
©Silberschatz, Korth and Sudarshan5.1Database System Concepts

Chapter 5: Other Relational LanguagesChapter 5: Other Relational Languages

! Query-by-Example (QBE)
! Datalog

©Silberschatz, Korth and Sudarshan5.2Database System Concepts

QueryQuery--byby--Example (QBE)Example (QBE)

! Basic Structure
! Queries on One Relation
! Queries on Several Relations
! The Condition Box
! The Result Relation
! Ordering the Display of Tuples
! Aggregate Operations
! Modification of the Database

©Silberschatz, Korth and Sudarshan5.3Database System Concepts

QBE QBE —— Basic StructureBasic Structure

! A graphical query language which is based (roughly) on the
domain relational calculus

! Two dimensional syntax – system creates templates of relations
that are requested by users

! Queries are expressed “by example”

©Silberschatz, Korth and Sudarshan5.4Database System Concepts

QBE Skeleton Tables for the Bank QBE Skeleton Tables for the Bank
ExampleExample

©Silberschatz, Korth and Sudarshan5.5Database System Concepts

QBE Skeleton Tables (Cont.)QBE Skeleton Tables (Cont.)

©Silberschatz, Korth and Sudarshan5.6Database System Concepts

Queries on One RelationQueries on One Relation

! Find all loan numbers at the Perryridge branch.

• _x is a variable (optional; can be omitted in above query)
• P. means print (display)
• duplicates are removed by default
• To retain duplicates use P.ALL

©Silberschatz, Korth and Sudarshan5.7Database System Concepts

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

! Display full details of all loans

P._x P._y P._z

"Method 1:

"Method 2: Shorthand notation

©Silberschatz, Korth and Sudarshan5.8Database System Concepts

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

! Find names of all branches that are not located in Brooklyn

! Find the loan number of all loans with a loan amount of more than $700

©Silberschatz, Korth and Sudarshan5.9Database System Concepts

Queries on One Relation (Cont.)Queries on One Relation (Cont.)

! Find the loan numbers of all loans made jointly to Smith
and Jones.

! Find all customers who live in the same city as Jones

©Silberschatz, Korth and Sudarshan5.10Database System Concepts

Queries on Several RelationsQueries on Several Relations

! Find the names of all customers who have a loan from
the Perryridge branch.

©Silberschatz, Korth and Sudarshan5.11Database System Concepts

Queries on Several Relations (Cont.)Queries on Several Relations (Cont.)

! Find the names of all customers who have both an account and
a loan at the bank.

©Silberschatz, Korth and Sudarshan5.12Database System Concepts

Negation in QBENegation in QBE

! Find the names of all customers who have an account at the
bank, but do not have a loan from the bank.

¬ means “there does not exist”

©Silberschatz, Korth and Sudarshan5.13Database System Concepts

Negation in QBE (Cont.)Negation in QBE (Cont.)

! Find all customers who have at least two accounts.

¬ means “not equal to”

©Silberschatz, Korth and Sudarshan5.14Database System Concepts

The Condition BoxThe Condition Box

! Allows the expression of constraints on domain variables
that are either inconvenient or impossible to express within
the skeleton tables.

! Complex conditions can be used in condition boxes
! E.g. Find the loan numbers of all loans made to Smith, to

Jones, or to both jointly

©Silberschatz, Korth and Sudarshan5.15Database System Concepts

Condition Box (Cont.)Condition Box (Cont.)

! QBE supports an interesting syntax for expressing alternative
values

©Silberschatz, Korth and Sudarshan5.16Database System Concepts

Condition Box (Cont.)Condition Box (Cont.)
! Find all account numbers with a balance between $1,300 and

$1,500

!Find all account numbers with a balance between $1,300 and
$2,000 but not exactly $1,500.

©Silberschatz, Korth and Sudarshan5.17Database System Concepts

Condition Box (Cont.)Condition Box (Cont.)

! Find all branches that have assets greater than those of at least
one branch located in Brooklyn

©Silberschatz, Korth and Sudarshan5.18Database System Concepts

The Result RelationThe Result Relation

! Find the customer-name, account-number, and balance for alll
customers who have an account at the Perryridge branch.
" We need to:

Join depositor and account.
Project customer-name, account-number and balance.

" To accomplish this we:
Create a skeleton table, called result, with attributes customer-

name, account-number, and balance.
Write the query.

©Silberschatz, Korth and Sudarshan5.19Database System Concepts

The Result Relation (Cont.)The Result Relation (Cont.)

! The resulting query is:

©Silberschatz, Korth and Sudarshan5.20Database System Concepts

Ordering the Display of TuplesOrdering the Display of Tuples

! AO = ascending order; DO = descending order.
! E.g. list in ascending alphabetical order all customers who have an

account at the bank

! When sorting on multiple attributes, the sorting order is specified by
including with each sort operator (AO or DO) an integer surrounded
by parentheses.

! E.g. List all account numbers at the Perryridge branch in ascending
alphabetic order with their respective account balances in
descending order.

©Silberschatz, Korth and Sudarshan5.21Database System Concepts

Aggregate OperationsAggregate Operations

! The aggregate operators are AVG, MAX, MIN, SUM, and CNT
! The above operators must be postfixed with “ALL” (e.g.,

SUM.ALL.or AVG.ALL._x) to ensure that duplicates are not
eliminated.

! E.g. Find the total balance of all the accounts maintained at
the Perryridge branch.

©Silberschatz, Korth and Sudarshan5.22Database System Concepts

Aggregate Operations (Cont.)Aggregate Operations (Cont.)

! UNQ is used to specify that we want to eliminate duplicates
! Find the total number of customers having an account at the bank.

©Silberschatz, Korth and Sudarshan5.23Database System Concepts

Query ExamplesQuery Examples
! Find the average balance at each branch.

! The “G” in “P.G” is analogous to SQL’s group by construct
! The “ALL” in the “P.AVG.ALL” entry in the balance column

ensures that all balances are considered
! To find the average account balance at only those branches

where the average account balance is more than $1,200, we
simply add the condition box:

©Silberschatz, Korth and Sudarshan5.24Database System Concepts

Query ExampleQuery Example

! Find all customers who have an account at all branches located
in Brooklyn.
" Approach: for each customer, find the number of branches in

Brooklyn at which they have accounts, and compare with total
number of branches in Brooklyn

" QBE does not provide subquery functionality, so both above tasks
have to be combined in a single query.
Can be done for this query, but there are queries that require

subqueries and cannot be expressed in QBE always be done.

! In the query on the next page
! CNT.UNQ.ALL._w specifies the number of distinct branches in

Brooklyn. Note: The variable _w is not connected to other variables
in the query

! CNT.UNQ.ALL._z specifies the number of distinct branches in
Brooklyn at which customer x has an account.

©Silberschatz, Korth and Sudarshan5.25Database System Concepts

Query Example (Cont.)Query Example (Cont.)

©Silberschatz, Korth and Sudarshan5.26Database System Concepts

Modification of the Database Modification of the Database –– DeletionDeletion

! Deletion of tuples from a relation is expressed by use of a D.
command. In the case where we delete information in only some
of the columns, null values, specified by –, are inserted.

! Delete customer Smith

! Delete the branch-city value of the branch whose name is
“Perryridge”.

©Silberschatz, Korth and Sudarshan5.27Database System Concepts

Deletion Query ExamplesDeletion Query Examples

! Delete all loans with a loan amount between $1300 and $1500.
" For consistency, we have to delete information from loan and

borrower tables

©Silberschatz, Korth and Sudarshan5.28Database System Concepts

Deletion Query Examples (Cont.)Deletion Query Examples (Cont.)

! Delete all accounts at branches located in Brooklyn.

©Silberschatz, Korth and Sudarshan5.29Database System Concepts

Modification of the Database Modification of the Database –– InsertionInsertion

! Insertion is done by placing the I. operator in the query
expression.

! Insert the fact that account A-9732 at the Perryridge
branch has a balance of $700.

©Silberschatz, Korth and Sudarshan5.30Database System Concepts

Modification of the Database Modification of the Database –– Insertion (Cont.)Insertion (Cont.)

! Provide as a gift for all loan customers of the Perryridge branch, a
new $200 savings account for every loan account they have, with
the loan number serving as the account number for the new
savings account.

©Silberschatz, Korth and Sudarshan5.31Database System Concepts

Modification of the Database Modification of the Database –– UpdatesUpdates

! Use the U. operator to change a value in a tuple without changing
all values in the tuple. QBE does not allow users to update the
primary key fields.

! Update the asset value of the Perryridge branch to $10,000,000.

! Increase all balances by 5 percent.

©Silberschatz, Korth and Sudarshan5.32Database System Concepts

Microsoft Access QBEMicrosoft Access QBE

! Microsoft Access supports a variant of QBE called Graphical
Query By Example (GQBE)

! GQBE differs from QBE in the following ways
" Attributes of relations are listed vertically, one below the other,

instead of horizontally
" Instead of using variables, lines (links) between attributes are used

to specify that their values should be the same.
Links are added automatically on the basis of attribute name,

and the user can then add or delete links
By default, a link specifies an inner join, but can be modified to

specify outer joins.
" Conditions, values to be printed, as well as group by attributes are all

specified together in a box called the design grid

©Silberschatz, Korth and Sudarshan5.33Database System Concepts

An Example Query in Microsoft Access QBEAn Example Query in Microsoft Access QBE

! Example query: Find the customer-name, account-number and
balance for all accounts at the Perryridge branch

©Silberschatz, Korth and Sudarshan5.34Database System Concepts

An Aggregation Query in Access QBEAn Aggregation Query in Access QBE
! Find the name, street and city of all customers who have more

than one account at the bank

©Silberschatz, Korth and Sudarshan5.35Database System Concepts

Aggregation in Access QBEAggregation in Access QBE

! The row labeled Total specifies
" which attributes are group by attributes
" which attributes are to be aggregated upon (and the aggregate

function).
" For attributes that are neither group by nor aggregated, we can still

specify conditions by selecting where in the Total row and listing the
conditions below

! As in SQL, if group by is used, only group by attributes and
aggregate results can be output

©Silberschatz, Korth and Sudarshan5.36Database System Concepts

DatalogDatalog

! Basic Structure
! Syntax of Datalog Rules
! Semantics of Nonrecursive Datalog
! Safety
! Relational Operations in Datalog
! Recursion in Datalog
! The Power of Recursion

©Silberschatz, Korth and Sudarshan5.37Database System Concepts

Basic StructureBasic Structure

! Prolog-like logic-based language that allows recursive queries;
based on first-order logic.

! A Datalog program consists of a set of rules that define views.
! Example: define a view relation v1 containing account numbers

and balances for accounts at the Perryridge branch with a
balance of over $700.

v1(A, B) :– account(A, “Perryridge”, B), B > 700.
! Retrieve the balance of account number “A-217” in the view

relation v1.
? v1(“A-217”, B).

! To find account number and balance of all accounts in v1 that
have a balance greater than 800

? v1(A,B), B > 800

©Silberschatz, Korth and Sudarshan5.38Database System Concepts

Example QueriesExample Queries

! Each rule defines a set of tuples that a view relation must contain.
" E.g. v1(A, B) :– account(A, “Perryridge”, B), B > 700 is

read as
for all A, B
if (A, “Perryridge”, B) ∈ account and B > 700
then (A, B) ∈ v1

! The set of tuples in a view relation is then defined as the union of
all the sets of tuples defined by the rules for the view relation.

! Example:
interest-rate(A, 5) :– account(A, N, B), B < 10000
interest-rate(A, 6) :– account(A, N, B), B >= 10000

©Silberschatz, Korth and Sudarshan5.39Database System Concepts

Negation in Negation in DatalogDatalog

! Define a view relation c that contains the names of all customers
who have a deposit but no loan at the bank:

c(N) :– depositor(N, A), not is-borrower(N).
is-borrower(N) :–borrower (N,L).

! NOTE: using not borrower (N, L) in the first rule results in a
different meaning, namely there is some loan L for which N is not
a borrower.
" To prevent such confusion, we require all variables in negated

“predicate” to also be present in non-negated predicates

©Silberschatz, Korth and Sudarshan5.40Database System Concepts

Named Attribute NotationNamed Attribute Notation

! Datalog rules use a positional notation, which is convenient for
relations with a small number of attributes

! It is easy to extend Datalog to support named attributes.
" E.g., v1 can be defined using named attributes as

v1(account-number A, balance B) :–
account(account-number A, branch-name “Perryridge”, balance B),
B > 700.

©Silberschatz, Korth and Sudarshan5.41Database System Concepts

Formal Syntax and Semantics of Formal Syntax and Semantics of DatalogDatalog

! We formally define the syntax and semantics (meaning) of
Datalog programs, in the following steps
1. We define the syntax of predicates, and then the syntax of rules
2. We define the semantics of individual rules
3. We define the semantics of non-recursive programs, based on a

layering of rules
4. It is possible to write rules that can generate an infinite number of

tuples in the view relation. To prevent this, we define what rules are
“safe”. Non-recursive programs containing only safe rules can only
generate a finite number of answers.

5. It is possible to write recursive programs whose meaning is unclear.
We define what recursive programs are acceptable, and define their
meaning.

©Silberschatz, Korth and Sudarshan5.42Database System Concepts

Syntax of Datalog RulesSyntax of Datalog Rules

! A positive literal has the form
p(t1, t2 ..., tn)

" p is the name of a relation with n attributes
" each ti is either a constant or variable

! A negative literal has the form
not p(t1, t2 ..., tn)

! Comparison operations are treated as positive predicates
" E.g. X > Y is treated as a predicate >(X,Y)
" “>” is conceptually an (infinite) relation that contains all pairs of

values such that the first value is greater than the second value

! Arithmetic operations are also treated as predicates
" E.g. A = B + C is treated as +(B, C, A), where the relation “+”

contains all triples such that the third value is the
sum of the first two

©Silberschatz, Korth and Sudarshan5.43Database System Concepts

Syntax of Datalog Rules (Cont.)Syntax of Datalog Rules (Cont.)

! Rules are built out of literals and have the form:
p(t1, t2, ..., tn) :– L1, L2, ..., Lm.

head body
" each of the Li’s is a literal
" head – the literal p(t1, t2, ..., tn)
" body – the rest of the literals

! A fact is a rule with an empty body, written in the form:
p(v1, v2, ..., vn).

" indicates tuple (v1, v2, ..., vn) is in relation p

! A Datalog program is a set of rules

©Silberschatz, Korth and Sudarshan5.44Database System Concepts

Semantics of a RuleSemantics of a Rule

! A ground instantiation of a rule (or simply instantiation) is the
result of replacing each variable in the rule by some constant.
" Eg. Rule defining v1

v1(A,B) :– account (A,“Perryridge”, B), B > 700.
" An instantiation above rule:

v1(“A-217”, 750) :–account(“A-217”, “Perryridge”, 750),
750 > 700.

! The body of rule instantiation R’ is satisfied in a set of facts
(database instance) l if
1. For each positive literal qi(vi,1, ..., vi,ni) in the body of R’, l contains

the fact qi(vi,1, ..., vi,ni).
2. For each negative literal not qj(vj,1, ..., vj,nj) in the body of R’, l does

not contain the fact qj(vj,1, ..., vj,nj).

©Silberschatz, Korth and Sudarshan5.45Database System Concepts

Semantics of a Rule (Cont.)Semantics of a Rule (Cont.)

! We define the set of facts that can be inferred from a given set of
facts l using rule R as:

infer(R, l) = {p(t1, ..., tn) | there is a ground instantiation R’ of R
where p(t1, ..., tn) is the head of R’, and
the body of R’ is satisfied in l }

! Given an set of rules ℜℜℜℜ = {R1, R2, ..., Rn}, we define
infer(ℜℜℜℜ , l) = infer(R1, l) ∪ infer(R2, l) ∪ ... ∪ infer(Rn, l)

©Silberschatz, Korth and Sudarshan5.46Database System Concepts

Layering of RulesLayering of Rules

! Define the interest on each account in Perryridge
interest(A, l) :– perryridge-account(A,B),

interest-rate(A,R), l = B * R/100.
perryridge-account(A,B) :–account(A, “Perryridge”, B).
interest-rate(A,5) :–account(N, A, B), B < 10000.
interest-rate(A,6) :–account(N, A, B), B >= 10000.

! Layering of the view relations

©Silberschatz, Korth and Sudarshan5.47Database System Concepts

Layering Rules (Cont.)Layering Rules (Cont.)

! A relation is a layer 1 if all relations used in the bodies of rules
defining it are stored in the database.

! A relation is a layer 2 if all relations used in the bodies of rules
defining it are either stored in the database, or are in layer 1.

! A relation p is in layer i + 1 if
" it is not in layers 1, 2, ..., i
" all relations used in the bodies of rules defining a p are either stored

in the database, or are in layers 1, 2, ..., i

Formally:

©Silberschatz, Korth and Sudarshan5.48Database System Concepts

Semantics of a ProgramSemantics of a Program

! Define I0 = set of facts stored in the database.
! Recursively define li+1 = li ∪ infer(ℜℜℜℜ i+1, li)
! The set of facts in the view relations defined by the program

(also called the semantics of the program) is given by the set of
facts ln corresponding to the highest layer n.

Let the layers in a given program be 1, 2, ..., n. Let ℜℜℜℜ i denote the
set of all rules defining view relations in layer i.

Note: Can instead define semantics using view expansion like
in relational algebra, but above definition is better for handling
extensions such as recursion.

©Silberschatz, Korth and Sudarshan5.49Database System Concepts

SafetySafety

! It is possible to write rules that generate an infinite number of
answers.

gt(X, Y) :– X > Y
not-in-loan(B, L) :– not loan(B, L)

To avoid this possibility Datalog rules must satisfy the following
conditions.
" Every variable that appears in the head of the rule also appears in a

non-arithmetic positive literal in the body of the rule.
This condition can be weakened in special cases based on the

semantics of arithmetic predicates, for example to permit the rule
p(A) :- q(B), A = B + 1

" Every variable appearing in a negative literal in the body of the rule
also appears in some positive literal in the body of the rule.

©Silberschatz, Korth and Sudarshan5.50Database System Concepts

Relational Operations in DatalogRelational Operations in Datalog

! Project out attribute account-name from account.
query(A) :–account(A, N, B).

! Cartesian product of relations r1 and r2.
query(X1, X2, ..., Xn, Y1, Y1, Y2, ..., Ym) :–

r1(X1, X2, ..., Xn), r2(Y1, Y2, ..., Ym).
! Union of relations r1 and r2.

query(X1, X2, ..., Xn) :–r1(X1, X2, ..., Xn),
query(X1, X2, ..., Xn) :–r2(X1, X2, ..., Xn),

! Set difference of r1 and r2.
query(X1, X2, ..., Xn) :–r1(X1, X2, ..., Xn),

not r2(X1, X2, ..., Xn),

©Silberschatz, Korth and Sudarshan5.51Database System Concepts

Updates in Updates in DatalogDatalog

! Some Datalog extensions support database modification using + or
– in the rule head to indicate insertion and deletion.

! E.g. to transfer all accounts at the Perryridge branch to the
Johnstown branch, we can write

+ account(A, “Johnstown”, B) :- account (A, “Perryridge”, B).
– account(A, “Perryridge”, B) :- account (A, “Perryridge”, B)

©Silberschatz, Korth and Sudarshan5.52Database System Concepts

Recursion in Recursion in DatalogDatalog

! Suppose we are given a relation
manager(X, Y)

containing pairs of names X, Y such that Y is a manager of X (or
equivalently, X is a direct employee of Y).

! Each manager may have direct employees, as well as indirect
employees
" Indirect employees of a manager, say Jones, are employees of

people who are direct employees of Jones, or recursively,
employees of people who are indirect employees of Jones

! Suppose we wish to find all (direct and indirect) employees of
manager Jones. We can write a recursive Datalog program.

empl-jones (X) :- manager (X, Jones).
empl-jones (X) :- manager (X, Y), empl-jones(Y).

©Silberschatz, Korth and Sudarshan5.53Database System Concepts

Semantics of Recursion in DatalogSemantics of Recursion in Datalog

! Assumption (for now): program contains no negative literals
! The view relations of a recursive program containing a set of

rules ℜℜℜℜ are defined to contain exactly the set of facts l
computed by the iterative procedure Datalog-Fixpoint

procedure Datalog-Fixpoint
l = set of facts in the database
repeat

Old_l = l
l = l ∪ infer(ℜℜℜℜ , l)

until l = Old_l
! At the end of the procedure, infer(ℜℜℜℜ , l) ⊆ l

" infer(ℜℜℜℜ , l) = l if we consider the database to be a set of facts that
are part of the program

! l is called a fixed point of the program.

©Silberschatz, Korth and Sudarshan5.54Database System Concepts

Example of Example of DatalogDatalog--FixPoint FixPoint IterationIteration

©Silberschatz, Korth and Sudarshan5.55Database System Concepts

A More General ViewA More General View

! Create a view relation empl that contains every tuple (X, Y)
such that X is directly or indirectly managed by Y.

empl(X, Y) :–manager(X, Y).
empl(X, Y) :–manager(X, Z), empl(Z, Y)

! Find the direct and indirect employees of Jones.
? empl(X, “Jones”).

! Can define the view empl in another way too:
empl(X, Y) :–manager(X, Y).
empl(X, Y) :–empl(X, Z), manager(Z, Y.

©Silberschatz, Korth and Sudarshan5.56Database System Concepts

The Power of RecursionThe Power of Recursion

! Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without
recursion or iteration.
" Intuition: Without recursion, a non-recursive non-iterative program

can perform only a fixed number of joins of manager with itself
This can give only a fixed number of levels of managers
Given a program we can construct a database with a greater

number of levels of managers on which the program will not work

©Silberschatz, Korth and Sudarshan5.57Database System Concepts

Recursion in SQLRecursion in SQL

! SQL:1999 permits recursive view definition
! E.g. query to find all employee-manager pairs

with recursive empl (emp, mgr) as (
select emp, mgr
from manager

union
select manager.emp, empl.mgr
from manager, empl
where manager.mgr = empl.emp)

select *
from empl

©Silberschatz, Korth and Sudarshan5.58Database System Concepts

Monotonicity Monotonicity

! A view V is said to be monotonic if given any two sets of facts
I1 and I2 such that l1 ⊆ I2, then Ev(I1) ⊆ Ev(I2), where Ev is the
expression used to define V.

! A set of rules R is said to be monotonic if
l1 ⊆ I2 implies infer(R, I1) ⊆ infer(R, I2),

! Relational algebra views defined using only the operations:
∏, σ, ×, ∪ , ,∩, and ρ (as well as operations like natural join
defined in terms of these operations) are monotonic.

! Relational algebra views defined using – may not be monotonic.
! Similarly, Datalog programs without negation are monotonic, but

Datalog programs with negation may not be monotonic.

©Silberschatz, Korth and Sudarshan5.59Database System Concepts

NonNon--MonotonicityMonotonicity

! Procedure Datalog-Fixpoint is sound provided the rules in the
program are monotonic.
" Otherwise, it may make some inferences in an iteration that cannot

be made in a later iteration. E.g. given the rules
a :- not b.
b :- c.
c.

Then a can be inferred initially, before b is inferred, but not later.

! We can extend the procedure to handle negation so long as the
program is “stratified”: intuitively, so long as negation is not
mixed with recursion

©Silberschatz, Korth and Sudarshan5.60Database System Concepts

Stratified NegationStratified Negation

! A Datalog program is said to be stratified if its predicates can be
given layer numbers such that
1. For all positive literals, say q, in the body of any rule with head, say, p

p(..) :- …., q(..), …
then the layer number of p is greater than or equal to the layer

number of q
2. Given any rule with a negative literal

p(..) :- …, not q(..), …
then the layer number of p is strictly greater than the layer number of q

! Stratified programs do not have recursion mixed with negation
! We can define the semantics of stratified programs layer by layer,

from the bottom-most layer, using fixpoint iteration to define the
semantics of each layer.
" Since lower layers are handled before higher layers, their facts will not

change, so each layer is monotonic once the facts for lower layers are
fixed.

©Silberschatz, Korth and Sudarshan5.61Database System Concepts

NonNon--Monotonicity Monotonicity (Cont.)(Cont.)

! There are useful queries that cannot be expressed by a stratified
program
" E.g., given information about the number of each subpart in each

part, in a part-subpart hierarchy, find the total number of subparts of
each part.

" A program to compute the above query would have to mix
aggregation with recursion

" However, so long as the underlying data (part-subpart) has no
cycles, it is possible to write a program that mixes aggregation with
recursion, yet has a clear meaning

" There are ways to evaluate some such classes of non-stratified
programs

©Silberschatz, Korth and Sudarshan5.62Database System Concepts

Forms and Graphical User InterfacesForms and Graphical User Interfaces

! Most naive users interact with databases using form interfaces
with graphical interaction facilities
" Web interfaces are the most common kind, but there are many

others
" Forms interfaces usually provide mechanisms to check for

correctness of user input, and automatically fill in fields given key
values

" Most database vendors provide convenient mechanisms to create
forms interfaces, and to link form actions to database actions
performed using SQL

©Silberschatz, Korth and Sudarshan5.63Database System Concepts

Report GeneratorsReport Generators

! Report generators are tools to generate human-readable
summary reports from a database
" They integrate database querying with creation of formatted text and

graphical charts
" Reports can be defined once and executed periodically to get

current information from the database.
" Example of report (next page)
" Microsoft’s Object Linking and Embedding (OLE) provides a

convenient way of embedding objects such as charts and tables
generated from the database into other objects such as Word
documents.

©Silberschatz, Korth and Sudarshan5.64Database System Concepts

A Formatted ReportA Formatted Report

End of ChapterEnd of Chapter

©Silberschatz, Korth and Sudarshan5.66Database System Concepts

QBE Skeleton Tables for the Bank QBE Skeleton Tables for the Bank
ExampleExample

©Silberschatz, Korth and Sudarshan5.67Database System Concepts

An Example Query in Microsoft Access QBEAn Example Query in Microsoft Access QBE

©Silberschatz, Korth and Sudarshan5.68Database System Concepts

An Aggregation Query in Microsoft Access QBEAn Aggregation Query in Microsoft Access QBE

©Silberschatz, Korth and Sudarshan5.69Database System Concepts

The The account account RelationRelation

©Silberschatz, Korth and Sudarshan5.70Database System Concepts

The The v1v1 RelationRelation

©Silberschatz, Korth and Sudarshan5.71Database System Concepts

Result of Result of infer(R, I)infer(R, I)

©Silberschatz, Korth and Sudarshan5.72Database System Concepts

