).
! r0,, r1. . ., rn denotes partitions of s tuples

"Each tuple ts ∈ s is put in partition si, where i = h(ts [JoinAttrs]).

! Note: In book, ri is denoted as Hri, si is denoted as Hsi and
n is denoted as nh.

15

©Silberschatz, Korth and Sudarshan13.29Database System Concepts

HashHash--Join (Cont.)Join (Cont.)

©Silberschatz, Korth and Sudarshan13.30Database System Concepts

HashHash--Join (Cont.)Join (Cont.)

! r tuples in ri need only to be compared with s tuples in si
Need not be compared with s tuples in any other partition,
since:
! an r tuple and an s tuple that satisfy the join condition will have

the same value for the join attributes.
! If that value is hashed to some value i, the r tuple has to be in ri

and the s tuple in si.

16

©Silberschatz, Korth and Sudarshan13.31Database System Concepts

HashHash--Join AlgorithmJoin Algorithm

1. Partition the relation s using hashing function h. When
partitioning a relation, one block of memory is reserved as
the output buffer for each partition.

2. Partition r similarly.
3. For each i:

(a) Load si into memory and build an in-memory hash index on it
using the join attribute. This hash index uses a different hash
function than the earlier one h.

(b) Read the tuples in ri from the disk one by one. For each tuple
tr locate each matching tuple ts in si using the in-memory hash
index. Output the concatenation of their attributes.

The hash-join of r and s is computed as follows.

Relation s is called the build input and
r is called the probe input.

©Silberschatz, Korth and Sudarshan13.32Database System Concepts

HashHash--Join algorithm (Cont.)Join algorithm (Cont.)
! The value n and the hash function h is chosen such that each

si should fit in memory.
! Typically n is chosen as bs/M * f where f is a “fudge factor”,

typically around 1.2
! The probe relation partitions si need not fit in memory

! Recursive partitioning required if number of partitions n is
greater than number of pages M of memory.
! instead of partitioning n ways, use M – 1 partitions for s
! Further partition the M – 1 partitions using a different hash

function
! Use same partitioning method on r
! Rarely required: e.g., recursive partitioning not needed for

relations of 1GB or less with memory size of 2MB, with block size
of 4KB.

17

©Silberschatz, Korth and Sudarshan13.33Database System Concepts

Handling of OverflowsHandling of Overflows
! Hash-table overflow occurs in partition si if si does not fit in

memory. Reasons could be
! Many tuples in s with same value for join attributes
! Bad hash function

! Partitioning is said to be skewed if some partitions have
significantly more tuples than some others

! Overflow resolution can be done in build phase
! Partition si is further partitioned using different hash function.
! Partition ri must be similarly partitioned.

! Overflow avoidance performs partitioning carefully to avoid
overflows during build phase
! E.g. partition build relation into many partitions, then combine them

! Both approaches fail with large numbers of duplicates
! Fallback option: use block nested loops join on overflowed

partitions

©Silberschatz, Korth and Sudarshan13.34Database System Concepts

Cost of HashCost of Hash--JoinJoin
! If recursive partitioning is not required: cost of hash join is

3(br + bs) +2 ∗ nh
! If recursive partitioning required, number of passes required for

partitioning s is logM–1(bs) – 1. This is because each final
partition of s should fit in memory.

! The number of partitions of probe relation r is the same as that
for build relation s; the number of passes for partitioning of r is
also the same as for s.

! Therefore it is best to choose the smaller relation as the build
relation.

! Total cost estimate is:
2(br + bs logM–1(bs) – 1 + br + bs

! If the entire build input can be kept in main memory, n can be
set to 0 and the algorithm does not partition the relations into
temporary files. Cost estimate goes down to br + bs.

18

©Silberschatz, Korth and Sudarshan13.35Database System Concepts

Example of Cost of HashExample of Cost of Hash--JoinJoin

! Assume that memory size is 20 blocks

! bdepositor= 100 and bcustomer = 400.
! depositor is to be used as build input. Partition it into five partitions,

each of size 20 blocks. This partitioning can be done in one pass.
! Similarly, partition customer into five partitions,each of size 80.

This is also done in one pass.
! Therefore total cost: 3(100 + 400) = 1500 block transfers

! ignores cost of writing partially filled blocks

customer depositor

©Silberschatz, Korth and Sudarshan13.36Database System Concepts

Hybrid HashHybrid Hash––JoinJoin
! Useful when memory sized are relatively large, and the build input

is bigger than memory.
! Main feature of hybrid hash join:

Keep the first partition of the build relation in memory.
! E.g. With memory size of 25 blocks, depositor can be partitioned

into five partitions, each of size 20 blocks.
! Division of memory:

! The first partition occupies 20 blocks of memory
! 1 block is used for input, and 1 block each for buffering the other 4

partitions.
! customer is similarly partitioned into five partitions each of size 80;

the first is used right away for probing, instead of being written out
and read back.

! Cost of 3(80 + 320) + 20 +80 = 1300 block transfers for
hybrid hash join, instead of 1500 with plain hash-join.

! Hybrid hash-join most useful if M >> sb

19

©Silberschatz, Korth and Sudarshan13.37Database System Concepts

Complex JoinsComplex Joins
! Join with a conjunctive condition:

r θ1∧ θ 2∧ ... ∧ θ n s
! Either use nested loops/block nested loops, or
! Compute the result of one of the simpler joins r θi s

" final result comprises those tuples in the intermediate result
that satisfy the remaining conditions

θ1 ∧ . . . ∧ θi –1 ∧ θi +1 ∧ . . . ∧ θn

! Join with a disjunctive condition
r θ1 ∨ θ2 ∨ ... ∨ θn s

! Either use nested loops/block nested loops, or
! Compute as the union of the records in individual joins r θ i s:

(r θ1 s) ∪ (r θ2 s) ∪ . . . ∪ (r θn s)

©Silberschatz, Korth and Sudarshan13.38Database System Concepts

Other OperationsOther Operations

! Duplicate elimination can be implemented via
hashing or sorting.
! On sorting duplicates will come adjacent to each other,

and all but one set of duplicates can be deleted.
Optimization: duplicates can be deleted during run
generation as well as at intermediate merge steps in
external sort-merge.

! Hashing is similar – duplicates will come into the same
bucket.

! Projection is implemented by performing projection on
each tuple followed by duplicate elimination.

20

©Silberschatz, Korth and Sudarshan13.39Database System Concepts

Other Operations : AggregationOther Operations : Aggregation

! Aggregation can be implemented in a manner similar to
duplicate elimination.
! Sorting or hashing can be used to bring tuples in the same group

together, and then the aggregate functions can be applied on each
group.

! Optimization: combine tuples in the same group during run
generation and intermediate merges, by computing partial
aggregate values
"For count, min, max, sum: keep aggregate values on tuples

found so far in the group.
– When combining partial aggregate for count, add up the

aggregates
"For avg, keep sum and count, and divide sum by count at the

end

©Silberschatz, Korth and Sudarshan13.40Database System Concepts

Other Operations : Set OperationsOther Operations : Set Operations
! Set operations (∪ , ∩ and): can either use variant of

merge-join after sorting, or variant of hash-join.
! E.g., Set operations using hashing:

1. Partition both relations using the same hash function, thereby
creating, r1, .., rn r0, and s1, s2.., sn

2. Process each partition i as follows. Using a different hashing
function, build an in-memory hash index on ri after it is brought
into memory.

3. – r ∪ s: Add tuples in si to the hash index if they are not already
in it. At end of si add the tuples in the hash index to the result.

– r ∩ s: output tuples in si to the result if they are already there in
the hash index.

– r – s: for each tuple in si, if it is there in the hash index, delete it
from the index. At end of si add remaining tuples in the hash
index to the result.

21

©Silberschatz, Korth and Sudarshan13.41Database System Concepts

Other Operations : Outer JoinOther Operations : Outer Join

! Outer join can be computed either as
! A join followed by addition of null-padded non-participating tuples.
! by modifying the join algorithms.

! Modifying merge join to compute r s
! In r s, non participating tuples are those in r – ΠR(r s)
! Modify merge-join to compute r s: During merging, for every

tuple tr from r that do not match any tuple in s, output tr padded with
nulls.

! Right outer-join and full outer-join can be computed similarly.

! Modifying hash join to compute r s
! If r is probe relation, output non-matching r tuples padded with nulls
! If r is build relation, when probing keep track of which

r tuples matched s tuples. At end of si output
non-matched r tuples padded with nulls

©Silberschatz, Korth and Sudarshan13.42Database System Concepts

Evaluation of ExpressionsEvaluation of Expressions

! So far: we have seen algorithms for individual operations
! Alternatives for evaluating an entire expression tree

! Materialization: generate results of an expression whose inputs
are relations or are already computed, materialize (store) it on disk.
Repeat.

! Pipelining: pass on tuples to parent operations even as an
operation is being executed

! We study above alternatives in more detail

22

©Silberschatz, Korth and Sudarshan13.43Database System Concepts

MaterializationMaterialization
! Materialized evaluation: evaluate one operation at a

time, starting at the lowest-level. Use intermediate
results materialized into temporary relations to evaluate
next-level operations.

! E.g., in figure below, compute and store

then compute the store its join with customer, and finally
compute the projections on customer-name.

)(2500 accountbalance<σ

©Silberschatz, Korth and Sudarshan13.44Database System Concepts

Materialization (Cont.)Materialization (Cont.)

! Materialized evaluation is always applicable
! Cost of writing results to disk and reading them back can be

quite high
! Our cost formulas for operations ignore cost of writing results to

disk, so
"Overall cost = Sum of costs of individual operations +

cost of writing intermediate results to disk

! Double buffering: use two output buffers for each operation,
when one is full write it to disk while the other is getting filled
! Allows overlap of disk writes with computation and reduces

execution time

23

©Silberschatz, Korth and Sudarshan13.45Database System Concepts

PipeliningPipelining
! Pipelined evaluation : evaluate several operations

simultaneously, passing the results of one operation on to the next.
! E.g., in previous expression tree, don’t store result of

! instead, pass tuples directly to the join.. Similarly, don’t store result of
join, pass tuples directly to projection.

! Much cheaper than materialization: no need to store a temporary
relation to disk.

! Pipelining may not always be possible – e.g., sort, hash-join.
! For pipelining to be effective, use evaluation algorithms that

generate output tuples even as tuples are received for inputs to the
operation.

! Pipelines can be executed in two ways: demand driven and
producer driven

)(2500 accountbalance<σ

©Silberschatz, Korth and Sudarshan13.46Database System Concepts

Pipelining (Cont.)Pipelining (Cont.)
! In demand driven or lazy evaluation

! system repeatedly requests next tuple from top level operation
! Each operation requests next tuple from children operations as required, in order to

output its next tuple
! In between calls, operation has to maintain “state” so it knows what to return next
! Each operation is implemented as an iterator implementing the following operations

" open()
– E.g. file scan: initialize file scan, store pointer to beginning of file as state
– E.g.merge join: sort relations and store pointers to beginning of sorted

relations as state
" next()

– E.g. for file scan: Output next tuple, and advance and store file pointer
– E.g. for merge join: continue with merge from earlier state till

next output tuple is found. Save pointers as iterator state.
" close()

24

©Silberschatz, Korth and Sudarshan13.47Database System Concepts

Pipelining (Cont.)Pipelining (Cont.)

! In produce-driven or eager pipelining
! Operators produce tuples eagerly and pass them up to their parents

"Buffer maintained between operators, child puts tuples in buffer,
parent removes tuples from buffer

" if buffer is full, child waits till there is space in the buffer, and then
generates more tuples

! System schedules operations that have space in output buffer and
can process more input tuples

©Silberschatz, Korth and Sudarshan13.48Database System Concepts

Evaluation Algorithms for PipeliningEvaluation Algorithms for Pipelining
! Some algorithms are not able to output results even as they get

input tuples
! E.g. merge join, or hash join
! These result in intermediate results being written to disk and then

read back always
! Algorithm variants are possible to generate (at least some) results

on the fly, as input tuples are read in
! E.g. hybrid hash join generates output tuples even as probe relation

tuples in the in-memory partition (partition 0) are read in
! Pipelined join technique: Hybrid hash join, modified to buffer

partition 0 tuples of both relations in-memory, reading them as they
become available, and output results of any matches between
partition 0 tuples
"When a new r0 tuple is found, match it with existing s0 tuples,

output matches, and save it in r0
"Symmetrically for s0 tuples

25

©Silberschatz, Korth and Sudarshan13.49Database System Concepts

Complex JoinsComplex Joins
! Join involving three relations: loan depositor customer
! Strategy 1. Compute depositor customer; use result to

compute loan (depositor customer)
! Strategy 2. Computer loan depositor first, and then join

the result with customer.
! Strategy 3. Perform the pair of joins at once. Build and

index on loan for loan-number, and on customer for
customer-name.
! For each tuple t in depositor, look up the corresponding tuples

in customer and the corresponding tuples in loan.
! Each tuple of deposit is examined exactly once.

! Strategy 3 combines two operations into one special-
purpose operation that is more efficient than implementing
two joins of two relations.

