
1

©Silberschatz, Korth and Sudarshan17.1Database System Concepts

Chapter 17: Recovery SystemChapter 17: Recovery System

! Failure Classification
! Storage Structure
! Recovery and Atomicity
! Log-Based Recovery
! Shadow Paging
! Recovery With Concurrent Transactions
! Buffer Management
! Failure with Loss of Nonvolatile Storage
! Advanced Recovery Techniques
! ARIES Recovery Algorithm
! Remote Backup Systems

©Silberschatz, Korth and Sudarshan17.2Database System Concepts

Failure ClassificationFailure Classification

! Transaction failure :
! Logical errors: transaction cannot complete due to some internal

error condition
! System errors: the database system must terminate an active

transaction due to an error condition (e.g., deadlock)
! System crash: a power failure or other hardware or software

failure causes the system to crash.
! Fail-stop assumption: non-volatile storage contents are assumed

to not be corrupted by system crash
" Database systems have numerous integrity checks to prevent

corruption of disk data
! Disk failure: a head crash or similar disk failure destroys all or

part of disk storage
! Destruction is assumed to be detectable: disk drives use checksums

to detect failures

2

©Silberschatz, Korth and Sudarshan17.3Database System Concepts

Recovery AlgorithmsRecovery Algorithms

! Recovery algorithms are techniques to ensure database
consistency and transaction atomicity and durability despite
failures
! Focus of this chapter

! Recovery algorithms have two parts
1. Actions taken during normal transaction processing to ensure

enough information exists to recover from failures
2. Actions taken after a failure to recover the database contents to a

state that ensures atomicity, consistency and durability

©Silberschatz, Korth and Sudarshan17.4Database System Concepts

Storage StructureStorage Structure

! Volatile storage:
! does not survive system crashes
! examples: main memory, cache memory

! Nonvolatile storage:
! survives system crashes
! examples: disk, tape, flash memory,

non-volatile (battery backed up) RAM

! Stable storage:
! a mythical form of storage that survives all failures
! approximated by maintaining multiple copies on distinct nonvolatile

media

3

©Silberschatz, Korth and Sudarshan17.5Database System Concepts

StableStable--Storage ImplementationStorage Implementation

! Maintain multiple copies of each block on separate disks
! copies can be at remote sites to protect against disasters such as fire or

flooding.

! Failure during data transfer can still result in inconsistent copies: Block
transfer can result in
! Successful completion
! Partial failure: destination block has incorrect information
! Total failure: destination block was never updated

! Protecting storage media from failure during data transfer (one solution):
! Execute output operation as follows (assuming two copies of each block):

1. Write the information onto the first physical block.
2. When the first write successfully completes, write the same information

onto the second physical block.
3. The output is completed only after the second write successfully

completes.

©Silberschatz, Korth and Sudarshan17.6Database System Concepts

StableStable--Storage Implementation (Cont.)Storage Implementation (Cont.)

! Protecting storage media from failure during data transfer (cont.):
! Copies of a block may differ due to failure during output operation. To

recover from failure:
1. First find inconsistent blocks:

1. Expensive solution: Compare the two copies of every disk block.
2. Better solution:

! Record in-progress disk writes on non-volatile storage (Non-
volatile RAM or special area of disk).

! Use this information during recovery to find blocks that may be
inconsistent, and only compare copies of these.

! Used in hardware RAID systems
2. If either copy of an inconsistent block is detected to have an error (bad

checksum), overwrite it by the other copy. If both have no error, but are
different, overwrite the second block by the first block.

4

©Silberschatz, Korth and Sudarshan17.7Database System Concepts

Data AccessData Access

! Physical blocks are those blocks residing on the disk.
! Buffer blocks are the blocks residing temporarily in main

memory.
! Block movements between disk and main memory are initiated

through the following two operations:
! input(B) transfers the physical block B to main memory.
! output(B) transfers the buffer block B to the disk, and replaces the

appropriate physical block there.
! Each transaction Ti has its private work-area in which local

copies of all data items accessed and updated by it are kept.
! Ti's local copy of a data item X is called xi.

! We assume, for simplicity, that each data item fits in, and is
stored inside, a single block.

©Silberschatz, Korth and Sudarshan17.8Database System Concepts

Data Access (Cont.)Data Access (Cont.)

! Transaction transfers data items between system buffer blocks
and its private work-area using the following operations :
! read(X) assigns the value of data item X to the local variable xi.
! write(X) assigns the value of local variable xi to data item {X} in the

buffer block.
! both these commands may necessitate the issue of an input(BX)

instruction before the assignment, if the block BX in which X resides
is not already in memory.

! Transactions
! Perform read(X) while accessing X for the first time;
! All subsequent accesses are to the local copy.
! After last access, transaction executes write(X).

! output(BX) need not immediately follow write(X). System can
perform the output operation when it deems fit.

5

©Silberschatz, Korth and Sudarshan17.9Database System Concepts

Example of Data AccessExample of Data Access

x

Y A

B

x1

y1

buffer
Buffer Block A

Buffer Block B

input(A)

output(B)
read(X)

write(Y)

disk

work area
of T1

work area
of T2

memory

x2

©Silberschatz, Korth and Sudarshan17.10Database System Concepts

Recovery and AtomicityRecovery and Atomicity

! Modifying the database without ensuring that the transaction will
commit may leave the database in an inconsistent state.

! Consider transaction Ti that transfers $50 from account A to
account B; goal is either to perform all database modifications
made by Ti or none at all.

! Several output operations may be required for Ti (to output A
and B). A failure may occur after one of these modifications have
been made but before all of them are made.

6

©Silberschatz, Korth and Sudarshan17.11Database System Concepts

Recovery and Atomicity (Cont.)Recovery and Atomicity (Cont.)

! To ensure atomicity despite failures, we first output information
describing the modifications to stable storage without modifying
the database itself.

! We study two approaches:
! log-based recovery, and
! shadow-paging

! We assume (initially) that transactions run serially, that is, one
after the other.

©Silberschatz, Korth and Sudarshan17.12Database System Concepts

LogLog--Based RecoveryBased Recovery

! A log is kept on stable storage.
! The log is a sequence of log records, and maintains a record of update

activities on the database.
! When transaction Ti starts, it registers itself by writing a

<Ti start>log record
! Before Ti executes write(X), a log record <Ti, X, V1, V2> is written,

where V1 is the value of X before the write, and V2 is the value to be
written to X.
! Log record notes that Ti has performed a write on data item Xj Xj had value

V1 before the write, and will have value V2 after the write.

! When Ti finishes it last statement, the log record <Ti commit> is
written.

! We assume for now that log records are written directly to stable
storage (that is, they are not buffered)

! Two approaches using logs
! Deferred database modification
! Immediate database modification

7

©Silberschatz, Korth and Sudarshan17.13Database System Concepts

Deferred Database ModificationDeferred Database Modification

! The deferred database modification scheme records all
modifications to the log, but defers all the writes to after partial
commit.

! Assume that transactions execute serially
! Transaction starts by writing <Ti start> record to log.
! A write(X) operation results in a log record <Ti, X, V> being

written, where V is the new value for X
! Note: old value is not needed for this scheme

! The write is not performed on X at this time, but is deferred.
! When Ti partially commits, <Ti commit> is written to the log
! Finally, the log records are read and used to actually execute the

previously deferred writes.

©Silberschatz, Korth and Sudarshan17.14Database System Concepts

Deferred Database Modification (Cont.)Deferred Database Modification (Cont.)

! During recovery after a crash, a transaction needs to be redone if
and only if both <Ti start> and<Ti commit> are there in the log.

! Redoing a transaction Ti (redoTi) sets the value of all data items
updated by the transaction to the new values.

! Crashes can occur while
! the transaction is executing the original updates, or
! while recovery action is being taken

! example transactions T0 and T1 (T0 executes before T1):
T0: read (A) T1 : read (C)

A: - A - 50 C:- C- 100
Write (A) write (C)
read (B)
B:- B + 50
write (B)

8

©Silberschatz, Korth and Sudarshan17.15Database System Concepts

Deferred Database Modification (Cont.)Deferred Database Modification (Cont.)
! Below we show the log as it appears at three instances of time.

! If log on stable storage at time of crash is as in case:
(a) No redo actions need to be taken
(b) redo(T0) must be performed since <T0 commit> is present
(c) redo(T0) must be performed followed by redo(T1) since

<T0 commit> and <Ti commit> are present

©Silberschatz, Korth and Sudarshan17.16Database System Concepts

Immediate Database ModificationImmediate Database Modification

! The immediate database modification scheme allows
database updates of an uncommitted transaction to be made as
the writes are issued
! since undoing may be needed, update logs must have both old

value and new value

! Update log record must be written before database item is written
! We assume that the log record is output directly to stable storage
! Can be extended to postpone log record output, so long as prior to

execution of an output(B) operation for a data block B, all log
records corresponding to items B must be flushed to stable storage

! Output of updated blocks can take place at any time before or
after transaction commit

! Order in which blocks are output can be different from the order
in which they are written.

9

©Silberschatz, Korth and Sudarshan17.17Database System Concepts

Immediate Database Modification ExampleImmediate Database Modification Example

Log Write Output

<T0 start>
<T0, A, 1000, 950>
To, B, 2000, 2050

A = 950
B = 2050

<T0 commit>
<T1 start>
<T1, C, 700, 600>

C = 600
BB, BC

<T1 commit>
BA

! Note: BX denotes block containing X.

x1

©Silberschatz, Korth and Sudarshan17.18Database System Concepts

Immediate Database Modification (Cont.)Immediate Database Modification (Cont.)

! Recovery procedure has two operations instead of one:
! undo(Ti) restores the value of all data items updated by Ti to their

old values, going backwards from the last log record for Ti

! redo(Ti) sets the value of all data items updated by Ti to the new
values, going forward from the first log record for Ti

! Both operations must be idempotent
! That is, even if the operation is executed multiple times the effect is

the same as if it is executed once
" Needed since operations may get re-executed during recovery

! When recovering after failure:
! Transaction Ti needs to be undone if the log contains the record

<Ti start>, but does not contain the record <Ti commit>.
! Transaction Ti needs to be redone if the log contains both the record

<Ti start> and the record <Ti commit>.
! Undo operations are performed first, then redo operations.

10

©Silberschatz, Korth and Sudarshan17.19Database System Concepts

Immediate DB Modification Recovery Immediate DB Modification Recovery
ExampleExample

Below we show the log as it appears at three instances of time.

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.
(b) undo (T1) and redo (T0): C is restored to 700, and then A and B are

set to 950 and 2050 respectively.
(c) redo (T0) and redo (T1): A and B are set to 950 and 2050

respectively. Then C is set to 600

©Silberschatz, Korth and Sudarshan17.20Database System Concepts

CheckpointsCheckpoints

! Problems in recovery procedure as discussed earlier :
1. searching the entire log is time-consuming
2. we might unnecessarily redo transactions which have already
3. output their updates to the database.

! Streamline recovery procedure by periodically performing
checkpointing
1. Output all log records currently residing in main memory onto stable

storage.
2. Output all modified buffer blocks to the disk.
3. Write a log record < checkpoint> onto stable storage.

11

©Silberschatz, Korth and Sudarshan17.21Database System Concepts

Checkpoints (Cont.)Checkpoints (Cont.)

! During recovery we need to consider only the most recent
transaction Ti that started before the checkpoint, and
transactions that started after Ti.
1. Scan backwards from end of log to find the most recent

<checkpoint> record
2. Continue scanning backwards till a record <Ti start> is found.
3. Need only consider the part of log following above start record.

Earlier part of log can be ignored during recovery, and can be
erased whenever desired.

4. For all transactions (starting from Ti or later) with no <Ti commit>,
execute undo(Ti). (Done only in case of immediate modification.)

5. Scanning forward in the log, for all transactions starting
from Ti or later with a <Ti commit>, execute redo(Ti).

©Silberschatz, Korth and Sudarshan17.22Database System Concepts

Example of CheckpointsExample of Checkpoints

! T1 can be ignored (updates already output to disk due to checkpoint)
! T2 and T3 redone.
! T4 undone

Tc Tf

T1

T2

T3

T4

checkpoint system failure

12

©Silberschatz, Korth and Sudarshan17.23Database System Concepts

Shadow PagingShadow Paging

! Shadow paging is an alternative to log-based recovery; this
scheme is useful if transactions execute serially

! Idea: maintain two page tables during the lifetime of a transaction –
the current page table, and the shadow page table

! Store the shadow page table in nonvolatile storage, such that state
of the database prior to transaction execution may be recovered.
! Shadow page table is never modified during execution

! To start with, both the page tables are identical. Only current page
table is used for data item accesses during execution of the
transaction.

! Whenever any page is about to be written for the first time
! A copy of this page is made onto an unused page.
! The current page table is then made to point to the copy
! The update is performed on the copy

©Silberschatz, Korth and Sudarshan17.24Database System Concepts

Sample Page TableSample Page Table

13

©Silberschatz, Korth and Sudarshan17.25Database System Concepts

Example of Shadow PagingExample of Shadow Paging
Shadow and current page tables after write to page 4

©Silberschatz, Korth and Sudarshan17.26Database System Concepts

Shadow Paging (Cont.)Shadow Paging (Cont.)
! To commit a transaction :

1. Flush all modified pages in main memory to disk
2. Output current page table to disk
3. Make the current page table the new shadow page table, as follows:

! keep a pointer to the shadow page table at a fixed (known) location on disk.
! to make the current page table the new shadow page table, simply update

the pointer to point to current page table on disk

! Once pointer to shadow page table has been written, transaction is
committed.

! No recovery is needed after a crash — new transactions can start right
away, using the shadow page table.

! Pages not pointed to from current/shadow page table should be freed
(garbage collected).

14

©Silberschatz, Korth and Sudarshan17.27Database System Concepts

Show Paging (Cont.)Show Paging (Cont.)

! Advantages of shadow-paging over log-based schemes
! no overhead of writing log records
! recovery is trivial

! Disadvantages :
! Copying the entire page table is very expensive

" Can be reduced by using a page table structured like a B+-tree
– No need to copy entire tree, only need to copy paths in the tree

that lead to updated leaf nodes
! Commit overhead is high even with above extension

" Need to flush every updated page, and page table
! Data gets fragmented (related pages get separated on disk)
! After every transaction completion, the database pages containing old

versions of modified data need to be garbage collected
! Hard to extend algorithm to allow transactions to run concurrently

" Easier to extend log based schemes

©Silberschatz, Korth and Sudarshan17.28Database System Concepts

Recovery With Concurrent TransactionsRecovery With Concurrent Transactions

! We modify the log-based recovery schemes to allow multiple
transactions to execute concurrently.
! All transactions share a single disk buffer and a single log
! A buffer block can have data items updated by one or more transactions

! We assume concurrency control using strict two-phase locking;
! i.e. the updates of uncommitted transactions should not be visible to other

transactions
" Otherwise how to perform undo if T1 updates A, then T2 updates A and

commits, and finally T1 has to abort?

! Logging is done as described earlier.
! Log records of different transactions may be interspersed in the log.

! The checkpointing technique and actions taken on recovery have to be
changed
! since several transactions may be active when a checkpoint is performed.

15

©Silberschatz, Korth and Sudarshan17.29Database System Concepts

Recovery With Concurrent Transactions (Cont.)Recovery With Concurrent Transactions (Cont.)

! Checkpoints are performed as before, except that the checkpoint log
record is now of the form

< checkpoint L>
where L is the list of transactions active at the time of the checkpoint
! We assume no updates are in progress while the checkpoint is carried

out (will relax this later)
! When the system recovers from a crash, it first does the following:

1. Initialize undo-list and redo-list to empty
2. Scan the log backwards from the end, stopping when the first

<checkpoint L> record is found.
For each record found during the backward scan:
if the record is <Ti commit>, add Ti to redo-list
if the record is <Ti start>, then if Ti is not in redo-list, add Ti to undo-

list
3. For every Ti in L, if Ti is not in redo-list, add Ti to undo-list

©Silberschatz, Korth and Sudarshan17.30Database System Concepts

Recovery With Concurrent Transactions (Cont.)Recovery With Concurrent Transactions (Cont.)

! At this point undo-list consists of incomplete transactions which
must be undone, and redo-list consists of finished transactions
that must be redone.

! Recovery now continues as follows:
1. Scan log backwards from most recent record, stopping when

<Ti start> records have been encountered for every Ti in undo-list.
! During the scan, perform undo for each log record that belongs

to a transaction in undo-list.
2. Locate the most recent <checkpoint L> record.
3. Scan log forwards from the <checkpoint L> record till the end of

the log.
! During the scan, perform redo for each log record that belongs

to a transaction on redo-list

16

©Silberschatz, Korth and Sudarshan17.31Database System Concepts

Example of RecoveryExample of Recovery

! Go over the steps of the recovery algorithm on the following log:
<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start> /* Scan in Step 4 stops here */
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint {T1, T2}>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>
<T3 commit>

©Silberschatz, Korth and Sudarshan17.32Database System Concepts

Log Record BufferingLog Record Buffering

! Log record buffering: log records are buffered in main memory,
instead of of being output directly to stable storage.
! Log records are output to stable storage when a block of log records

in the buffer is full, or a log force operation is executed.

! Log force is performed to commit a transaction by forcing all its log
records (including the commit record) to stable storage.

! Several log records can thus be output using a single output
operation, reducing the I/O cost.

17

©Silberschatz, Korth and Sudarshan17.33Database System Concepts

Log Record Buffering (Cont.)Log Record Buffering (Cont.)

! The rules below must be followed if log records are buffered:
! Log records are output to stable storage in the order in which they

are created.
! Transaction Ti enters the commit state only when the log record

<Ti commit> has been output to stable storage.
! Before a block of data in main memory is output to the database, all

log records pertaining to data in that block must have been output to
stable storage.
" This rule is called the write-ahead logging or WAL rule

– Strictly speaking WAL only requires undo information to be
output

©Silberschatz, Korth and Sudarshan17.34Database System Concepts

Database BufferingDatabase Buffering

! Database maintains an in-memory buffer of data blocks
! When a new block is needed, if buffer is full an existing block needs to be

removed from buffer
! If the block chosen for removal has been updated, it must be output to disk

! As a result of the write-ahead logging rule, if a block with uncommitted
updates is output to disk, log records with undo information for the updates
are output to the log on stable storage first.

! No updates should be in progress on a block when it is output to disk. Can
be ensured as follows.
! Before writing a data item, transaction acquires exclusive lock on block containing

the data item
! Lock can be released once the write is completed.

" Such locks held for short duration are called latches.
! Before a block is output to disk, the system acquires an exclusive latch on the

block
" Ensures no update can be in progress on the block

18

©Silberschatz, Korth and Sudarshan17.35Database System Concepts

Buffer Management (Cont.)Buffer Management (Cont.)

! Database buffer can be implemented either
! in an area of real main-memory reserved for the database, or
! in virtual memory

! Implementing buffer in reserved main-memory has drawbacks:
! Memory is partitioned before-hand between database buffer and

applications, limiting flexibility.
! Needs may change, and although operating system knows best how

memory should be divided up at any time, it cannot change the
partitioning of memory.

©Silberschatz, Korth and Sudarshan17.36Database System Concepts

Buffer Management (Cont.)Buffer Management (Cont.)

! Database buffers are generally implemented in virtual memory in
spite of some drawbacks:
! When operating system needs to evict a page that has been

modified, to make space for another page, the page is written to
swap space on disk.

! When database decides to write buffer page to disk, buffer page
may be in swap space, and may have to be read from swap space
on disk and output to the database on disk, resulting in extra I/O!
" Known as dual paging problem.

! Ideally when swapping out a database buffer page, operating
system should pass control to database, which in turn outputs page
to database instead of to swap space (making sure to output log
records first)
" Dual paging can thus be avoided, but common operating

systems do not support such functionality.

19

©Silberschatz, Korth and Sudarshan17.37Database System Concepts

Failure with Loss of Nonvolatile StorageFailure with Loss of Nonvolatile Storage

! So far we assumed no loss of non-volatile storage
! Technique similar to checkpointing used to deal with loss of non-volatile

storage
! Periodically dump the entire content of the database to stable storage
! No transaction may be active during the dump procedure; a procedure

similar to checkpointing must take place
" Output all log records currently residing in main memory onto stable

storage.
" Output all buffer blocks onto the disk.
" Copy the contents of the database to stable storage.
" Output a record <dump> to log on stable storage.

! To recover from disk failure
" restore database from most recent dump.
" Consult the log and redo all transactions that committed after the dump

! Can be extended to allow transactions to be active during dump;
known as fuzzy dump or online dump
! Will study fuzzy checkpointing later

Advanced Recovery AlgorithmAdvanced Recovery Algorithm

20

©Silberschatz, Korth and Sudarshan17.39Database System Concepts

Advanced Recovery TechniquesAdvanced Recovery Techniques

! Support high-concurrency locking techniques, such as those used
for B+-tree concurrency control

! Operations like B+-tree insertions and deletions release locks
early.
! They cannot be undone by restoring old values (physical undo),

since once a lock is released, other transactions may have updated
the B+-tree.

! Instead, insertions (resp. deletions) are undone by executing a
deletion (resp. insertion) operation (known as logical undo).

! For such operations, undo log records should contain the undo
operation to be executed
! called logical undo logging, in contrast to physical undo logging.

! Redo information is logged physically (that is, new value for each
write) even for such operations
! Logical redo is very complicated since database state on disk may

not be “operation consistent”

©Silberschatz, Korth and Sudarshan17.40Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)
! Operation logging is done as follows:

1. When operation starts, log <Ti, Oj, operation-begin>. Here Oj is a
unique identifier of the operation instance.

2. While operation is executing, normal log records with physical redo
and physical undo information are logged.

3. When operation completes, <Ti, Oj, operation-end, U> is logged,
where U contains information needed to perform a logical undo
information.

! If crash/rollback occurs before operation completes:
! the operation-end log record is not found, and
! the physical undo information is used to undo operation.

! If crash/rollback occurs after the operation completes:
! the operation-end log record is found, and in this case
! logical undo is performed using U; the physical undo information for

the operation is ignored.
! Redo of operation (after crash) still uses physical redo

information.

21

©Silberschatz, Korth and Sudarshan17.41Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)

Rollback of transaction Ti is done as follows:
! Scan the log backwards

1. If a log record <Ti, X, V1, V2> is found, perform the undo and log a
special redo-only log record <Ti, X, V1>.

2. If a <Ti, Oj, operation-end, U> record is found
" Rollback the operation logically using the undo information U.

– Updates performed during roll back are logged just like
during normal operation execution.

– At the end of the operation rollback, instead of logging an
operation-end record, generate a record

<Ti, Oj, operation-abort>.
" Skip all preceding log records for Ti until the record <Ti, Oj

operation-begin> is found

©Silberschatz, Korth and Sudarshan17.42Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)

! Scan the log backwards (cont.):
3. If a redo-only record is found ignore it
4. If a <Ti, Oj, operation-abort> record is found:

skip all preceding log records for Ti until the record
<Ti, Oj, operation-begin> is found.

5. Stop the scan when the record <Ti, start> is found
6. Add a <Ti, abort> record to the log

Some points to note:
! Cases 3 and 4 above can occur only if the database crashes

while a transaction is being rolled back.
! Skipping of log records as in case 4 is important to prevent

multiple rollback of the same operation.

22

©Silberschatz, Korth and Sudarshan17.43Database System Concepts

Advanced Recovery Techniques(Cont,)Advanced Recovery Techniques(Cont,)

The following actions are taken when recovering from system crash
1. Scan log forward from last < checkpoint L> record

1. Repeat history by physically redoing all updates of all
transactions,

2. Create an undo-list during the scan as follows
" undo-list is set to L initially
" Whenever <Ti start> is found Ti is added to undo-list
" Whenever <Ti commit> or <Ti abort> is found, Ti is deleted

from undo-list

This brings database to state as of crash, with committed as well
as uncommitted transactions having been redone.
Now undo-list contains transactions that are incomplete, that is,
have neither committed nor been fully rolled back.

©Silberschatz, Korth and Sudarshan17.44Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)

Recovery from system crash (cont.)
2. Scan log backwards, performing undo on log records of

transactions found in undo-list.
! Transactions are rolled back as described earlier.
! When <Ti start> is found for a transaction Ti in undo-list, write a

<Ti abort> log record.
! Stop scan when <Ti start> records have been found for all Ti in

undo-list

! This undoes the effects of incomplete transactions (those with
neither commit nor abort log records). Recovery is now
complete.

23

©Silberschatz, Korth and Sudarshan17.45Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)

! Checkpointing is done as follows:
1. Output all log records in memory to stable storage
2. Output to disk all modified buffer blocks
3. Output to log on stable storage a < checkpoint L> record.

Transactions are not allowed to perform any actions while
checkpointing is in progress.

! Fuzzy checkpointing allows transactions to progress while the
most time consuming parts of checkpointing are in progress
! Performed as described on next slide

©Silberschatz, Korth and Sudarshan17.46Database System Concepts

Advanced Recovery Techniques (Cont.)Advanced Recovery Techniques (Cont.)
! Fuzzy checkpointing is done as follows:

1. Temporarily stop all updates by transactions
2. Write a <checkpoint L> log record and force log to stable storage
3. Note list M of modified buffer blocks
4. Now permit transactions to proceed with their actions
5. Output to disk all modified buffer blocks in list M

blocks should not be updated while being output
Follow WAL: all log records pertaining to a block must be output before

the block is output
6. Store a pointer to the checkpoint record in a fixed position last_checkpoint

on disk

! When recovering using a fuzzy checkpoint, start scan from the
checkpoint record pointed to by last_checkpoint
! Log records before last_checkpoint have their updates reflected in

database on disk, and need not be redone.
! Incomplete checkpoints, where system had crashed while performing

checkpoint, are handled safely

24

ARIES Recovery AlgorithmARIES Recovery Algorithm

©Silberschatz, Korth and Sudarshan17.48Database System Concepts

ARIESARIES

! ARIES is a state of the art recovery method
! Incorporates numerous optimizations to reduce overheads during

normal processing and to speed up recovery
! The “advanced recovery algorithm” we studied earlier is modeled

after ARIES, but greatly simplified by removing optimizations
! Unlike the advanced recovery algorithm, ARIES

1. Uses log sequence number (LSN) to identify log records
" Stores LSNs in pages to identify what updates have already

been applied to a database page
2. Physiological redo
3. Dirty page table to avoid unnecessary redos during recovery
4. Fuzzy checkpointing that only records information about dirty

pages, and does not require dirty pages to be written out at
checkpoint time
" More coming up on each of the above …

25

©Silberschatz, Korth and Sudarshan17.49Database System Concepts

ARIES OptimizationsARIES Optimizations

! Physiological redo
! Affected page is physically identified, action within page can be

logical
" Used to reduce logging overheads

– e.g. when a record is deleted and all other records have to be
moved to fill hole
» Physiological redo can log just the record deletion
» Physical redo would require logging of old and new values

for much of the page
" Requires page to be output to disk atomically

– Easy to achieve with hardware RAID, also supported by some
disk systems

– Incomplete page output can be detected by checksum
techniques,
» But extra actions are required for recovery
» Treated as a media failure

©Silberschatz, Korth and Sudarshan17.50Database System Concepts

ARIES Data StructuresARIES Data Structures

! Log sequence number (LSN) identifies each log record
! Must be sequentially increasing
! Typically an offset from beginning of log file to allow fast access

" Easily extended to handle multiple log files
! Each page contains a PageLSN which is the LSN of the last log

record whose effects are reflected on the page
! To update a page:

" X-latch the pag, and write the log record
" Update the page
" Record the LSN of the log record in PageLSN
" Unlock page

! Page flush to disk S-latches page
" Thus page state on disk is operation consistent

– Required to support physiological redo
! PageLSN is used during recovery to prevent repeated redo

" Thus ensuring idempotence

26

©Silberschatz, Korth and Sudarshan17.51Database System Concepts

ARIES Data Structures (Cont.)ARIES Data Structures (Cont.)

! Each log record contains LSN of previous log record of the same
transaction

! LSN in log record may be implicit

! Special redo-only log record called compensation log record
(CLR) used to log actions taken during recovery that never need to
be undone
! Also serve the role of operation-abort log records used in advanced

recovery algorithm
! Have a field UndoNextLSN to note next (earlier) record to be undone

" Records in between would have already been undone
" Required to avoid repeated undo of already undone actions

LSN TransId PrevLSN RedoInfo UndoInfo

LSN TransID UndoNextLSN RedoInfo

©Silberschatz, Korth and Sudarshan17.52Database System Concepts

ARIES Data Structures (Cont.)ARIES Data Structures (Cont.)

! DirtyPageTable
! List of pages in the buffer that have been updated
! Contains, for each such page

" PageLSN of the page
" RecLSN is an LSN such that log records before this LSN have

already been applied to the page version on disk
– Set to current end of log when a page is inserted into dirty

page table (just before being updated)
– Recorded in checkpoints, helps to minimize redo work

! Checkpoint log record
! Contains:

" DirtyPageTable and list of active transactions
" For each active transaction, LastLSN, the LSN of the last log

record written by the transaction
! Fixed position on disk notes LSN of last completed

checkpoint log record

27

©Silberschatz, Korth and Sudarshan17.53Database System Concepts

ARIES Recovery AlgorithmARIES Recovery Algorithm

ARIES recovery involves three passes
! Analysis pass: Determines

! Which transactions to undo
! Which pages were dirty (disk version not up to date) at time of crash
! RedoLSN: LSN from which redo should start

! Redo pass:
! Repeats history, redoing all actions from RedoLSN

" RecLSN and PageLSNs are used to avoid redoing actions
already reflected on page

! Undo pass:
! Rolls back all incomplete transactions

" Transactions whose abort was complete earlier are not undone
– Key idea: no need to undo these transactions: earlier undo

actions were logged, and are redone as required

©Silberschatz, Korth and Sudarshan17.54Database System Concepts

ARIES Recovery: AnalysisARIES Recovery: Analysis

Analysis pass
! Starts from last complete checkpoint log record

! Reads in DirtyPageTable from log record
! Sets RedoLSN = min of RecLSNs of all pages in DirtyPageTable

" In case no pages are dirty, RedoLSN = checkpoint record’s LSN
! Sets undo-list = list of transactions in checkpoint log record
! Reads LSN of last log record for each transaction in undo-list from

checkpoint log record

! Scans forward from checkpoint
! .. On next page …

28

©Silberschatz, Korth and Sudarshan17.55Database System Concepts

ARIES Recovery: Analysis (Cont.)ARIES Recovery: Analysis (Cont.)

Analysis pass (cont.)
! Scans forward from checkpoint

! If any log record found for transaction not in undo-list, adds
transaction to undo-list

! Whenever an update log record is found
" If page is not in DirtyPageTable, it is added with RecLSN set to

LSN of the update log record
! If transaction end log record found, delete transaction from undo-list
! Keeps track of last log record for each transaction in undo-list

" May be needed for later undo

! At end of analysis pass:
! RedoLSN determines where to start redo pass
! RecLSN for each page in DirtyPageTable used to minimize redo work
! All transactions in undo-list need to be rolled back

©Silberschatz, Korth and Sudarshan17.56Database System Concepts

ARIES Redo PassARIES Redo Pass

Redo Pass: Repeats history by replaying every action not already
reflected in the page on disk, as follows:

! Scans forward from RedoLSN. Whenever an update log record
is found:
1. If the page is not in DirtyPageTable or the LSN of the log record is

less than the RecLSN of the page in DirtyPageTable, then skip the
log record

2. Otherwise fetch the page from disk. If the PageLSN of the page
fetched from disk is less than the LSN of the log record, redo the
log record

NOTE: if either test is negative the effects of the log record have
already appeared on the page. First test avoids even fetching the
page from disk!

29

©Silberschatz, Korth and Sudarshan17.57Database System Concepts

ARIES Undo ActionsARIES Undo Actions

! When an undo is performed for an update log record
! Generate a CLR containing the undo action performed (actions performed during

undo are logged physicaly or physiologically).
" CLR for record n noted as n’ in figure below

! Set UndoNextLSN of the CLR to the PrevLSN value of the update log record
" Arrows indicate UndoNextLSN value

! ARIES supports partial rollback
! Used e.g. to handle deadlocks by rolling back just enough to release reqd. locks
! Figure indicates forward actions after partial rollbacks

" records 3 and 4 initially, later 5 and 6, then full rollback

1 2 3 4 4' 3' 5 6 5' 2' 1'6'

©Silberschatz, Korth and Sudarshan17.58Database System Concepts

ARIES: Undo PassARIES: Undo Pass

Undo pass
! Performs backward scan on log undoing all transaction in undo-list

! Backward scan optimized by skipping unneeded log records as follows:
" Next LSN to be undone for each transaction set to LSN of last log

record for transaction found by analysis pass.
" At each step pick largest of these LSNs to undo, skip back to it and

undo it
" After undoing a log record

– For ordinary log records, set next LSN to be undone for
transaction to PrevLSN noted in the log record

– For compensation log records (CLRs) set next LSN to be undo
to UndoNextLSN noted in the log record
» All intervening records are skipped since they would have

been undo already

! Undos performed as described earlier

30

©Silberschatz, Korth and Sudarshan17.59Database System Concepts

Other ARIES FeaturesOther ARIES Features

! Recovery Independence
! Pages can be recovered independently of others

" E.g. if some disk pages fail they can be recovered from a backup
while other pages are being used

! Savepoints:
! Transactions can record savepoints and roll back to a savepoint

" Useful for complex transactions
" Also used to rollback just enough to release locks on deadlock

©Silberschatz, Korth and Sudarshan17.60Database System Concepts

Other ARIES Features (Cont.)Other ARIES Features (Cont.)

! Fine-grained locking:
! Index concurrency algorithms that permit tuple level locking on

indices can be used
" These require logical undo, rather than physical undo, as in

advanced recovery algorithm

! Recovery optimizations: For example:
! Dirty page table can be used to prefetch pages during redo
! Out of order redo is possible:

" redo can be postponed on a page being fetched from disk, and
performed when page is fetched.

" Meanwhile other log records can continue to be processed

31

Remote Backup SystemsRemote Backup Systems

©Silberschatz, Korth and Sudarshan17.62Database System Concepts

Remote Backup SystemsRemote Backup Systems
! Remote backup systems provide high availability by allowing

transaction processing to continue even if the primary site is destroyed.

32

©Silberschatz, Korth and Sudarshan17.63Database System Concepts

Remote Backup Systems (Cont.)Remote Backup Systems (Cont.)

! Detection of failure: Backup site must detect when primary site has
failed
! to distinguish primary site failure from link failure maintain several

communication links between the primary and the remote backup.
! Transfer of control:

! To take over control backup site first perform recovery using its copy of
the database and all the long records it has received from the primary.
" Thus, completed transactions are redone and incomplete transactions

are rolled back.
! When the backup site takes over processing it becomes the new primary

! To transfer control back to old primary when it recovers, old primary must
receive redo logs from the old backup and apply all updates locally.

©Silberschatz, Korth and Sudarshan17.64Database System Concepts

Remote Backup Systems (Cont.)Remote Backup Systems (Cont.)

! Time to recover: To reduce delay in takeover, backup site
periodically proceses the redo log records (in effect, performing
recovery from previous database state), performs a checkpoint,
and can then delete earlier parts of the log.

! Hot-Spare configuration permits very fast takeover:
! Backup continually processes redo log record as they arrive,

applying the updates locally.
! When failure of the primary is detected the backup rolls back

incomplete transactions, and is ready to process new transactions.

! Alternative to remote backup: distributed database with
replicated data
! Remote backup is faster and cheaper, but less tolerant to failure

" more on this in Chapter 19

33

©Silberschatz, Korth and Sudarshan17.65Database System Concepts

Remote Backup Systems (Cont.)Remote Backup Systems (Cont.)

! Ensure durability of updates by delaying transaction commit until
update is logged at backup; avoid this delay by permitting lower
degrees of durability.

! One-safe: commit as soon as transaction’s commit log record is
written at primary
! Problem: updates may not arrive at backup before it takes over.

! Two-very-safe: commit when transaction’s commit log record is
written at primary and backup
! Reduces availability since transactions cannot commit if either site fails.

! Two-safe: proceed as in two-very-safe if both primary and backup
are active. If only the primary is active, the transaction commits as
soon as is commit log record is written at the primary.
! Better availability than two-very-safe; avoids problem of lost

transactions in one-safe.

End of ChapterEnd of Chapter

34

©Silberschatz, Korth and Sudarshan17.67Database System Concepts

Block Storage OperationsBlock Storage Operations

©Silberschatz, Korth and Sudarshan17.68Database System Concepts

Portion of the Database Log Corresponding to Portion of the Database Log Corresponding to
TT00 and and TT11

35

©Silberschatz, Korth and Sudarshan17.69Database System Concepts

State of the Log and Database Corresponding State of the Log and Database Corresponding
to to TT0 0 and and TT11

©Silberschatz, Korth and Sudarshan17.70Database System Concepts

Portion of the System Log Corresponding to Portion of the System Log Corresponding to
TT00 and and TT11

36

©Silberschatz, Korth and Sudarshan17.71Database System Concepts

State of System Log and Database State of System Log and Database
Corresponding to Corresponding to TT00 and and TT11

