Chapter 3: Relational Model

- Structure of Relational Databases
- Relational Algebra
- Tuple Relational Calculus
- Domain Relational Calculus
- Extended Relational-Algebra-Operations
- Modification of the Database
- Views

Example of a Relation

account-number	branch-name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Basic Structure

- Formally, given sets $D_{1}, D_{2}, \ldots . D_{n}$ a relation r is a subset of $D_{1} \times D_{2} \times \ldots \times D_{n}$ Thus a relation is a set of n-tuples $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ where each $a_{i} \in D_{i}$
- Example: if

$$
\begin{aligned}
& \text { customer-name }=\{\text { Jones, Smith, Curry, Lindsay }\} \\
& \text { customer-street }=\{\text { Main, North, Park }\} \\
& \text { customer-city }
\end{aligned}=\{\text { Harrison, Rye, Pittsfield }\}
$$

Then $r=\{\quad$ (Jones, Main, Harrison),
(Smith, North, Rye),
(Curry, North, Rye),
(Lindsay, Park, Pittsfield)\}
is a relation over customer-name x customer-street x customer-city

Attribute Types

- Each attribute of a relation has a name
- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic, that is, indivisible
P. E. multivalued attribute values are not atomic
P. E.g. composite attribute values are not atomic
- The special value null is a member of every domain
- The null value causes complications in the definition of many operations
f we shall ignore the effect of null values in our main presentation and consider their effect later

Relation Schema

- $A_{1}, A_{2}, \ldots, A_{n}$ are attributes
- $R=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is a relation schema
E.g. Customer-schema $=$ (customer-name, customer-street, customer-city)
- $r(R)$ is a relation on the relation schema R
E.g. customer (Customer-schema)

Relation Instance

- The current values (relation instance) of a relation are specified by a table
- An element t of r is a tuple, represented by a row in a table

| customer-name | customer-street | customer-city |
| :---: | :---: | :---: | :---: |
| | Matributes | |
| (or columns) | | |

Relations are Unordered

■ Order of tuples is irrelevant (tuples may be stored in an arbitrary order)

- E.g. account relation with unordered tuples

account-number	branch-name	balance
A-101	Downtown	500
A-215	Mianus	700
A-102	Perryridge	400
A-305	Round Hill	350
A-201	Brighton	900
A-222	Redwood	700
A-217	Brighton	750

Database

- A database consists of multiple relations
- Information about an enterprise is broken up into parts, with each relation storing one part of the information
E.g.: account: stores information about accounts depositor: stores information about which customer owns which account
customer : stores information about customers
- Storing all information as a single relation such as bank(account-number, balance, customer-name, ..) results in
repetition of information (e.g. two customers own an account)
p the need for null values (e.g. represent a customer without an account)
- Normalization theory (Chapter 7) deals with how to design relational schemas

The customer Relation

customer-name	customer-street	customer-city
Adams	Spring	Pittsfield
Brooks	Senator	Brooklyn
Curry	North	Rye
Glenn	Sand Hill	Woodside
Green	Walnut	Stamford
Hayes	Main	Harrison
Johnson	Alma	Palo Alto
Jones	Main	Harrison
Lindsay	Park	Pittsfield
Smith	North	Rye
Turner	Putnam	Stamford
Williams	Nassau	Princeton

The depositor Relation

customer-name account-number

Hayes
A-102
Johnson
Johnson
Jones
Lindsay
Smith
Turner

A-101
A-201
A-217
A-222
A-215
A-305

E-R Diagram for the Banking Enterprise

Keys

- Let $\mathrm{K} \subseteq \mathrm{R}$
- K is a superkey of R if values for K are sufficient to identify a unique tuple of each possible relation $r(R)$
by "possible r " we mean a relation r that could exist in the enterprise we are modeling.
P Example: \{customer-name, customer-street\} and \{customer-name\}
are both superkeys of Customer, if no two customers can possibly have the same name.
- K is a candidate key if K is minimal

Example: \{customer-name\} is a candidate key for Customer, since it is a superkey (assuming no two customers can possibly have the same name), and no subset of it is a superkey.

Determining Keys from E-R Sets

- Strong entity set. The primary key of the entity set becomes the primary key of the relation.
- Weak entity set. The primary key of the relation consists of the union of the primary key of the strong entity set and the discriminator of the weak entity set.
- Relationship set. The union of the primary keys of the related entity sets becomes a super key of the relation.
\& For binary many-to-one relationship sets, the primary key of the "many" entity set becomes the relation's primary key.
For one-to-one relationship sets, the relation's primary key can be that of either entity set.
F For many-to-many relationship sets, the union of the primary keys becomes the relation's primary key

Schema Diagram for the Banking Enterprise

Query Languages

- Language in which user requests information from the database.
- Categories of languages

P procedural
P non-procedural

- "Pure" languages:

PRelational Algebra
P Tuple Relational Calculus
PDomain Relational Calculus

- Pure languages form underlying basis of query languages that people use.

Relational Algebra

- Procedural language
- Six basic operators

P select
p project
p union
P set difference
P Cartesian product
P rename

- The operators take two or more relations as inputs and give a new relation as a result.

Select Operation - Example

- Relation r

A	B	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- $\sigma_{A=B \wedge} D_{>5}(r)$

A	B	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$
\sigma_{p}(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms connected by : \wedge (and), $\vee($ or $), \neg($ not $)$
Each term is one of:
<attribute> op <attribute> or <constant>
where op is one of: $=, \neq,>, \geq .<. \leq$

- Example of selection:

$$
\sigma_{\text {branch-name="Perryridge'(account) }}
$$

Project Operation - Example

- Relation r.

A	B	C
α	10	1
α	20	1
β	30	1
β	40	2

- $\Pi_{\mathrm{A}, \mathrm{C}}(r)$

A	C			
α	1			
α	1			
β	1			
β	2	$=$	A	C
:---:	:---:			
α	1			
β	2			

Project Operation

- Notation:

$$
\Pi_{\mathrm{A} 1, \mathrm{~A} 2, \ldots, A k}(r)
$$

where A_{1}, A_{2} are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- E.g. To eliminate the branch-name attribute of account $\Pi_{\text {account-number, balance }}$ (account)

Union Operation - Example

- Relations r, s :

A	B			
α	1			
α	2			
β	1			
r		\quad	A	B
:---:	:---:			
α	2			
β	3			

$r \cup s:$

A	B
α	1
α	2
β	1
β	3

Union Operation

- Notation: $r \cup s$
- Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

- For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (e.g., 2nd column of r deals with the same type of values as does the 2 nd column of s)

- E.g. to find all customers with either an account or a loan $\Pi_{\text {customer-name }}$ (depositor) $\cup \prod_{\text {customer-name }}$ (borrower)

Set Difference Operation - Example

- Relations r, s :

A	B
α	1
α	2
β	1
r	A B α 2 β 3

$$
r-s:
$$

A	B
α	1
β	1

Set Difference Operation

- Notation $r-s$
- Defined as:

$$
r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.

P r and s must have the same arity
f attribute domains of r and s must be compatible

Cartesian-Product Operation-Example

Relations r, s :

A	B
α	1
β	2
r	

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b
s		

$r \times s$:

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Cartesian-Product Operation

- Notation $r \times s$
- Defined as:

$$
r \times s=\{t q \mid t \in r \text { and } q \in s\}
$$

- Assume that attributes of $r(R)$ and $s(S)$ are disjoint. (That is, $R \cap S=\varnothing$).
- If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Composition of Operations

- Can build expressions using multiple operations
- Example: $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$
- rxs

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

- $\sigma_{\mathrm{A}=\mathrm{C}}(r \times s)$

A	B	C	D	E
α	1	α	10	a
β	2	β	20	a
β	2	β	20	b

Rename Operation

- Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
- Allows us to refer to a relation by more than one name.

Example:

$$
\rho_{x}(E)
$$

returns the expression E under the name X
If a relational-algebra expression E has arity n, then

$$
\rho_{x(A 1, A 2, \ldots, A n)}(E)
$$

returns the result of expression E under the name X, and with the attributes renamed to $A 1, A 2, \ldots ., A n$.

Banking Example

branch (branch-name, branch-city, assets)
customer (customer-name, customer-street, customer-only)
account (account-number, branch-name, balance)
loan (loan-number, branch-name, amount)
depositor (customer-name, account-number)
borrower (customer-name, loan-number)

Example Queries

- Find all loans of over $\$ 1200$

$$
\sigma_{\text {amount }>1200} \text { (loan) }
$$

-Find the loan number for each loan of an amount greater than \$1200

$$
\prod_{\text {loan-number }}\left(\sigma_{\text {amount }}>1200(\text { loan })\right)
$$

Example Queries

- Find the names of all customers who have a loan, an account, or both, from the bank

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cup \Pi_{\text {customer-name }} \text { (depositor) }
$$

-Find the names of all customers who have a loan and an account at bank.

$$
\Pi_{\text {customer-name }} \text { (borrower) } \cap \Pi_{\text {customer-name }} \text { (depositor) }
$$

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
$\Pi_{\text {Customer-name }}\left(\sigma_{\text {branch-name="Perryridge" }}\right.$
$\left(\sigma_{\text {borrower.loan-number }}=\right.$ loan.loan-number $($ borrower x loan $\left.\left.)\right)\right)$
- Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.
$\Pi_{\text {Customer-name }}\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge"
$\left(\sigma_{\text {borrower.loan-number }=\text { loan.loan-number }}(\right.$ borrower x loan $\left.\left.)\right)\right)$ $\Pi_{\text {Customer-name }}$ (depositor)

Example Queries

- Find the names of all customers who have a loan at the Perryridge branch.
-Query 1
$\prod_{\text {Customer-name }}\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge" $($
$\sigma_{\text {borrower.loan-number }}=$ loan.loan-number $($ borrower x loan $\left.\left.)\right)\right)$
- Query 2
$\prod_{\text {customer-name }}\left(\sigma_{\text {loan.loan-number }}=\right.$ borrower.loan-number $($
$\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge" $($ loan $\left.)\right) \times$ borrower $\left.)\right)$

Example Queries

Find the largest account balance

- Rename account relation as d
- The query is:
$\Pi_{\text {balance }}($ account $)-\Pi_{\text {account.balance }}$
$\quad\left(\sigma_{\text {account.balance }}<d . b a l a n c e\right.$
$\left(\right.$ account $x \rho_{d}($ account $\left.\left.)\right)\right)$

Formal Definition

- A basic expression in the relational algebra consists of either one of the following:
P A relation in the database
P A constant relation
- Let E_{1} and E_{2} be relational-algebra expressions; the following are all relational-algebra expressions:
$E_{1} \cup E_{2}$
- $E_{1}-E_{2}$

P $E_{1} \times E_{2}$
P $\sigma_{p}\left(E_{1}\right), P$ is a predicate on attributes in E_{1}
${ }^{P} \Pi_{s}\left(E_{1}\right), S$ is a list consisting of some of the attributes in E_{1}
$\rho_{x}\left(E_{1}\right), x$ is the new name for the result of E_{1}

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s=\{t \mid t \in r$ and $t \in s\}$
- Assume:
${ }_{P} r$, s have the same arity
P attributes of r and s are compatible
- Note: $r \cap s=r-(r-s)$

Set-Intersection Operation - Example

- Relation r, s :

A	B
α	1
α	2
β	1

r

A	B
α	2
β	3
s	

$-r \cap S$

A	B
α	2

Natural-Join Operation

- Notation: $\mathrm{r} \bowtie \mathrm{s}$
- Let r and s be relations on schemas R and S respectively.

Then, $r \bowtie s$ is a relation on schema $R \cup S$ obtained as follows:
P Consider each pair of tuples t_{r} from r and t_{s} from s.
P If t_{r} and t_{s} have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where

貫 t has the same value as t_{r} on r
犗 t has the same value as t_{s} on s

- Example:
$R=(A, B, C, D)$
$S=(E, B, D)$
Result schema $=(A, B, C, D, E)$
P $r \bowtie s$ is defined as:

$$
\Pi_{r . A, r . B, r . C, r . D, s . E}\left(\sigma_{r . B=s . B^{\wedge}} r . D=s . D(r \times s)\right)
$$

Natural Join Operation - Example

- Relations r, s:

A	B	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
r			

B	D	E
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	ϵ
s		

$r \bowtie s$

A	B	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Division Operation

$$
r \div s
$$

- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

$$
\begin{aligned}
& R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right) \\
& \& S=\left(B_{1}, \ldots, B_{n}\right)
\end{aligned}
$$

The result of $r \div s$ is a relation on schema

$$
\begin{aligned}
& R-S=\left(A_{1}, \ldots, A_{m}\right) \\
& \quad r \div s=\left\{t \mid t \in \Pi_{R-S}(r) \wedge \forall u \in s(t u \in r)\right\}
\end{aligned}
$$

Division Operation - Example

Relations r, s:		A	B
		α	1
		α	2
		α	3
		β	1
		γ	1
		δ	1
		δ	3
		δ	4
		ϵ	6
		ϵ	1
		β	2
$r \div s$	A	r	
	α		
	β		

B
1
2
s

Another Division Example

Relations r, s :

A	B	C	D	E
α	a	α	a	1
α	a	γ	a	1
α	a	γ	b	1
β	a	γ	a	1
β	a	γ	b	3
γ	a	γ	a	1
γ	a	γ	b	1
γ	a	β	b	1

A	B	C
α	a	γ
γ	a	γ

Division Operation (Cont.)

- Property
p Let $q-r \div s$
p Then q is the largest relation satisfying $q \times s \subseteq r$
- Definition in terms of the basic algebra operation Let $r(R)$ and $s(S)$ be relations, and let $S \subseteq R$

$$
r \div s=\Pi_{R-S}(r)-\Pi_{R-S}\left(\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)
$$

To see why
$\Pi_{R-S, S}(r)$ simply reorders attributes of r
$\left.\Pi_{R-S}\left(\Pi_{R-S}(r) \times s\right)-\Pi_{R-S, S}(r)\right)$ gives those tuples t in $\Pi_{R-S}(r)$ such that for some tuple $u \in s, t u \notin r$.

Assignment Operation

- The assignment operation (\leftarrow) provides a convenient way to express complex queries.
P Write query as a sequential program consisting of
贯 a series of assignments
崀 followed by an expression whose value is displayed as a result of the query.
P Assignment must always be made to a temporary relation variable.
- Example: Write $r \div s$ as

$$
\begin{aligned}
& \text { temp1 } \leftarrow \Pi_{R-S}(r) \\
& \text { temp2 } \leftarrow \Pi_{R-S}\left((\text { temp1 x s })-\Pi_{R-S, S}(r)\right) \\
& \text { result }=\text { temp1 }- \text { temp } 2
\end{aligned}
$$

The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow.

P May use variable in subsequent expressions.

Example Queries

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.

Query 1

$$
\begin{array}{r}
\Pi_{C N}\left(\sigma_{B N=" D o w n t o w n "}(\text { depositor } \bowtie \text { account })\right) \cap \\
\left.\Pi_{C N}\left(\sigma_{B N=" U p t o w n "(~ d e p o s i t o r \bowtie a c c o u n t ~}\right)\right)
\end{array}
$$

where $C N$ denotes customer-name and $B N$ denotes branch-name.

Query 2

$$
\begin{aligned}
& \Pi_{\text {customer-name, branch-name }}(\text { depositor } \bowtie \text { account) } \\
& \div \rho_{\text {temp(branch-name) }}\left(\left\{\left(\text { "Downtown"), }^{\text {("Uptown") }\})}\right.\right.\right.
\end{aligned}
$$

Example Queries

- Find all customers who have an account at all branches located in Brooklyn city.

$$
\begin{aligned}
& \prod_{\text {customer-name, branch-name }}(\text { depositor } \bowtie \text { account }) \\
& \div \prod_{\text {branch-name }}\left(\sigma_{\text {branch-city }} \text { "Brooklyn" }(\text { branch })\right)
\end{aligned}
$$

Extended Relational-Algebra-Operations

- Generalized Projection
- Outer Join
- Aggregate Functions

Generalized Projection

- Extends the projection operation by allowing arithmetic functions to be used in the projection list.

$$
\Pi_{\mathrm{F} 1, \mathrm{~F} 2, \ldots, \mathrm{Fn}}(E)
$$

- E is any relational-algebra expression
- Each of $F_{1}, F_{2}, \ldots, F_{n}$ are are arithmetic expressions involving constants and attributes in the schema of E.
- Given relation credit-info(customer-name, limit, credit-balance), find how much more each person can spend:
$\Pi_{\text {customer-name, limit - credit-balance }}$ (credit-info)

Aggregate Functions and Operations

- Aggregation function takes a collection of values and returns a single value as a result.
avg: average value min: minimum value max: maximum value
sum: sum of values
count: number of values
- Aggregate operation in relational algebra

$$
\mathrm{G} 1, \mathrm{G} 2, \ldots, \mathrm{Gn} \boldsymbol{g}_{\mathrm{F} 1(\mathrm{~A} 1), \mathrm{F} 2(\mathrm{~A} 2), \ldots, \mathrm{Fn}(\mathrm{An})}(E)
$$

$P E$ is any relational-algebra expression
P $G_{1}, G_{2} \ldots, G_{\mathrm{n}}$ is a list of attributes on which to group (can be empty)
Each F_{i} is an aggregate function
Each A_{i} is an attribute name

Aggregate Operation - Example

- Relation r.

A	B	C
α	α	7
α	β	7
β	β	3
β	β	10

$g_{\text {sum(c) }}{ }^{(\mathrm{r})}$

sum-C

Aggregate Operation - Example

- Relation account grouped by branch-name:

branch-name	account-number	balance
Perryridge	A-102	400
Perryridge	A-201	900
Brighton	A-217	750
Brighton	A-215	750
Redwood	A-222	700

branch-name $\boldsymbol{g}_{\text {sum(balance) }}$ (account)

branch-name	balance
Perryridge	1300
Brighton	1500
Redwood	700

Aggregate Functions (Cont.)

- Result of aggregation does not have a name

P Can use rename operation to give it a name
F For convenience, we permit renaming as part of aggregate operation
branch-name $g_{\text {sum(balance) as sum-balance }}$ (account)

Outer Join

- An extension of the join operation that avoids loss of information.
- Computes the join and then adds tuples form one relation that does not match tuples in the other relation to the result of the join.
- Uses null values:
null signifies that the value is unknown or does not exist
\& All comparisons involving null are (roughly speaking) false by definition.

Will study precise meaning of comparisons with nulls later

Outer Join - Example

- Relation loan

loan-number	branch-name	amount
L-170	Downtown	3000
L-230	Redwood	4000
L-260	Perryridge	1700

- Relation borrower

customer-name	loan-number
Jones	L-170
Smith	L-230
Hayes	L-155

Outer Join - Example

- Inner Join

Ioan \bowtie Borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

■ Left Outer Join
Ioan DX Borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null

Outer Join - Example

- Right Outer Join
loan \bowtie_{-}borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

■ Full Outer Join
loan \beth - borrower

loan-number	branch-name	amount	customer-name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null.
- Aggregate functions simply ignore null values

P Is an arbitrary decision. Could have returned null as result instead.
P We follow the semantics of SQL in its handling of null values

- For duplicate elimination and grouping, null is treated like any other value, and two nulls are assumed to be the same
Alternative: assume each null is different from each other
Both are arbitrary decisions, so we simply follow SQL

Null Values

- Comparisons with null values return the special truth value unknown
If false was used instead of unknown, then $\operatorname{not}(A<5)$ would not be equivalent to $\quad A>=5$
- Three-valued logic using the truth value unknown:

P OR: (unknown or true) = true, (unknown or false) = unknown (unknown or unknown) = unknown
PAND: (true and unknown) = unknown, (false and unknown) = false, (unknown and unknown) = unknown
P NOT: (not unknown) = unknown
In SQL " P is unknown" evaluates to true if predicate P evaluates to unknown

- Result of select predicate is treated as false if it evaluates unknown

Modification of the Database

- The content of the database may be modified using the following operations:
P Deletion
P Insertion
P Updating
- All these operations are expressed using the assignment operator.

Deletion

- A delete request is expressed similarly to a query, except instead of displaying tuples to the user, the selected tuples are removed from the database.
- Can delete only whole tuples; cannot delete values on only particular attributes
- A deletion is expressed in relational algebra by:

$$
r \leftarrow r-E
$$

where r is a relation and E is a relational algebra query.

Deletion Examples

- Delete all account records in the Perryridge branch.

$$
\text { account } \leftarrow \text { account }-\sigma_{\text {branch-name }=\text { "Perryridge" (account) }}
$$

-Delete all loan records with amount in the range of 0 to 50

$$
\text { loan } \leftarrow \text { loan }-\sigma \text { amount } \geq 0 \text { and amount } \leq 50 \text { (loan) }
$$

-Delete all accounts at branches located in Needham.

$$
\begin{aligned}
& r_{1} \leftarrow \sigma_{\text {branch-city }}=\text { "Needham" }(\text { account } \bowtie \text { branch }) \\
& \mathrm{r}_{2} \leftarrow \Pi_{\text {branch-name, account-number, balance }}\left(r_{1}\right) \\
& r_{3} \leftarrow \Pi_{\text {customer-name, account-number }}\left(r_{2} \bowtie \text { depositor }\right) \\
& \text { account } \leftarrow \text { account }-r_{2} \\
& \text { depositor } \leftarrow \text { depositor }-r_{3}
\end{aligned}
$$

Insertion

- To insert data into a relation, we either:

P specify a tuple to be inserted
P write a query whose result is a set of tuples to be inserted
■ in relational algebra, an insertion is expressed by:

$$
r \leftarrow r \cup E
$$

where r is a relation and E is a relational algebra expression.

- The insertion of a single tuple is expressed by letting E be a constant relation containing one tuple.

Insertion Examples

- Insert information in the database specifying that Smith has $\$ 1200$ in account A-973 at the Perryridge branch.

$$
\begin{aligned}
& \text { account } \leftarrow \text { account } \cup\{\text { ("Perryridge", A-973, 1200) }\} \\
& \text { depositor } \leftarrow \text { depositor } \cup\{\text { ("Smith", A-973) }\}
\end{aligned}
$$

- Provide as a gift for all loan customers in the Perryridge branch, a $\$ 200$ savings account. Let the loan number serve as the account number for the new savings account.
$r_{1} \leftarrow\left(\sigma_{\text {branch-name }}=\right.$ "Perryridge" $($ borrower \bowtie loan $\left.)\right)$
account \leftarrow account $\cup \prod_{\text {branch-name, account-number, } 200}\left(r_{1}\right)$ depositor \leftarrow depositor $\cup \prod_{\text {customer-name, loan-number }}\left(r_{1}\right)$

Updating

- A mechanism to change a value in a tuple without charging all values in the tuple
- Use the generalized projection operator to do this task

$$
r \leftarrow \Pi_{F 1, F 2, \ldots, F,}(r)
$$

- Each F_{i} is either
P the ith attribute of r, if the ith attribute is not updated, or,
P if the attribute is to be updated F_{i} is an expression, involving only constants and the attributes of r, which gives the new value for the attribute

Update Examples

- Make interest payments by increasing all balances by 5 percent.

$$
\text { account } \leftarrow \Pi_{A N, B N, B A L * 1.05} \text { (account) }
$$

where $A N, B N$ and $B A L$ stand for account-number, branch-name and balance, respectively.

- Pay all accounts with balances over $\$ 10,0006$ percent interest and pay all others 5 percent

$$
\begin{aligned}
\text { account } \leftarrow & \Pi_{A N, B N, B A L * 1.06}\left(\sigma_{B A L>10000}(\text { account })\right) \\
& \cup \prod_{A N, B N, B A L * 1.05}\left(\sigma_{B A L \leq 10000} \text { (account) }\right)
\end{aligned}
$$

Views

- In some cases, it is not desirable for all users to see the entire logical model (i.e., all the actual relations stored in the database.)
- Consider a person who needs to know a customer's loan number but has no need to see the loan amount. This person should see a relation described, in the relational algebra, by
$\Pi_{\text {customer-name, loan-number }}$ (borrower \bowtie loan)
- Any relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.

View Definition

- A view is defined using the create view statement which has the form

$$
\text { create view } v \text { as <query expression }
$$ where <query expression> is any legal relational algebra query expression. The view name is represented by v.

- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.
- View definition is not the same as creating a new relation by evaluating the query expression
Rather, a view definition causes the saving of an expression; the expression is substituted into queries using the view.

View Examples

- Consider the view (named all-customer) consisting of branches and their customers.

create view all-customer as

$$
\begin{aligned}
& \Pi_{\text {branch-name, customer-name }}(\text { depositor } \bowtie \text { account }) \\
& \quad \cup \prod_{\text {branch-name, customer-name }}(\text { borrower } \bowtie \text { loan })
\end{aligned}
$$

- We can find all customers of the Perryridge branch by writing:
$\Pi_{\text {branch-name }}$

$$
\left(\sigma_{\text {branch-name }}=\text { "Perryridge" }(\text { all-customer })\right)
$$

Updates Through View

- Database modifications expressed as views must be translated to modifications of the actual relations in the database.
- Consider the person who needs to see all loan data in the loan relation except amount. The view given to the person, branchloan, is defined as:
create view branch-loan as

$$
\Pi_{\text {branch-name, loan-number }}(\text { loan })
$$

- Since we allow a view name to appear wherever a relation name is allowed, the person may write:

$$
\text { branch-loan } \leftarrow \text { branch-loan } \cup\{(\text { "Perryridge", L-37)\} }
$$

Updates Through Views (Cont.)

- The previous insertion must be represented by an insertion into the actual relation loan from which the view branch-loan is constructed.
- An insertion into loan requires a value for amount. The insertion can be dealt with by either.
rejecting the insertion and returning an error message to the user.
P inserting a tuple ("L-37", "Perryridge", null) into the loan relation
- Some updates through views are impossible to translate into database relation updates
P create view v as $\sigma_{\text {branch-name }}=$ "Perryridge" $($ account $)$)
$\mathrm{v} \leftarrow \mathrm{v} \cup(\mathrm{L}-99$, Downtown, 23)
- Others cannot be translated uniquely

P all-customer \leftarrow all-customer $\cup\{($ "Perryridge", "John")\}
亩 Have to choose loan or account, and create a new loan/account number!

Views Defined Using Other Views

- One view may be used in the expression defining another view
- A view relation v_{1} is said to depend directly on a view relation v_{2} if v_{2} is used in the expression defining v_{1}
- A view relation v_{1} is said to depend on view relation v_{2} if either v_{1} depends directly to v_{2} or there is a path of dependencies from v_{1} to v_{2}
- A view relation v is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_{1} be defined by an expression e_{1} that may itself contain uses of view relations.
- View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_{i} in e_{1}
Replace the view relation v_{i} by the expression defining v_{i}
until no more view relations are present in e_{1}

- As long as the view definitions are not recursive, this loop will terminate

Tuple Relational Calculus

- A nonprocedural query language, where each query is of the form

$$
\{t \mid P(t)\}
$$

- It is the set of all tuples t such that predicate P is true for t
- t is a tuple variable, $t[A]$ denotes the value of tuple t on attribute A
- $t \in r$ denotes that tuple t is in relation r
- P is a formula similar to that of the predicate calculus

Predicate Calculus Formula

1. Set of attributes and constants
2. Set of comparison operators: (e.g., $<, \leq,=, \neq,>, \geq$)
3. Set of connectives: and (\wedge), or (v), not (\neg)
4. Implication $(\Rightarrow): x \Rightarrow y$, if x if true, then y is true

$$
x \Rightarrow y \equiv \neg x \vee y
$$

5. Set of quantifiers:

- $\exists t \in r(Q(t)) \equiv$ "there exists" a tuple in t in relation r such that predicate $Q(t)$ is true
- $\forall t \in r(Q(t)) \equiv Q$ is true "for all" tuples t in relation r

Banking Example

- branch (branch-name, branch-city, assets)
- customer (customer-name, customer-street, customer-city)
- account (account-number, branch-name, balance)
- loan (loan-number, branch-name, amount)
- depositor (customer-name, account-number)
- borrower (customer-name, loan-number)

Example Queries

- Find the loan-number, branch-name, and amount for loans of over \$1200

$$
\{t \mid t \in \text { loan } \wedge t[\text { amount }]>1200\}
$$

■Find the loan number for each loan of an amount greater than \$1200
$\{t \mid \exists s \in \operatorname{loan}(t[$ loan-number $]=s[$ loan-number $] \wedge s[$ amount $]>1200)\}$

Notice that a relation on schema [loan-number] is implicitly defined by the query

Example Queries

- Find the names of all customers having a loan, an account, or both at the bank

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower(} t[\text { customer-name }=s[\text { customer-name }]) \\
& \quad \vee \exists u \in \text { depositor }(t[\text { customer-name }=u[\text { customer-name }])
\end{aligned}
$$

- Find the names of all customers who have a loan and an account at the bank

$$
\begin{aligned}
& \{t \mid \exists s \in \text { borrower }(t[\text { customer-name }]=s[\text { customer-name }]) \\
& \\
& \\
& \wedge \exists u \in \text { depositor }(t[\text { customer-name }=u[\text { customer-name }])
\end{aligned}
$$

Example Queries

- Find the names of all customers having a loan at the Perryridge branch

$$
\begin{gathered}
\{t \mid \exists s \in \text { borrower(t[customer-name }]=s[\text { customer-name }] \\
\wedge \exists u \in \text { loan }(u[\text { branch-name }]=\text { "Perryridge" } \\
\wedge \text { u[loan-number }]=s[\text { loan-number }]))\}
\end{gathered}
$$

- Find the names of all customers who have a loan at the Perryridge branch, but no account at any branch of the bank

$$
\begin{gathered}
\{t \mid \exists s \in \text { borrower }(t[\text { customer-name }]=s[\text { customer-name }] \\
\wedge \exists u \in \operatorname{loan}(u[\text { branch-name }]=\text { "Perryridge" } \\
\wedge \quad u[\text { loan-number }]=s[\text { loan-number }])) \\
\wedge \text { not } \exists v \in \text { depositor }(v[\text { customer-name }]= \\
t[\text { customer-name }])\}
\end{gathered}
$$

Example Queries

- Find the names of all customers having a loan from the Perryridge branch, and the cities they live in

$$
\begin{aligned}
& \{t \mid \exists s \in \operatorname{loan}(s[\text { branch-name }]=\text { "Perryridge" } \\
& \wedge \exists u \in \text { borrower (u[loan-number] =s[loan-number] } \\
& \wedge \hat{} \text { [customer-name] =u[customer-name }]) \\
& \wedge \exists v \in \text { customer (u[customer-name }=v[\text { customer-name }] \\
& \quad \wedge t[\text { customer-city }]=v[\text { customer-city }])))\}
\end{aligned}
$$

Example Queries

- Find the names of all customers who have an account at all branches located in Brooklyn:
$\{t \mid \exists \mathrm{c} \in$ customer ($\mathrm{t}[$ customer.name] $=\mathrm{c}[$ customer-name] $) \wedge$
$\forall s \in \operatorname{branch}(s[b r a n c h-c i t y]=$ "Brooklyn" \Rightarrow
$\exists u \in$ account (s[branch-name] $=u$ [branch-name]
$\wedge \exists s \in$ depositor (t[customer-name] = s[customer-name]
$\wedge s[$ account-number $]=u[$ account-number $]))\}$

Safety of Expressions

- It is possible to write tuple calculus expressions that generate infinite relations.
- For example, $\{\mathrm{t} \mid \neg t \in r\}$ results in an infinite relation if the domain of any attribute of relation r is infinite
- To guard against the problem, we restrict the set of allowable expressions to safe expressions.
- An expression $\{t \mid P(t)\}$ in the tuple relational calculus is safe if every component of t appears in one of the relations, tuples, or constants that appear in P
P NOTE: this is more than just a syntax condition.
(1).g. $\{t \mid t[A]=5 \vee$ true $\}$ is not safe --- it defines an infinite set with attribute values that do not appear in any relation or tuples or constants in P.

Domain Relational Calculus

- A nonprocedural query language equivalent in power to the tuple relational calculus
- Each query is an expression of the form:

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

P $x_{1}, x_{2}, \ldots, x_{n}$ represent domain variables
P P represents a formula similar to that of the predicate calculus

Example Queries

- Find the loan-number, branch-name, and amount for loans of over \$1200

$$
\{<I, b, a>\mid<l, b, a>\in \operatorname{loan} \wedge a>1200\}
$$

- Find the names of all customers who have a loan of over $\$ 1200$

$$
\{<c>\mid \exists I, b, a(<c, I\rangle \in \text { borrower } \wedge<I, b, a>\in \operatorname{loan} \wedge a>1200)\}
$$

- Find the names of all customers who have a loan from the Perryridge branch and the loan amount:
$\{<c, a>\mid \exists I(<c, I>\in$ borrower $\wedge \exists b(<l, b, a>\in$ loan \wedge
$b=$ "Perryridge")) \}
or $\{\langle c, a\rangle \mid \exists I(\langle c, I\rangle \in$ borrower $\wedge<l$, "Perryridge", $a\rangle \in \operatorname{loa}$ p $)\}$

Example Queries

- Find the names of all customers having a loan, an account, or both at the Perryridge branch:

$$
\begin{aligned}
& \{<c>\mid \exists I(\{<c, I>\in \text { borrower } \\
& \quad \wedge \exists b, a(<I, b, a>\in \text { loan } \wedge b=\text { "Perryridge") }) \\
& \vee \exists a(<c, a>\in d e p o s i t o r \\
& \quad \wedge \exists b, n(<a, b, n>\in \text { account } \wedge b=\text { "Perryridge" }))\}
\end{aligned}
$$

- Find the names of all customers who have an account at all branches located in Brooklyn:

$$
\begin{aligned}
& \{<c>\mid \exists \mathrm{s}, n(<c, s, n>\in \text { customer }) \wedge \\
& \quad \forall x, y, z(<x, y, z>\in \text { branch } \wedge y=\text { "Brooklyn") } \Rightarrow \\
& \quad \exists a, b(<x, y, z>\in \text { account } \wedge<c, a>\in \text { depositor })\}
\end{aligned}
$$

Safety of Expressions

$$
\left\{<x_{1}, x_{2}, \ldots, x_{n}>\mid P\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right\}
$$

is safe if all of the following hold:
1.All values that appear in tuples of the expression are values from $\operatorname{dom}(P)$ (that is, the values appear either in P or in a tuple of a relation mentioned in P).
2.For every "there exists" subformula of the form $\exists x\left(P_{1}(x)\right)$, the subformula is true if and only if there is a value of x in $\operatorname{dom}\left(P_{1}\right)$ such that $P_{1}(x)$ is true.
3. For every "for all" subformula of the form $\forall_{x}\left(P_{1}(x)\right)$, the subformula is true if and only if $P_{1}(x)$ is true for all values x from $\operatorname{dom}\left(P_{1}\right)$.

End of Chapter 3

Result of $\sigma_{\text {branch-name }}=$ "Perryridge" $(I o a n)$

loan-number branch-name amount

L-15	Perryridge	1500
L-16	Perryridge	1300

Loan Number and the Amount of the Loan

Names of All Customers Who Have Either a Loan or an Account

Customer-name
Adams
Curry
Hayes
Jackson
Jones
Smith
Williams
Lindsay
Johnson
Turner

Customers With An Account But No Loan

customer-name

Johnson
Lindsay
Turner

Result of borrower x Ioan

customer-name	borrower. loan-number	loan. loan-number	branch-name	amount
Adams	L-16	L-11	Round Hill	900
Adams	L-16	L-14	Downtown	1500
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Adams	L-16	L-17	Downtown	1000
Adams	L-16	L-23	Redwood	2000
Adams	L-16	L-93	Mianus	500
Curry	L-93	L-11	Round Hill	900
Curry	L-93	L-14	Downtown	1500
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Curry	L-93	L-17	Downtown	1000
Curry	L-93	L-23	Redwood	2000
Curry	L-93	L-93	Mianus	500
Hayes	L-15	L-11		900
Hayes	L-15	L-14		1500
Hayes	L-15	L-15		1500
Hayes	L-15	L-16		1300
Hayes	L-15	L-17		1000
Hayes	L-15	L-23		2000
Hayes	L-15	L-93		500
...	\ldots	.	\ldots	\cdots
\cdots	\ldots	\ldots	\ldots	\cdots
Smith	L- ${ }^{\text {L-23 }}$	L-11	Round Hill	900
Smith	L-23	L-14	Downtown	1500
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Smith	L-23	L-17	Downtown	1000
Smith	L-23	L-23	Redwood	2000
Smith	L-23	L-93	Mianus	500
Williams	L-17	L-11	Round Hill	900
Williams	L-17	L-14	Downtown	1500
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300
Williams	L-17	L-17	Downtown	1000
Williams	L-17	L-23	Redwood	2000
Williams	L-17	L-93	Mianus	500

Result of $\sigma_{\text {branch-name }=\text { "Perryridge" }}$ (borrower \times loan)

customer-name	borrower. loan-number	loan. loan-number	branch-name	amount
Adams	L-16	L-15	Perryridge	1500
Adams	L-16	L-16	Perryridge	1300
Curry	L-93	L-15	Perryridge	1500
Curry	L-93	L-16	Perryridge	1300
Hayes	L-15	L-15	Perryridge	1500
Hayes	L-15	L-16	Perryridge	1300
Jackson	L-14	L-15	Perryridge	1500
Jackson	L-14	L-16	Perryridge	1300
Jones	L-17	L-15	Perryridge	1500
Jones	L-17	L-16	Perryridge	1300
Smith	L-11	L-15	Perryridge	1500
Smith	L-11	L-16	Perryridge	1300
Smith	L-23	L-15	Perryridge	1500
Smith	L-23	L-16	Perryridge	1300
Williams	L-17	L-15	Perryridge	1500
Williams	L-17	L-16	Perryridge	1300

Result of $\Pi_{\text {customer-name }}$

customer-name

Adams

Hayes

Result of the Subexpression

\sim Largest Account Balance in the Bank

Customers Who Live on the Same Street and In the Same City as Smith

customer-name

Curry Smith

Customers With Both an Account and a Loan at the Bank

customer-name

> Hayes
> Jones Smith

Result of $\Pi_{\text {customer-name, loan-number, amount }}$ (borrower \bowtie loan)

customer-name	loan-number	amount
Adams	$\mathrm{L}-16$	1300
Curry	$\mathrm{L}-93$	500
Hayes	$\mathrm{L}-15$	1500
Jackson	$\mathrm{L}-14$	1500
Jones	$\mathrm{L}-17$	1000
Smith	$\mathrm{L}-23$	2000
Smith	$\mathrm{L}-11$	900
Williams	$\mathrm{L}-17$	1000

Result of $\Pi_{\text {branch-name }}\left(\sigma_{\text {customer-city }}=\right.$

 "Harrison"(customer \bowtie account \bowtie depositor))
branch-name

Brighton Perryridge

Result of $\Pi_{\text {branch-name }}\left(\sigma_{\text {branch-city }}=\right.$ "Brooklyn"(branch))

branch-name Brighton Downtown

Result of $\Pi_{\text {customer-name, branch-name }}$ (depositor \bowtie account

customer-name	branch-name
Hayes	Perryridge
Johnson	Downtown
Johnson	Brighton
Jones	Brighton
Lindsay	Redwood
Smith	Mianus
Turner	Round Hill

The credit-info Relation

customer-name	branch-name
Hayes	Perryridge
Johnson	Downtown
Johnson	Brighton
Jones	Brighton
Lindsay	Redwood
Smith	Mianus
Turner	Round Hill

Result of $\Pi_{\text {customer-name, (limit - crediit-balance) as }}$

 credit-available(credit-info).| customer-name | credit-available |
| :---: | :---: |
| Curry | 250 |
| Jones | 5300 |
| Smith | 1600 |
| Hayes | 0 |

The pt-works Relation

employee-name	branch-name	salary
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Rao	Austin	1500
Sato	Austin	1600

The pt-works Relation After Grouping

employee-name	branch-name	salary
Rao	Austin	1500
Sato	Austin	1600
Johnson	Downtown	1500
Loreena	Downtown	1300
Peterson	Downtown	2500
Adams	Perryridge	1500
Brown	Perryridge	1300
Gopal	Perryridge	5300

Result of branch-name $S_{\text {sum(salary) }}$ (pt-works)

\section*{| branch-name | sum of salary |
| :--- | :--- |
 Austin
 Downtown
 3100 5300 Perryridge 8100}

Result of branch-name S sum salary, max(salary) as max-salary (pt-works)

branch-name	sum-salary	max-salary
Austin	3100	1600
Downtown	5300	2500
Perryridge	8100	5300

The employee and ft-works Relations

employee-name	street	city
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

employee-name	branch-name	salary
Coyote	Mesa	1500
Rabbit	Mesa	1300
Gates	Redmond	5300
Williams	Redmond	1500

The Result of employee \bowtie ft-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500

The Result of employee $\perp \triangleleft$ ft-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Result of employee $\bowtie f t$-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Result of employee $\mathbb{X I} \mathrm{ft}$-works

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

Iuples Inserted Into Ioan and borrower

loan-number	branch-name	amount		
L-11	Round Hill	900		
L-14	Downtown	1500		
L-15	Perryridge	1500		
L-16	Perryridge	1300		
L-17	Downtown	1000		
L-23	Redwood	2000		
L-93	Mianus	500		
null	null	1900		
customer-name				loan-number
Adams		$\mathrm{L}-16$		
Curry	$\mathrm{L}-93$			
Hayes	$\mathrm{L}-15$			
Jackson	$\mathrm{L}-14$			
Jones	$\mathrm{L}-17$			
Smith	$\mathrm{L}-11$			
Smith	$\mathrm{L}-23$			
Williams	$\mathrm{L}-17$			
Johnson	null			

Names of All Customers Who Have a Loan at the Perryridge Branch

customer-name

Adams
 Hayes

E-R Diagram

The branch Relation

branch-name	branch-city	assets
Brighton	Brooklyn	7100000
Downtown	Brooklyn	9000000
Mianus	Horseneck	400000
North Town	Rye	3700000
Perryridge	Horseneck	1700000
Pownal	Bennington	300000
Redwood	Palo Alto	2100000
Round Hill	Horseneck	8000000

The Ioan Relation

\section*{| loan-number | branch-name | amount |
| :--- | :--- | :--- |
 | L-11 | Round Hill | 900 |
| :--- | :--- | :--- |
 L-14 Downtown
 1500
 Perryridge 1500
 L-16
 L-17
 L-23
 L-93
 Perryridge
 Downtown
 Redwood Mianus}

The borrower Relation

customer-name loan-number

Adams
Curry
Hayes
Jackson
Jones
Smith
Smith Williams

$$
\begin{aligned}
& \mathrm{L}-16 \\
& \mathrm{~L}-93 \\
& \mathrm{~L}-15 \\
& \mathrm{~L}-14 \\
& \mathrm{~L}-17 \\
& \mathrm{~L}-11 \\
& \mathrm{~L}-23 \\
& \mathrm{~L}-17
\end{aligned}
$$

