## Chapter 14 Query Optimization

### **Chapter 14: Query Optimization**

- Introduction
- Catalog Information for Cost Estimation
- Estimation of Statistics
- Transformation of Relational Expressions
- Dynamic Programming for Choosing Evaluation Plans





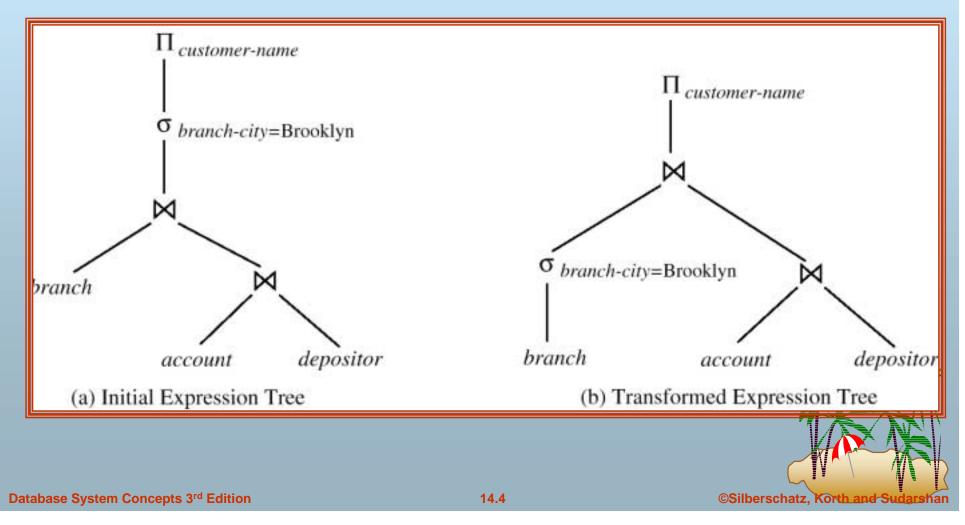
### Introduction

- Alternative ways of evaluating a given query
  - Equivalent expressions
  - ★ Different algorithms for each operation (Chapter 13)
- Cost difference between a good and a bad way of evaluating a query can be enormous
  - **★** Example: performing a r X s followed by a selection r.A = s.B is much slower than performing a join on the same condition
- Need to estimate the cost of operations
  - Depends critically on statistical information about relations which the database must maintain
    - → E.g. number of tuples, number of distinct values for join attributes, etc.
  - Need to estimate statistics for intermediate results to compute cost of complex expressions



### Introduction (Cont.)

Relations generated by two equivalent expressions have the same set of attributes and contain the same set of tuples, although their attributes may be ordered differently.





### Introduction (Cont.)

- Generation of query-evaluation plans for an expression involves several steps:
  - 1. Generating logically equivalent expressions
    - → Use equivalence rules to transform an expression into an equivalent one.
  - 2. Annotating resultant expressions to get alternative query plans
  - 3. Choosing the cheapest plan based on estimated cost
- The overall process is called cost based optimization.





### **Overview of chapter**

- Statistical information for cost estimation
- Equivalence rules
- Cost-based optimization algorithm
- Optimizing nested subqueries
- Materialized views and view maintenance





### Statistical Information for Cost Estimation

- $n_r$ : number of tuples in a relation *r*.
- **b**<sub>r</sub>: number of blocks containing tuples of r.
- s<sub>r</sub>: size of a tuple of r.
- $f_r$ : blocking factor of r i.e., the number of tuples of r that fit into one block.
- V(A, r): number of distinct values that appear in r for attribute A; same as the size of  $\prod_A (r)$ .
- SC(A, r): selection cardinality of attribute A of relation r, average number of records that satisfy equality on A.
- If tuples of r are stored together physically in a file, then:

$$b_r = \left[\frac{n_r}{f_r}\right]$$



## Catalog Information about Indices

- *f<sub>j</sub>*: average fan-out of internal nodes of index *i*, for tree-structured indices such as B+-trees.
- $HT_{i}$ : number of levels in index i i.e., the height of i.
  - ★ For a balanced tree index (such as B+-tree) on attribute A of relation r,  $HT_i = \lceil \log_{fi}(V(A, r)) \rceil$ .
  - **\star** For a hash index,  $HT_i$  is 1.
  - ★ LB<sub>i</sub>: number of lowest-level index blocks in i i.e, the number of blocks at the leaf level of the index.



### **Measures of Query Cost**

### Recall that

- Typically disk access is the predominant cost, and is also relatively easy to estimate.
- The number of block transfers from disk is used as a measure of the actual cost of evaluation.
- It is assumed that all transfers of blocks have the same cost.
  - → Real life optimizers do not make this assumption, and distinguish between sequential and random disk access
- We do not include cost to writing output to disk.
- We refer to the cost estimate of algorithm A as  $E_A$





### **Selection Size Estimation**

### • Equality selection $\sigma_{A=v}(r)$

- $\rightarrow$  SC(A, r) : number of records that will satisfy the selection
- →  $[SC(A, r)/f_r]$  number of blocks that these records will occupy
- → E.g. Binary search cost estimate becomes

$$E_{a2} = \left\lceil \log_2(b_r) \right\rceil + \left\lceil \frac{SC(A, r)}{f_r} \right\rceil - 1$$

**★** Equality condition on a key attribute: SC(A,r) = 1



### **Statistical Information for Examples**

- $f_{account} = 20$  (20 tuples of *account* fit in one block)
- V(branch-name, account) = 50 (50 branches)
- V(balance, account) = 500 (500 different balance values)
- $\pi_{account} = 10000$  (*account* has 10,000 tuples)
- Assume the following indices exist on account:
  - ★ A primary, B+-tree index for attribute branch-name
  - ★ A secondary, B+-tree index for attribute balance



### **Selections Involving Comparisons**

- Selections of the form  $\sigma_{A \le V}(r)$  (case of  $\sigma_{A \ge V}(r)$  is symmetric)
- Let c denote the estimated number of tuples satisfying the condition.
  - If min(A,r) and max(A,r) are available in catalog

 $\rightarrow$  C = 0 if v < min(A,r)

$$\rightarrow C = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

**†** In absence of statistical information *c* is assumed to be  $n_r/2$ .



### Implementation of Complex Selections

- The **selectivity** of a condition  $\theta_i$  is the probability that a tuple in the relation *r* satisfies  $\theta_i$ . If  $s_i$  is the number of satisfying tuples in *r*, the selectivity of  $\theta_i$  is given by  $s_i / n_r$ .
- **Conjunction:**  $\sigma_{\theta_{1} \land \theta_{2} \land \ldots \land \theta_{n}}(r)$ . The estimate for number of

tuples in the result is:

$$*\frac{s_1*s_2*\ldots*s_r}{n_r^n}$$

**Disjunction**:  $\sigma_{\theta_{1}}, \theta_{2}, \dots, \theta_{n}$  (*r*). Estimated number of tuples:

 $n_r$ 

$$n_r * \left(1 - (1 - \frac{s_1}{n_r}) * (1 - \frac{s_2}{n_r}) * \dots * (1 - \frac{s_n}{n_r})\right)$$

**Negation:**  $\sigma_{\neg\theta}(r)$ . Estimated number of tuples:  $n_r - size(\sigma_{\theta}(r))$ 



## **Join Operation:** Running Example

Running example: *depositor* ⊠ *customer* 

Catalog information for join examples:

- $n_{customer} = 10,000.$
- $f_{customer} = 25$ , which implies that  $b_{customer} = 10000/25 = 400$ .
- $n_{depositor} = 5000.$
- $f_{depositor} = 50$ , which implies that  $b_{depositor} = 5000/50 = 100$ .
- V(customer-name, depositor) = 2500, which implies that, on average, each customer has two accounts.

Also assume that *customer-name* in *depositor* is a foreign key on *customer.* 

### **Estimation of the Size of Joins**

- The Cartesian product  $r \ge s$  contains  $n_r . n_s$  tuples; each tuple occupies  $s_r + s_s$  bytes.
- If  $R \cap S = \emptyset$ , then  $r \bowtie s$  is the same as  $r \ge s$ .
- If  $R \cap S$  is a key for R, then a tuple of s will join with at most one tuple from r

★ therefore, the number of tuples in  $r \bowtie s$  is no greater than the number of tuples in *s*.

If R ∩ S in S is a foreign key in S referencing R, then the number of tuples in r ⋈ s is exactly the same as the number of tuples in s.

→ The case for  $R \cap S$  being a foreign key referencing S is symmetric.

In the example query depositor ⋈ customer, customer-name in depositor is a foreign key of customer

 $\star$  hence, the result has exactly  $n_{depositor}$  tuples, which is 500

### Estimation of the Size of Joins (Cont.)

If  $R \cap S = \{A\}$  is not a key for R or S. If we assume that every tuple *t* in R produces tuples in  $R \bowtie S$ , the

number of tuples in  $R \bowtie S$  is estimated to be:

$$\frac{n_r * n_s}{V(A,s)}$$

If the reverse is true, the estimate obtained will be:

$$\frac{n_r * n_s}{V(A,r)}$$

The lower of these two estimates is probably the more accurate one.



### Estimation of the Size of Joins (Cont.)

- Compute the size estimates for *depositor* \(\begin{bmatrix} customer without using information about foreign keys:
  - V(customer-name, depositor) = 2500, and
     V(customer-name, customer) = 10000
  - The two estimates are 5000 \* 10000/2500 20,000 and 5000 \* 10000/10000 = 5000
  - We choose the lower estimate, which in this case, is the same as our earlier computation using foreign keys.



### Size Estimation for Other Operations

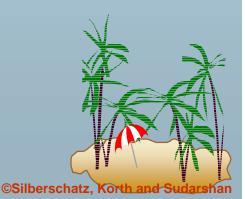
- Projection: estimated size of  $\prod_{A}(r) = V(A, r)$
- Aggregation : estimated size of  $_{A}\mathcal{G}_{F}(r) = V(A, r)$
- Set operations
  - For unions/intersections of selections on the same relation: rewrite and use size estimate for selections

→ E.g.  $\sigma_{\theta_1}$  (*r*)  $\cup$   $\sigma_{\theta_2}$  (*r*) can be rewritten as  $\sigma_{\theta_1} \sigma_{\theta_2}$  (*r*)

- ★ For operations on different relations:
  - $\rightarrow$  estimated size of  $r \cup s$  = size of r + size of s.
  - $\rightarrow$  estimated size of  $r \cap s$  = minimum size of r and size of s.
  - $\rightarrow$  estimated size of r s = r.
  - → All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.

### Size Estimation (Cont.)

- Outer join:
  - **★** Estimated size of  $r \supseteq \rtimes s = size \ of \ r \boxtimes s + size \ of r$ 
    - → Case of right outer join is symmetric
  - **★** Estimated size of  $r \supseteq x \subseteq s = size \ of \ r \bowtie s + size \ of \ r + size \ of \ s$



### **Estimation of Number of Distinct Values**

Selections:  $\sigma_{\theta}(r)$ 

If  $\theta$  forces A to take a specified value:  $V(A, \sigma_{\theta}(r)) = 1$ .

→e.g., *A* = 3

If  $\theta$  forces A to take on one of a specified set of values:  $V(A, \sigma_{\theta}(r)) =$  number of specified values.

 $V(N, \Theta_{\theta}(N)) = \text{Harmber of Specified Ve$ 

→ (e.g., (A = 1 V A = 3 V A = 4)),

If the selection condition  $\theta$  is of the form A op restimated  $V(A,\sigma_{\theta}(r)) = V(A.r) * s$ 

 $\rightarrow$  where s is the selectivity of the selection.

- In all the other cases: use approximate estimate of min(V(A,r), n<sub>σθ(r)</sub>)
  - More accurate estimate can be got using probability theory, be this one works fine generally

©Silberschatz.

### Estimation of Distinct Values (Cont.)

Joins:  $r \bowtie s$ 

- If all attributes in A are from r estimated  $V(A, r \bowtie s) = \min(V(A, r), n_{r \bowtie s})$
- If A contains attributes A1 from r and A2 from s, then estimated  $V(A, r \bowtie s) =$

min( $V(A1,r)^*V(A2 - A1,s)$ ,  $V(A1 - A2,r)^*V(A2,s)$ ,  $n_r \bowtie s$ )

 More accurate estimate can be got using probability theory, but this one works fine generally



### **Estimation of Distinct Values (Cont.)**

- Estimation of distinct values are straightforward for projections.
  - **★** They are the same in  $\prod_{A(r)}$  as in *r*.
- The same holds for grouping attributes of aggregation.
- For aggregated values
  - For min(A) and max(A), the number of distinct values can be estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes
  - **\star** For other aggregates, assume all values are distinct, and use V(G,r)





### Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if on every legal database instance the two expressions generate the same set of tuples
  - ★ Note: order of tuples is irrelevant
- In SQL, inputs and outputs are multisets of tuples
  - Two expressions in the multiset version of the relational algebra are said to be equivalent if on every legal database instance the two expressions generate the same multiset of tuples
- An equivalence rule says that expressions of two forms are equivalent
  - Can replace expression of first form by second, or vice versa





### **Equivalence Rules**

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

 $\sigma_{\theta_1 \land \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$ 

2. Selection operations are commutative.

 $\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$ 

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

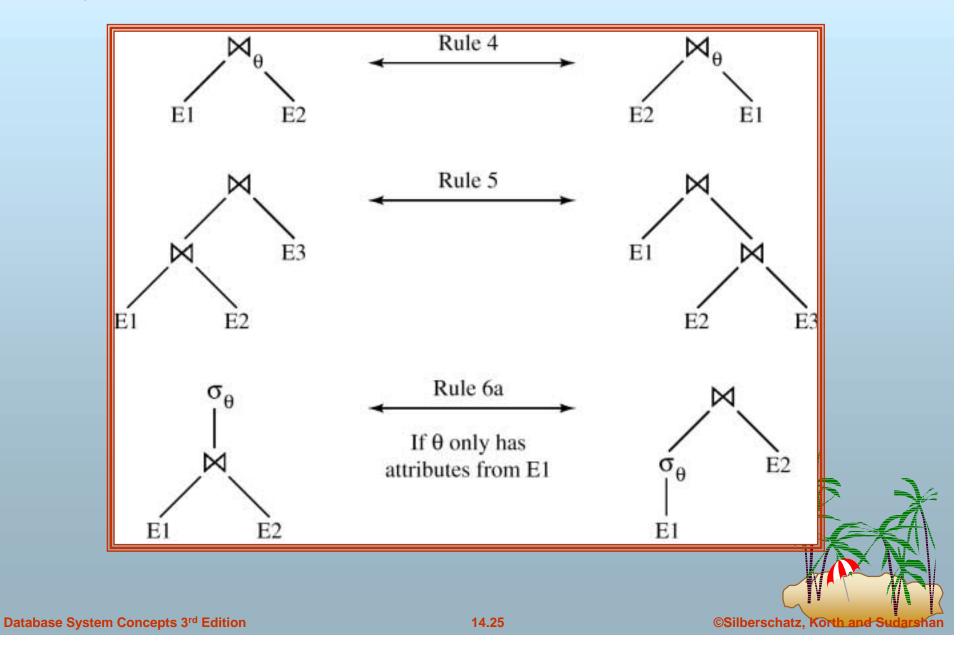
 $\Pi_{t_1}(\Pi_{t_2}(...(\Pi_{t_n}(E))...)) = \Pi_{t_1}(E)$ 

4. Selections can be combined with Cartesian products and theta joins.

a. 
$$\sigma_{\theta}(\mathsf{E}_1 X \mathsf{E}_2) = \mathsf{E}_1 \Join_{\theta} \mathsf{E}_2$$
  
b.  $\sigma_{\theta 1}(\mathsf{E}_1 \Join_{\theta 2} \mathsf{E}_2) = \mathsf{E}_1 \Join_{\theta 1 \land \theta 2} \mathsf{E}_2$ 



### **Pictorial Depiction of Equivalence Rules**



5. Theta-join operations (and natural joins) are commutative.  $E_1 \Join_{\theta} E_2 = E_2 \Join_{\theta} E_1$ 

6. (a) Natural join operations are associative:

 $(E_1 \boxtimes E_2) \boxtimes E_3 = E_1 \boxtimes (E_2 \boxtimes E_3)$ 

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_{2\wedge \theta_3}} E_3 = E_1 \bowtie_{\theta_{2\wedge \theta_3}} (E_2 \bowtie_{\theta_2} E_3)$$

where  $\theta_2$  involves attributes from only  $E_2$  and  $E_3$ .



- 7. The selection operation distributes over the theta join operation under the following two conditions:
  - (a) When all the attributes in  $\theta_0$  involve only the attributes of one of the expressions ( $E_1$ ) being joined.

 $\sigma_{\theta 0}(\mathsf{E}_1 \boxtimes_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \boxtimes_{\theta} \mathsf{E}_2$ 

(b) When  $\theta_1$  involves only the attributes of  $E_1$  and  $\theta_2$  involves only the attributes of  $E_2$ .

$$\sigma_{\theta_{1}} \wedge_{\theta_{2}} (\mathsf{E}_{1} \boxtimes_{\theta} \mathsf{E}_{2}) = (\sigma_{\theta_{1}}(\mathsf{E}_{1})) \boxtimes_{\theta} (\sigma_{\theta_{2}}(\mathsf{E}_{2}))$$





- 8. The projections operation distributes over the theta join operation as follows:
  - (a) if  $\Pi$  involves only attributes from  $L_1 \cup L_2$ :

$$\prod_{L_1 \cup L_2} (E_1 \bigotimes_{\theta} E_2) = (\prod_{L_1} (E_1)) \bigotimes_{\theta} (\prod_{L_2} (E_2))$$

- (b) Consider a join  $E_1 \bowtie_{\theta} E_2$ .
  - ★ Let  $L_1$  and  $L_2$  be sets of attributes from  $E_1$  and  $E_2$ , respectively.
  - ★ Let  $L_3$  be attributes of  $E_1$  that are involved in join condition  $\theta$ , but are not in  $L_1 \cup L_2$ , and
  - ★ let  $L_4$  be attributes of  $E_2$  that are involved in join condition θ, but are not in  $L_1 \cup L_2$ .

$$\prod_{L_1 \cup L_2} (E_1 . \boxtimes_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \boxtimes_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$$

Database System Concepts 3rd Edition

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 = E_2 \cup E_1$$
$$E_1 \cap E_2 = E_2 \cap E_1$$

(set difference is not commutative).

10. Set union and intersection are associative.

 $(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$  $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$ 

11. The selection operation distributes over  $\cup$ ,  $\cap$  and –.

 $\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta} (E_1) - \sigma_{\theta} (E_2)$ 

and similarly for  $\cup$  and  $\cap$  in place of -

Also:

$$\boldsymbol{\sigma}_{\theta} (\boldsymbol{E}_1 - \boldsymbol{E}_2) = \boldsymbol{\sigma}_{\theta}(\boldsymbol{E}_1) - \boldsymbol{E}_2$$

and similarly for  $\cap$  in place of –, but not for  $\cup$ 

12. The projection operation distributes over union

$$\Pi_{L}(E_{1} \cup E_{2}) = (\Pi_{L}(E_{1})) \cup (\Pi_{L}(E_{2}))$$

# **Transformation Example**

Query: Find the names of all customers who have an account at some branch located in Brooklyn.

 $\Pi_{customer-name}(\sigma_{branch-city = `Brooklyn"} (branch \Join (account \bowtie depositor)))$ 

Transformation using rule 7a.

 $\Pi_{customer-name} \\ ((\sigma_{branch-city = "Brooklyn"} (branch)) \\ \boxtimes (account \boxtimes depositor))$ 

Performing the selection as early as possible reduces the size of the relation to be joined.



### **Example with Multiple Transformations**

Query: Find the names of all customers with an account at a Brooklyn branch whose account balance is over \$1000.

 $\Pi_{customer-name}(\sigma_{branch-city = `Brooklyn" \land balance > 1000} (branch \Join (account \bowtie depositor)))$ 

Transformation using join associatively (Rule 6a):  $\Pi_{customer-name}((\sigma_{branch-city = `Brooklyn" \land balance > 1000})$ (branch  $\bowtie$  (account))  $\bowtie$  depositor)

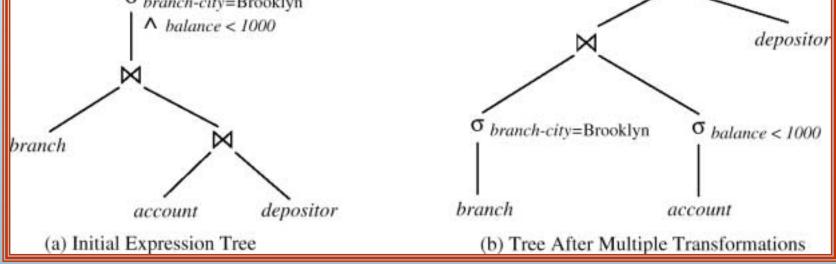
Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression

 $\sigma_{branch-city = Brooklyn"}$  (branch)  $\bowtie \sigma_{balance > 1000}$  (account)

Thus a sequence of transformations can be useful









### **Projection Operation Example**

 $\Pi_{customer-name}((\sigma_{branch-city = "Brooklyn"} (branch)) \otimes account)) \otimes depositor)$ 

When we compute

(σ<sub>branch-city = "Brooklyn"</sub> (branch) ⊠account) we obtain a relation whose schema is: (branch-name, branch-city, assets, account-number, balance)

Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate results to get:

 $\Pi_{account-number} (( \\ \Pi_{account-number} ( (\sigma_{branch-city = "Brooklyn"} (branch) \bowtie account )) \\ \bowtie depositor)$ 



### Join Ordering Example

For all relations  $r_{1, r_{2}}$  and  $r_{3}$ ,

 $(r_1 \boxtimes r_2) \boxtimes r_3 = r_1 \boxtimes (r_2 \boxtimes r_3)$ 

If  $r_2 \bowtie r_3$  is quite large and  $r_1 \bowtie r_2$  is small, we choose

 $(r_1 \bowtie r_2) \bowtie r_3$ 

so that we compute and store a smaller temporary relation.



## Join Ordering Example (Cont.)

Consider the expression

 $\Pi_{customer-name} ((\sigma_{branch-city = "Brooklyn"} (branch)) \\ \boxtimes account \boxtimes depositor)$ 

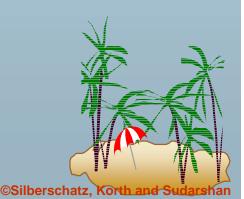
Could compute account \(\begin{aligned} depositor first, and join result with \)

 $\sigma_{branch-city = "Brooklyn"}$  (branch) but account  $\bowtie$  depositor is likely to be a large relation.

Since it is more likely that only a small fraction of the bank's customers have accounts in branches located in Brooklyn, it is better to compute

 $\sigma_{branch-city = "Brooklyn"}$  (branch)  $\bowtie$  account

first.

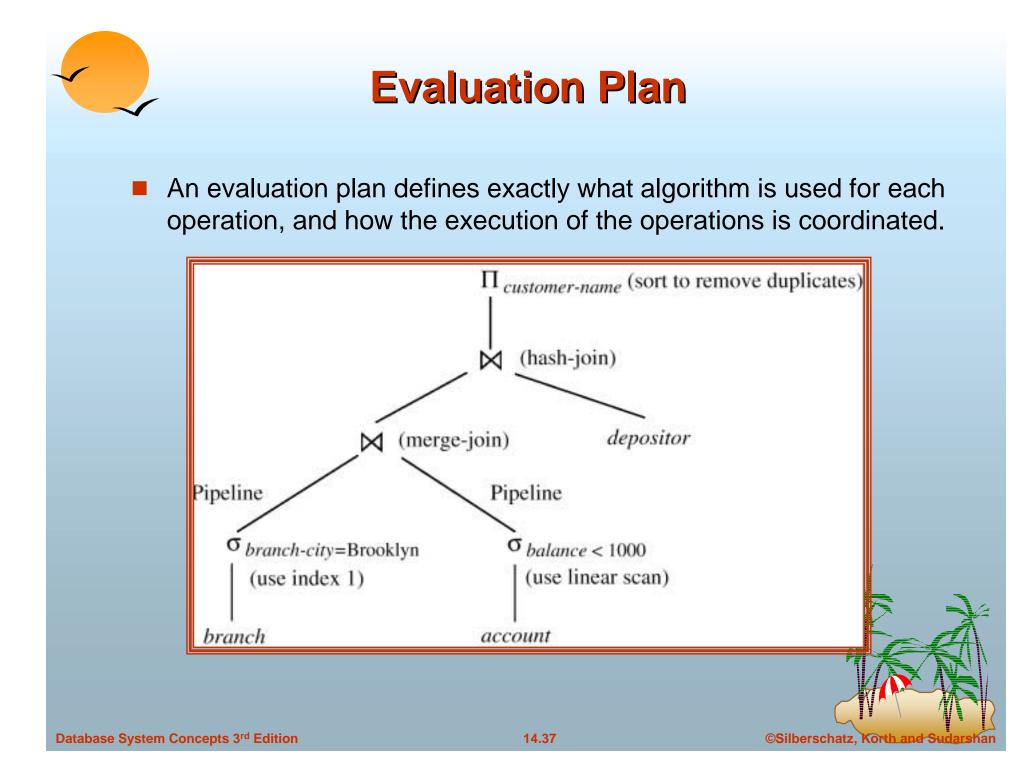


### **Enumeration of Equivalent Expressions**

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Conceptually, generate all equivalent expressions by repeatedly executing the following step until no more expressions can be found:
  - for each expression found so far, use all applicable equivalence rules, and add newly generated expressions to the set of expressions found so far
- The above approach is very expensive in space and time
- Space requirements reduced by sharing common subexpressions:
  - when E1 is generated from E2 by an equivalence rule, usually only the top level of the two are different, subtrees below are the same and can be shared

→ E.g. when applying join associativity

- Time requirements are reduced by not generating all expressions
  - More details shortly



### **Choice of Evaluation Plans**

- Must consider the interaction of evaluation techniques when choosing evaluation plans: choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
  - merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
  - nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:
  - 1. Search all the plans and choose the best plan in a cost-based fashion.
  - 2. Uses heuristics to choose a plan.



#### **Cost-Based Optimization**

- Consider finding the best join-order for  $r_1 \boxtimes r_2 \boxtimes \ldots r_n$ .
- There are (2(n-1))!/(n-1)! different join orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of  $\{r_1, r_2, \ldots, r_n\}$  is computed only once and stored for future use.



# **Dynamic Programming in Optimization**

To find best join tree for a set of *n* relations:

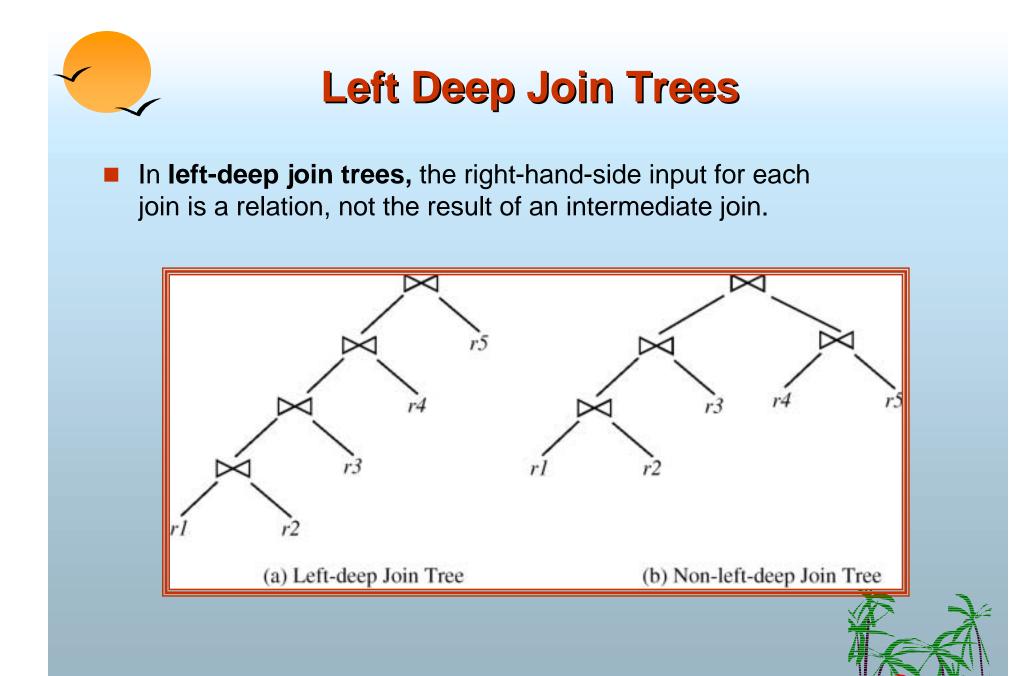
- ★ To find best plan for a set *S* of *n* relations, consider all possible plans of the form:  $S_1 \bowtie (S S_1)$  where  $S_1$  is any non-empty subset of *S*.
- ★ Recursively compute costs for joining subsets of S to find the cost of each plan. Choose the cheapest of the 2<sup>n</sup> − 1 alternatives.
- When plan for any subset is computed, store it and reuse it when it is required again, instead of recomputing it

→ Dynamic programming



# Join Order Optimization Algorithm

```
procedure findbestplan(S)
 if (bestplan[S].cost \neq \infty)
      return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
for each non-empty subset S1 of S such that S1 \neq S
      P1 = findbestplan(S1)
      P2 = findbestplan(S - S1)
      A = best algorithm for joining results of P1 and P2
      cost = P1.cost + P2.cost + cost of A
      if cost < bestplan[S].cost
              bestplan[S].cost = cost
              bestplan[S].plan = "execute P1.plan; execute P2.plan;
                                  join results of P1 and P2 using A"
 return bestplan[S]
```



#### **Cost of Optimization**

- With dynamic programming time complexity of optimization with bushy trees is  $O(3^n)$ .
  - **\star** With *n* = 10, this number is 59000 instead of 176 billion!
- Space complexity is O(2<sup>n</sup>)
- To find best left-deep join tree for a set of *n* relations:
  - Consider n alternatives with one relation as right-hand side input and the other relations as left-hand side input.
  - Using (recursively computed and stored) least-cost join order for each alternative on left-hand-side, choose the cheapest of the n alternatives.
- If only left-deep trees are considered, time complexity of finding best join order is O(n 2<sup>n</sup>)

**\star** Space complexity remains at  $O(2^n)$ 

Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)</p>

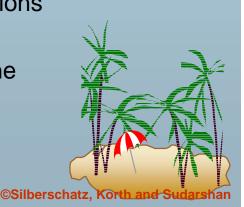
# Interesting Orders in Cost-Based Optimization

- Consider the expression  $(r_1 \boxtimes r_2 \boxtimes r_3) \boxtimes r_4 \boxtimes r_5$
- An interesting sort order is a particular sort order of tuples that could be useful for a later operation.
  - ★ Generating the result of  $r_1 \boxtimes r_2 \boxtimes r_3$  sorted on the attributes common with  $r_4$  or  $r_5$  may be useful, but generating it sorted on the attributes common only  $r_1$  and  $r_2$  is not useful.
  - ★ Using merge-join to compute  $r_1 \bowtie r_2 \bowtie r_3$  may be costlier, but may provide an output sorted in an interesting order.
- Not sufficient to find the best join order for each subset of the set of *n* given relations; must find the best join order for each subset, for each interesting sort order
  - Simple extension of earlier dynamic programming algorithms
  - Usually, number of interesting orders is quite small and doesn't affect time/space complexity significantly



#### **Heuristic Optimization**

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use *heuristics* to reduce the number of choices that must be made in a cost-based fashion.
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
  - Perform selection early (reduces the number of tuples)
  - Perform projection early (reduces the number of attributes)
  - Perform most restrictive selection and join operations before other similar operations.
  - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.



### **Steps in Typical Heuristic Optimization**

- 1. Deconstruct conjunctive selections into a sequence of single selection operations (Equiv. rule 1.).
- 2. Move selection operations down the query tree for the earliest possible execution (Equiv. rules 2, 7a, 7b, 11).
- 3. Execute first those selection and join operations that will produce the smallest relations (Equiv. rule 6).
- 4. Replace Cartesian product operations that are followed by a selection condition by join operations (Equiv. rule 4a).
- 5. Deconstruct and move as far down the tree as possible lists of projection attributes, creating new projections where needed (Equiv. rules 3, 8a, 8b, 12).
- 6. Identify those subtrees whose operations can be pipelined, and execute them using pipelining).



# **Structure of Query Optimizers**

- The System R/Starburst optimizer considers only left-deep join orders. This reduces optimization complexity and generates plans amenable to pipelined evaluation. System R/Starburst also uses heuristics to push selections and projections down the query tree.
- Heuristic optimization used in some versions of Oracle:
  - ★ Repeatedly pick "best" relation to join next
    - → Starting from each of n starting points. Pick best among these.
- For scans using secondary indices, some optimizers take into account the probability that the page containing the tuple is in the buffer.
- Intricacies of SQL complicate query optimization
  - ★ E.g. nested subqueries



#### Structure of Query Optimizers (Cont.)

- Some query optimizers integrate heuristic selection and the generation of alternative access plans.
  - System R and Starburst use a hierarchical procedure based on the nested-block concept of SQL: heuristic rewriting followed by cost-based join-order optimization.
- Even with the use of heuristics, cost-based query optimization imposes a substantial overhead.
- This expense is usually more than offset by savings at queryexecution time, particularly by reducing the number of slow disk accesses.



# **Optimizing Nested Subqueries\*\***

- SQL conceptually treats nested subqueries in the where clause as functions that take parameters and return a single value or set of values
  - Parameters are variables from outer level query that are used in the nested subquery; such variables are called correlation variables

E.g.
 select customer-name
 from borrower
 where exists (select \*
 from depositor

**where** *depositor.customer-name* = *borrower.customer-name*)

Conceptually, nested subquery is executed once for each tuple in the cross-product generated by the outer level **from** clause

- ★ Such evaluation is called **correlated evaluation**
- Note: other conditions in where clause may be used to compute a join (instead of a cross-product) before executing the nested subquery

### **Optimizing Nested Subqueries (Cont.)**

- Correlated evaluation may be quite inefficient since
  - ★ a large number of calls may be made to the nested query
  - ★ there may be unnecessary random I/O as a result
- SQL optimizers attempt to transform nested subqueries to joins where possible, enabling use of efficient join techniques
- E.g.: earlier nested query can be rewritten as select customer-name from borrower, depositor
   where depositor.customer-name = borrower.customer-name
  - Note: above query doesn't correctly deal with duplicates, can be modified to do so as we will see
- In general, it is not possible/straightforward to move the entire nested subquery from clause into the outer level query from clause -
  - A temporary relation is created instead, and used in body of outer level query

# **Optimizing Nested Subqueries (Cont.)**

In general, SQL queries of the form below can be rewritten as shown

Rewrite: select ... from  $L_1$ where  $P_1$  and exists (select \* from  $L_2$ 

where  $P_2$ )

To: create table  $t_1$  as select distinct V from  $L_2$ where  $P_2^{-1}$ select ... from  $L_1, t_1$ where  $P_1$  and  $P_2^{-2}$ 

 $\star P_2^1$  contains predicates in  $P_2$  that do not involve any correlation variables

- P<sub>2</sub><sup>2</sup> reintroduces predicates involving correlation variables, with relations renamed appropriately
- \* V contains all attributes used in predicates with correlation variables

### **Optimizing Nested Subqueries (Cont.)**

In our example, the original nested query would be transformed to create table t<sub>1</sub> as select distinct customer-name from depositor select customer-name from borrower, t<sub>1</sub> where t<sub>1</sub>.customer-name = borrower.customer-name

The process of replacing a nested query by a query with a join (possibly with a temporary relation) is called decorrelation.

Decorrelation is more complicated when

- the nested subquery uses aggregation, or
- when the result of the nested subquery is used to test for equality, or
- when the condition linking the nested subquery to the other query is not exists,
- \star and so on.





#### **Materialized Views\*\***

- A materialized view is a view whose contents are computed and stored.
- Consider the view create view branch-total-loan(branch-name, total-loan) as select branch-name, sum(amount) from loan groupby branch-name
- Materializing the above view would be very useful if the total loan amount is required frequently
  - Saves the effort of finding multiple tuples and adding up their amounts



### **Materialized View Maintenance**

- The task of keeping a materialized view up-to-date with the underlying data is known as materialized view maintenance
- Materialized views can be maintained by recomputation on every update
- A better option is to use incremental view maintenance
  - Changes to database relations are used to compute changes to materialized view, which is then updated
- View maintenance can be done by
  - Manually defining triggers on insert, delete, and update of each relation in the view definition
  - Manually written code to update the view whenever database relations are updated
  - ★ Supported directly by the database



#### **Incremental View Maintenance**

- The changes (inserts and deletes) to a relation or expressions are referred to as its differential
  - ★ Set of tuples inserted to and deleted from r are denoted i<sub>r</sub> and d<sub>r</sub>
- To simplify our description, we only consider inserts and deletes
  - We replace updates to a tuple by deletion of the tuple followed by insertion of the update tuple
- We describe how to compute the change to the result of each relational operation, given changes to its inputs
- We then outline how to handle relational algebra expressions



#### **Join Operation**

- Consider the materialized view  $v = r \bowtie s$  and an update to r
- Let rold and rnew denote the old and new states of relation r
- Consider the case of an insert to r:
  - ★ We can write  $r^{new} \bowtie s$  as  $(r^{old} \cup i_r) \bowtie s$
  - ★ And rewrite the above to  $(r^{old} \bowtie s) \cup (i_r \bowtie s)$
  - ★ But ( $r^{\text{old}} \Join s$ ) is simply the old value of the materialized view, so the incremental change to the view is just  $i_r \Join s$
- Thus, for inserts  $v^{new} = v^{old} \cup (i_r \bowtie s)$
- Similarly for deletes  $v^{new} = v^{old} (d_r \bowtie s)$



#### **Selection and Projection Operations**

- Selection: Consider a view  $v = \sigma_{\theta}(r)$ .
  - $\star V^{new} = V^{old} \cup \sigma_{\theta}(i_r)$
  - $\star$   $V^{new} = V^{old} \sigma_{\theta}(d_r)$
- Projection is a more difficult operation
  - ★ R = (A,B), and  $r(R) = \{ (a,2), (a,3) \}$
  - ★  $\prod_{A}(r)$  has a single tuple (*a*).
  - ★ If we delete the tuple (*a*,2) from *r*, we should not delete the tuple (*a*) from  $\prod_A(r)$ , but if we then delete (*a*,3) as well, we should delete the tuple
- For each tuple in a projection  $\prod_A(r)$ , we will keep a count of how many times it was derived
  - ★ On insert of a tuple to *r*, if the resultant tuple is already in  $\prod_A(r)$  we increment its count, else we add a new tuple with count = 1
  - ★ On delete of a tuple from r, we decrement the count of the corresponding tuple in  $\prod_{A}(r)$

→ if the count becomes 0, we delete the tuple from  $\prod_A(r)$ 

### **Aggregation Operations**

- count :  $v = {}_{A}\mathcal{G}_{count(B)}^{(r)}$ .
  - ★ When a set of tuples i<sub>r</sub> is inserted
    - → For each tuple r in  $i_r$ , if the corresponding group is already present in v, we increment its count, else we add a new tuple with count = 1
  - ★ When a set of tuples d<sub>r</sub> is deleted
    - → for each tuple t in i<sub>r</sub> we look for the group t.A in v, and subtract 1 from the count for the group.
      - If the count becomes 0, we delete from v the tuple for the group t.A

• sum:  $V = {}_{A} \mathcal{G}_{sum(B)}^{(r)}$ 

- We maintain the sum in a manner similar to count, except we add/subtract the B value instead of adding/subtracting 1 for the count
- Additionally we maintain the count in order to detect groups with no tuples.
   Such groups are deleted from v

→ Cannot simply test for sum = 0 (why?)

To handle the case of avg, we maintain the sum and count aggregate values separately, and divide at the end

# **Aggregate Operations (Cont.)**

- **min**, **max**:  $V = {}_{A}\mathcal{G}_{min(B)}(r)$ .
  - ★ Handling insertions on r is straightforward.
  - Maintaining the aggregate values min and max on deletions may be more expensive. We have to look at the other tuples of r that are in the same group to find the new minimum





#### **Other Operations**

- Set intersection:  $v = r \cap s$ 
  - when a tuple is inserted in r we check if it is present in s, and if so we add it to v.
  - If the tuple is deleted from r, we delete it from the intersection if it is present.
  - Updates to s are symmetric
  - The other set operations, union and set difference are handled in a similar fashion.
- Outer joins are handled in much the same way as joins but with some extra work
  - ★ we leave details to you.



#### **Handling Expressions**

- To handle an entire expression, we derive expressions for computing the incremental change to the result of each subexpressions, starting from the smallest sub-expressions.
- E.g. consider  $E_1 \bowtie E_2$  where each of  $E_1$  and  $E_2$  may be a complex expression
  - **\star** Suppose the set of tuples to be inserted into  $E_1$  is given by  $D_1$ 
    - Computed earlier, since smaller sub-expressions are handled first
  - ★ Then the set of tuples to be inserted into  $E_1 \bowtie E_2$  is given by  $D_1 \bowtie E_2$

This is just the usual way of maintaining joins



#### Query Optimization and Materialized Views

- Rewriting queries to use materialized views:
  - ★ A materialized view  $v = r \bowtie s$  is available
  - **\star** A user submits a query  $r \bowtie s \bowtie t$
  - **\*** We can rewrite the query as  $v \bowtie t$

→ Whether to do so depends on cost estimates for the two alternative

- Replacing a use of a materialized view by the view definition:
  - **★** A materialized view  $v = r \bowtie$  s is available, but without any index on it
  - ★ User submits a query  $\sigma_{A=10}(v)$ .
  - Suppose also that s has an index on the common attribute B, and r has an index on attribute A.
  - ★ The best plan for this query may be to replace v by  $r \bowtie s$ , which can lead to the query plan  $\sigma_{A=10}(r) \bowtie s$
- Query optimizer should be extended to consider all above alternatives and choose the best overall plan

#### **Materialized View Selection**

- Materialized view selection: "What is the best set of views to materialize?".
  - ★ This decision must be made on the basis of the system workload
- Indices are just like materialized views, problem of index selection is closely related, to that of materialized view selection, although it is simpler.
- Some database systems, provide tools to help the database administrator with index and materialized view selection.



#### **End of Chapter**

(Extra slides with details of selection cost estimation follow)



σ<sub>branch-name = "Perryridge"</sub>(account)

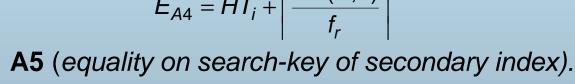
- Number of blocks is b<sub>account</sub> = 500: 10,000 tuples in the relation; each block holds 20 tuples.
- Assume account is sorted on branch-name.
  - ★ V(branch-name,account) is 50
  - 10000/50 = 200 tuples of the *account* relation pertain to Perryridge branch
  - $\star$  200/20 = 10 blocks for these tuples
  - ★ A binary search to find the first record would take  $\lceil log_2(500) \rceil = 9$  block accesses
- Total cost of binary search is 9 + 10 -1 = 18 block accesses (versus 500 for linear scan)



### **Selections Using Indices**

- **Index scan** search algorithms that use an index; condition is on search-key of index.
- A3 (primary index on candidate key, equality). Retrieve a single record that satisfies the corresponding equality condition  $E_{A3} = HT_i + 1$
- A4 (primary index on nonkey, equality) Retrieve multiple records. Let the search-key attribute be A.

$$E_{A4} = HT_i + \left[\frac{SC(A, r)}{f_r}\right]$$



- Retrieve a single record if the search-key is a candidate key  $E_{A5} = HT_{i} + 1$
- \* Retrieve multiple records (each may be on a different block) search-key is not a candidate key.  $E_{A3} = HT_i + SC(A,r)$

# Cost Estimate Example (Indices)

Consider the query is  $\sigma_{branch-name = "Perryridge"}(account)$ , with the primary index on *branch-name*.

- Since V(branch-name, account) = 50, we expect that 10000/50 = 200 tuples of the account relation pertain to the Perryridge branch.
- Since the index is a clustering index, 200/20 = 10 block reads are required to read the *account* tuples.
- Several index blocks must also be read. If B+-tree index stores 20 pointers per node, then the B+-tree index must have between 3 and 5 leaf nodes and the entire tree has a depth of 2. Therefore, 2 index blocks must be read.
- This strategy requires 12 total block reads.



# **Selections Involving Comparisons**

selections of the form  $\sigma_{A \le V}(r)$  or  $\sigma_{A \ge V}(r)$  by using a linear file scan or binary search, or by using indices in the following ways:

**A6** (*primary index, comparison*). The cost estimate is:

$$E_{AB} = HT_i + \left[\frac{c}{f_r}\right]$$

where *c* is the estimated number of tuples satisfying the condition. In absence of statistical information *c* is assumed to be  $n_r/2$ .

**A7** (secondary index, comparison). The cost estimate:

$$E_{A7} = HT_i + \frac{LB_i \cdot c}{r} + c$$

where *c* is defined as before. (Linear file scan may be cheaper if *c* is large!).

©Silberschatz.

#### Example of Cost Estimate for Complex Selection

- Consider a selection on *account* with the following condition: where *branch-name* = "Perryridge" and *balance* = 1200
- Consider using algorithm A8:
  - The branch-name index is clustering, and if we use it the cost estimate is 12 block reads (as we saw before).
  - The balance index is non-clustering, and
     V(balance, account = 500, so the selection would retrieve 10,000/500 = 20 accounts. Adding the index block reads, gives a cost estimate of 22 block reads.
  - Thus using *branch-name* index is preferable, even though its condition is less selective.
  - If both indices were non-clustering, it would be preferable to use the balance index.



#### **Example (Cont.)**

- Consider using algorithm A10:
  - ★ Use the index on *balance* to retrieve set  $S_1$  of pointers to records with *balance* = 1200.
  - ★ Use index on *branch-name* to retrieve-set  $S_2$  of pointers to records with *branch-name* = Perryridge".
  - ★  $S_1 \cap S_2$  = set of pointers to records with *branch-name* = "Perryridge" and *balance* = 1200.
  - The number of pointers retrieved (20 and 200), fit into a single leaf page; we read four index blocks to retrieve the two sets of pointers and compute their intersection.
  - ★ Estimate that one tuple in 50 \* 500 meets both conditions. Since  $n_{account} = 10000$ , conservatively overestimate that  $S_1 \cap S_2$  contains one pointer.
  - ★ The total estimated cost of this strategy is five block reads.