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IntroductionIntroduction

! Parallel machines are becoming quite common and affordable
! Prices of microprocessors, memory and disks have dropped sharply

! Databases are growing increasingly large
! large volumes of transaction data are collected and stored for later 

analysis.
! multimedia objects like images are increasingly stored in databases

! Large-scale parallel database systems increasingly used for:
! storing large volumes of data
! processing time-consuming decision-support queries
! providing high throughput for transaction processing 
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Parallelism in DatabasesParallelism in Databases

! Data can be partitioned across multiple disks for parallel I/O.
! Individual relational operations (e.g., sort, join, aggregation) can 

be executed in parallel
! data can be partitioned and each processor can work independently 

on its own partition.

! Queries are expressed in high level language (SQL, translated to
relational algebra)
! makes parallelization easier.

! Different queries can be run in parallel with each other.
Concurrency control takes care of conflicts. 

! Thus, databases naturally lend themselves to parallelism.
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I/O ParallelismI/O Parallelism

! Reduce the time required to retrieve relations from disk by partitioning
! the relations on multiple disks.
! Horizontal partitioning – tuples of a relation are divided among many 

disks such that each tuple resides on one disk.
! Partitioning techniques (number of disks = n):

Round-robin: 
Send the ith tuple inserted in the relation to disk i mod n.  

Hash partitioning:  
! Choose one or more attributes as the partitioning attributes.   
! Choose hash function h with range 0…n - 1
! Let i denote result of hash function h applied tothe partitioning attribute 

value of a tuple. Send tuple to disk i.
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I/O Parallelism (Cont.)I/O Parallelism (Cont.)

! Partitioning techniques (cont.):
! Range partitioning: 

! Choose an attribute as the partitioning attribute.
! A partitioning vector [vo, v1, ..., vn-2]  is chosen.
! Let v be the partitioning attribute value of a tuple. Tuples such that vi

≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples with 
v ≥ vn-2 go to disk n-1.

E.g., with a partitioning vector [5,11], a tuple with partitioning attribute 
value of 2 will go to disk 0, a tuple with value 8 will go to disk 1, 
while a tuple with value 20 will go to disk2.
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Comparison of Partitioning TechniquesComparison of Partitioning Techniques

! Evaluate how well partitioning techniques support the following 
types of data access:
1.Scanning the entire relation.
2.Locating a tuple associatively – point queries.
! E.g., r.A = 25.

3.Locating all tuples such that the value of a given attribute lies 
within a specified range – range queries.
! E.g.,  10 ≤ r.A < 25.
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Comparison of Partitioning Techniques (Cont.)Comparison of Partitioning Techniques (Cont.)

Round robin:
! Advantages

! Best suited for sequential scan of entire relation on each query.
! All disks have almost an equal number of tuples; retrieval work is 

thus well balanced between disks.

! Range queries are difficult to process
! No clustering -- tuples are scattered across all disks
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Comparison of Partitioning Techniques(Cont.)Comparison of Partitioning Techniques(Cont.)

Hash partitioning:
! Good for sequential access 

! Assuming hash function is good, and partitioning attributes form a 
key, tuples will be equally distributed between disks

! Retrieval work is then well balanced between disks.

! Good for point queries on partitioning attribute
! Can lookup single disk, leaving others available for answering other 

queries. 
! Index on partitioning attribute can be local to disk, making lookup 

and update more efficient

! No clustering, so difficult to answer range queries
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Comparison of Partitioning Techniques (Cont.)Comparison of Partitioning Techniques (Cont.)

Range partitioning:
! Provides data clustering by partitioning attribute value.
! Good for sequential access
! Good for point queries on partitioning attribute: only one disk 

needs to be accessed.
! For range queries on partitioning attribute, one to a few disks 

may need to be accessed
− Remaining disks are available for other queries.
− Good if result tuples are from one to a few blocks. 
− If many blocks are to be fetched, they are still fetched from one 

to a few disks, and potential parallelism  in disk access is wasted
! Example of execution skew.
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Partitioning a Relation across DisksPartitioning a Relation across Disks

! If a relation contains only a few tuples which will fit into a single 
disk block, then assign the relation to a single disk.

! Large relations are preferably partitioned across all the available 
disks.

! If a relation consists of m disk blocks and there are n disks 
available in the system, then the relation should be allocated  
min(m,n) disks.
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Handling of SkewHandling of Skew

! The distribution of tuples to disks may be skewed — that is, 
some disks have many tuples, while others may have fewer 
tuples.

! Types of skew:
! Attribute-value skew.

" Some values appear in the partitioning attributes of many tuples; 
all the tuples with the same value for the partitioning attribute 
end up in the same partition.

" Can occur with range-partitioning and hash-partitioning.
! Partition skew.

" With range-partitioning, badly chosen partition vector may assign 
too many tuples to some partitions and too few to others.

" Less likely with hash-partitioning if a good hash-function is 
chosen.



©Silberschatz, Korth and Sudarshan20.12Database System Concepts

Handling Skew in RangeHandling Skew in Range--PartitioningPartitioning

! To create a balanced partitioning vector (assuming partitioning 
attribute forms a key of the relation):
! Sort the relation on the partitioning attribute.
! Construct the partition vector by scanning the relation in sorted order 

as follows.
" After every 1/nth of the relation has been read, the value of  the 

partitioning attribute of the next tuple is added to the partition   
vector.

! n denotes the number of partitions to be constructed.
! Duplicate entries or imbalances can result if duplicates are present in 

partitioning attributes.

! Alternative technique based on histograms used in practice
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Handling Skew using HistogramsHandling Skew using Histograms
! Balanced partitioning vector can be constructed from histogram in a 

relatively straightforward fashion
! Assume uniform distribution within each range of the histogram

! Histogram can be constructed by scanning relation, or sampling 
(blocks containing) tuples of the relation
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Handling Skew Using Virtual Processor Handling Skew Using Virtual Processor 
Partitioning Partitioning 

! Skew in range partitioning can be handled elegantly using virtual 
processor partitioning: 
! create a large number of partitions (say 10 to 20 times the number 

of processors)
! Assign virtual processors to partitions either in round-robin fashion 

or based on estimated cost of processing each virtual partition

! Basic idea:
! If any normal partition would have been skewed, it is very likely the 

skew is spread over a number of virtual partitions
! Skewed virtual partitions get spread across a number of processors, 

so work gets distributed evenly!
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Interquery ParallelismInterquery Parallelism

! Queries/transactions execute in parallel with one another.
! Increases transaction throughput; used primarily to scale up a 

transaction processing system to support a larger number of 
transactions per second.

! Easiest form of parallelism to support, particularly in a shared-
memory parallel database, because even sequential database 
systems support concurrent processing.

! More complicated to implement on shared-disk or shared-nothing 
architectures
! Locking and logging must be coordinated by passing messages 

between processors.
! Data in a local buffer may have been updated at another processor.
! Cache-coherency has to be maintained — reads and writes of data 

in buffer must find latest version of data.
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Cache Coherency ProtocolCache Coherency Protocol

! Example of a cache coherency protocol for shared disk systems:
! Before reading/writing to a page, the page must be locked in 

shared/exclusive mode.
! On locking a page, the page must be read from disk
! Before unlocking a page, the page must be written to disk if it was 

modified.

! More complex protocols with fewer disk reads/writes exist.
! Cache coherency protocols for shared-nothing systems are 

similar. Each database page is assigned a home processor. 
Requests to fetch the page or write it to disk are sent to the home 
processor.
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Intraquery ParallelismIntraquery Parallelism

! Execution of a single query in parallel on multiple 
processors/disks; important for speeding up long-running 
queries.

! Two complementary forms of intraquery parallelism :
! Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query.
! Interoperation Parallelism – execute the different operations in a 

query expression in parallel.

the first form scales better with increasing parallelism because
the number of tuples processed by each operation is typically 
more than the number of operations in a query
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Parallel Processing of Relational OperationsParallel Processing of Relational Operations

! Our discussion of parallel algorithms assumes:
! read-only queries
! shared-nothing architecture
! n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  where disk Di is 

associated with processor Pi.

! If a processor has multiple disks they can simply simulate a 
single disk Di.

! Shared-nothing architectures can be efficiently simulated on 
shared-memory and shared-disk systems.   
! Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.  
! However, some optimizations may be possible.
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Parallel SortParallel Sort

Range-Partitioning Sort
! Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
! Create range-partition vector with m entries, on the sorting attributes
! Redistribute the relation using range partitioning

! all tuples that lie in the ith range are sent to processor Pi

! Pi stores the tuples it received temporarily on disk Di. 
! This step requires I/O and communication overhead.

! Each processor Pi sorts its partition of the relation locally.
! Each processors executes same operation (sort) in parallel with other 

processors, without any interaction with the others  (data parallelism).
! Final merge operation is trivial: range-partitioning ensures that, for 1  j  

m, the key values in processor Pi are all less than the key values in Pj.
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Parallel Sort (Cont.)Parallel Sort (Cont.)

Parallel External Sort-Merge
! Assume the relation has already been partitioned among disks 

D0, ..., Dn-1 (in whatever manner).
! Each processor Pi locally sorts the data on disk Di.
! The sorted runs on each processor are then merged to get the 

final sorted output.
! Parallelize the merging of sorted runs as follows:

! The sorted partitions at each processor Pi are range-partitioned 
across the processors P0, ..., Pm-1.

! Each processor Pi performs a merge on the streams as they are 
received, to get a single sorted run.

! The sorted runs on processors P0,..., Pm-1 are concatenated to get 
the final result.



©Silberschatz, Korth and Sudarshan20.21Database System Concepts

Parallel JoinParallel Join

! The join operation requires pairs of tuples to be tested to see if 
they satisfy the join condition, and if they do, the pair is added to 
the join output.

! Parallel join algorithms attempt to split the pairs to be tested over 
several processors.  Each processor then computes part of the 
join locally.  

! In a final step, the results from each processor can be collected 
together to produce the final result.
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Partitioned JoinPartitioned Join

! For equi-joins and natural joins, it is possible to partition the two input 
relations across the processors, and compute the join locally at each 
processor.

! Let r and s be the input relations, and we want to compute r r.A=s.B s.
! r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and 

s0, s1, ..., sn-1.
! Can use either range partitioning or hash partitioning.
! r and s must be partitioned on their join attributes r.A and s.B), using 

the same range-partitioning vector or hash function.
! Partitions ri and si are sent to processor Pi,
! Each processor Pi locally computes ri ri.A=si.B si. Any of the 

standard join methods can be used.
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Partitioned Join (Cont.)Partitioned Join (Cont.)
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FragmentFragment--andand--Replicate JoinReplicate Join

! Partitioning not possible for some join conditions 
! e.g., non-equijoin conditions, such as r.A > s.B.

! For joins were partitioning is not applicable, parallelization  can 
be accomplished by fragment and replicate technique
! Depicted on next slide

! Special case – asymmetric fragment-and-replicate:
! One of the relations, say r, is partitioned; any partitioning technique 

can be used.
! The other relation, s, is replicated across all the processors.
! Processor Pi then locally computes the join of ri with all of s using 

any join technique.
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Depiction of FragmentDepiction of Fragment--andand--Replicate JoinsReplicate Joins

a. Asymmetric 
Fragment and 
Replicate b. Fragment and Replicate
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FragmentFragment--andand--Replicate Join (Cont.)Replicate Join (Cont.)

! General case: reduces the sizes of the relations at each 
processor.
! r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m

partitions, s0, s1, ..., sm-1.
! Any partitioning technique may be used.
! There must be at least m * n processors.
! Label the processors as
! P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.
! Pi,j computes the join of ri with sj. In order to do so, ri is replicated to 

Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

! Any join technique can be used at each processor Pi,j.
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FragmentFragment--andand--Replicate Join (Cont.)Replicate Join (Cont.)

! Both versions of fragment-and-replicate work with any join condition, 
since every tuple in r can be tested with every tuple in s.

! Usually has a higher cost than partitioning, since one of the 
relations (for asymmetric fragment-and-replicate) or both relations 
(for general fragment-and-replicate) have to be replicated.

! Sometimes asymmetric fragment-and-replicate is preferable even 
though partitioning could be used.
! E.g., say s is small and r is large, and already partitioned. It may be 

cheaper to replicate s across all processors, rather than repartition r
and s on the join attributes.
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Partitioned Parallel HashPartitioned Parallel Hash--JoinJoin

Parallelizing partitioned hash join:
! Assume s is smaller than r and therefore s is chosen as the build 

relation.
! A hash function h1 takes the join attribute value of each tuple in s

and maps this tuple to one of the n processors.
! Each processor Pi reads the tuples of s that are on its disk Di, 

and sends each tuple to the appropriate processor based on 
hash function h1. Let si denote the tuples of relation s that are 
sent to processor Pi.

! As tuples of relation s are received at the destination processors, 
they are partitioned further using another hash function, h2, which 
is used to compute the hash-join locally. (Cont.)
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Partitioned Parallel HashPartitioned Parallel Hash--Join (Cont.)Join (Cont.)

! Once the tuples of s have been distributed, the larger relation r is 
redistributed across the m processors using the hash function h1

! Let ri denote the tuples of relation r that are sent to processor Pi.

! As the r tuples are received at the destination processors, they 
are repartitioned using the function h2

! (just as the probe relation is partitioned in the sequential hash-join 
algorithm).

! Each processor Pi executes the build and probe phases of the 
hash-join algorithm on the local partitions ri and s of  r and s to 
produce a partition of the final result of the hash-join.

! Note: Hash-join optimizations can be applied to the parallel case
! e.g., the hybrid hash-join algorithm can be used to cache some of 

the incoming tuples in memory and avoid the cost of writing them
and reading them back in.
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Parallel NestedParallel Nested--Loop JoinLoop Join

! Assume that
! relation s is much smaller than relation r and that r is stored by 

partitioning.
! there is an index on a join attribute of relation r at each of the 

partitions of relation r.

! Use asymmetric fragment-and-replicate, with relation s being 
replicated, and using the existing partitioning of relation r.

! Each processor Pj where a partition of relation s is stored reads 
the tuples of relation s stored in Dj, and replicates the tuples to 
every other processor Pi.
! At the end of this phase, relation s is replicated at all sites that store 

tuples of relation r. 

! Each processor Pi performs an indexed nested-loop join of 
relation s with the ith partition of relation r.
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Other Relational OperationsOther Relational Operations

Selection   σθ(r)
! If θ is of the form ai = v, where ai is an attribute and v a value.

! If r is partitioned on ai the selection is performed at a single 
processor.

! If θ is of the form l <= ai <= u  (i.e., θ is a range selection) and the 
relation has been range-partitioned on ai
! Selection is performed at each processor whose partition overlaps 

with the specified range of values.

! In all other cases: the selection is performed in parallel at all the 
processors.
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Other Relational Operations (Cont.)Other Relational Operations (Cont.)

! Duplicate elimination
! Perform by using either of the parallel sort techniques

" eliminate duplicates as soon as they are found during sorting.
! Can also partition the tuples (using either range- or hash-

partitioning) and perform duplicate elimination locally at each 
processor.

! Projection
! Projection without duplicate elimination can be performed as tuples

are read in from disk in parallel.
! If duplicate elimination is required, any of the above duplicate

elimination techniques can be used.
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Grouping/AggregationGrouping/Aggregation

! Partition the relation on the grouping attributes and then compute 
the aggregate values locally at each processor.

! Can reduce cost of transferring tuples during partitioning by 
partly computing aggregate values before partitioning.

! Consider the sum aggregation operation:
! Perform aggregation operation at each processor Pi on those tuples

stored on disk Di
" results in tuples with partial sums at each processor.

! Result of the local aggregation is partitioned on the grouping 
attributes, and the aggregation performed again at each processor 
Pi to get the final result.

! Fewer tuples need to be sent to other processors during 
partitioning.
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Cost of Parallel Evaluation of OperationsCost of Parallel Evaluation of Operations

! If there is no skew in the partitioning, and there is no overhead 
due to the parallel evaluation, expected speed-up will be 1/n   

! If skew and overheads are also to be taken into account, the time 
taken by a parallel operation can be estimated as 

Tpart + Tasm + max (T0, T1, …, Tn-1)
! Tpart is the time for partitioning the relations
! Tasm is the time for assembling the results

! Ti is the time taken for the operation at processor Pi
" this needs to be estimated taking into account the skew, and the

time wasted in contentions. 
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Interoperator Interoperator ParallelismParallelism

! Pipelined parallelism
! Consider a join of four relations 

" r1 r2 r3 r4
! Set up a pipeline that computes the three joins in parallel

" Let P1 be assigned the computation of 
temp1 = r1 r2

" And P2 be assigned the computation of temp2 = temp1     r3
" And P3 be assigned the computation of temp2 r4

! Each of these operations can execute in parallel, sending result
tuples it computes to the next operation even as it is computing 
further results
" Provided a pipelineable join evaluation algorithm (e.g. indexed 

nested loops join) is used
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Factors Limiting Utility of Pipeline Factors Limiting Utility of Pipeline 
ParallelismParallelism

! Pipeline parallelism is useful since it avoids writing intermediate 
results to disk

! Useful with small number of processors, but does not scale up 
well with more processors. One reason is that pipeline chains do
not attain sufficient length.

! Cannot pipeline operators which do not produce output until all 
inputs have been accessed (e.g. aggregate and sort)

! Little speedup is obtained for the frequent cases of skew in which        
one operator's execution cost is much higher than the others.
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Independent ParallelismIndependent Parallelism

! Independent parallelism
! Consider a join of four relations 

r1 r2 r3 r4
" Let P1 be assigned the computation of 

temp1 = r1 r2
" And P2 be assigned the computation of temp2 = r3 r4
" And P3 be assigned the computation of temp1 temp2
" P1 and P2 can work independently in parallel
" P3 has to wait for input from P1 and P2

– Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism

! Does not provide a high degree of parallelism
" useful with a lower degree of parallelism.
" less useful in a highly parallel system, 
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Query OptimizationQuery Optimization

! Query optimization in parallel databases is significantly more complex 
than query optimization in sequential databases.

! Cost models are more complicated, since we must take into account 
partitioning costs and issues such as skew and resource contention.

! When scheduling execution tree in parallel system, must decide:
! How to parallelize  each operation and how many processors  to use for it.
! What operations to pipeline, what operations to execute independently in 

parallel, and what operations to execute sequentially, one after the other.  

! Determining the amount of resources to allocate for each operation is a 
problem.
! E.g., allocating more processors than optimal can result in high 

communication overhead.

! Long pipelines should be avoided as the final operation may wait a lot 
for inputs, while holding precious resources
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Query Optimization (Cont.)Query Optimization (Cont.)

! The number of parallel evaluation plans from which to choose from is 
much larger than the number of sequential evaluation plans.
! Therefore heuristics are needed while optimization

! Two alternative heuristics for choosing parallel plans:
! No pipelining and inter-operation pipelining; just parallelize every operation 

across all processors. 
" Finding best plan is now much easier --- use standard optimization 

technique, but with new cost model
" Volcano parallel database popularize the exchange-operator model 

– exchange operator is introduced into query plans to partition and 
distribute tuples

– each operation works independently on local data on each 
processor, in parallel with other copies of the operation

! First choose most efficient sequential plan and then choose how best to
parallelize the operations in that plan.
" Can explore pipelined parallelism as an option 

! Choosing a good physical organization (partitioning technique) is 
important to speed up queries.
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Design of Parallel SystemsDesign of Parallel Systems

Some issues in the design of parallel systems:
! Parallel loading of data from external sources is needed in order 

to handle large volumes of incoming data.
! Resilience to failure of some processors or disks.

! Probability of some disk or processor failing is higher in a parallel 
system.  

! Operation (perhaps with degraded performance) should be possible
in spite of failure. 

! Redundancy achieved by storing extra copy of every data item at 
another processor.
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Design of Parallel Systems (Cont.)Design of Parallel Systems (Cont.)

! On-line reorganization of data and schema changes must be 
supported.
! For example, index construction on terabyte databases can take 

hours or days even on a parallel system.
" Need to allow other processing (insertions/deletions/updates) to

be performed on relation even as index is being constructed.
! Basic idea: index construction tracks changes and ``catches up'‘ on 

changes at the end.

! Also need support for on-line repartitioning and schema changes 
(executed concurrently with other processing).
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