
1

Chapter 7: Relational Database DesignChapter 7: Relational Database Design

©Silberschatz, Korth and Sudarshan7.2Database System Concepts

Chapter 7: Relational Database DesignChapter 7: Relational Database Design

! First Normal Form
! Pitfalls in Relational Database Design
! Functional Dependencies
! Decomposition
! Boyce-Codd Normal Form
! Third Normal Form
! Multivalued Dependencies and Fourth Normal Form
! Overall Database Design Process

2

©Silberschatz, Korth and Sudarshan7.3Database System Concepts

First Normal FormFirst Normal Form

! Domain is atomic if its elements are considered to be indivisible
units
" Examples of non-atomic domains:

Set of names, composite attributes
Identification numbers like CS101 that can be broken up into

parts

! A relational schema R is in first normal form if the domains of all
attributes of R are atomic

! Non-atomic values complicate storage and encourage redundant
(repeated) storage of data
" E.g. Set of accounts stored with each customer, and set of owners

stored with each account
" We assume all relations are in first normal form (revisit this in

Chapter 9 on Object Relational Databases)

©Silberschatz, Korth and Sudarshan7.4Database System Concepts

First Normal Form (Contd.)First Normal Form (Contd.)
! Atomicity is actually a property of how the elements of the

domain are used.
" E.g. Strings would normally be considered indivisible
" Suppose that students are given roll numbers which are strings of

the form CS0012 or EE1127
" If the first two characters are extracted to find the department, the

domain of roll numbers is not atomic.
" Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.

3

©Silberschatz, Korth and Sudarshan7.5Database System Concepts

Pitfalls in Relational Database DesignPitfalls in Relational Database Design

! Relational database design requires that we find a
“good” collection of relation schemas. A bad design
may lead to
" Repetition of Information.
" Inability to represent certain information.

! Design Goals:
" Avoid redundant data
" Ensure that relationships among attributes are

represented
" Facilitate the checking of updates for violation of

database integrity constraints.

©Silberschatz, Korth and Sudarshan7.6Database System Concepts

ExampleExample
! Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets,
customer-name, loan-number, amount)

! Redundancy:
" Data for branch-name, branch-city, assets are repeated for each loan that a

branch makes
" Wastes space
" Complicates updating, introducing possibility of inconsistency of assets value

! Null values
" Cannot store information about a branch if no loans exist
" Can use null values, but they are difficult to handle.

4

©Silberschatz, Korth and Sudarshan7.7Database System Concepts

DecompositionDecomposition

! Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)
Loan-info-schema = (customer-name, loan-number,

branch-name, amount)
! All attributes of an original schema (R) must appear in

the decomposition (R1, R2):
R = R1 ∪ R2

! Lossless-join decomposition.
For all possible relations r on schema R

r = ∏R1 (r) ∏R2 (r)

©Silberschatz, Korth and Sudarshan7.8Database System Concepts

Example of Non LosslessExample of Non Lossless--Join Decomposition Join Decomposition

! Decomposition of R = (A, B)
R2 = (A) R2 = (B)

A B

α
α
β

1
2
1

A

α
β

B

1
2

r
∏A(r) ∏B(r)

∏A (r) ∏B (r) A B

α
α
β
β

1
2
1
2

5

©Silberschatz, Korth and Sudarshan7.9Database System Concepts

Goal Goal —— Devise a Theory for the FollowingDevise a Theory for the Following

! Decide whether a particular relation R is in “good” form.
! In the case that a relation R is not in “good” form, decompose it

into a set of relations {R1, R2, ..., Rn} such that
" each relation is in good form
" the decomposition is a lossless-join decomposition

! Our theory is based on:
" functional dependencies
" multivalued dependencies

©Silberschatz, Korth and Sudarshan7.10Database System Concepts

Functional DependenciesFunctional Dependencies

! Constraints on the set of legal relations.
! Require that the value for a certain set of attributes determines

uniquely the value for another set of attributes.
! A functional dependency is a generalization of the notion of a

key.

6

©Silberschatz, Korth and Sudarshan7.11Database System Concepts

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! Let R be a relation schema
α ⊆ R and β ⊆ R

! The functional dependency
α → β

holds on R if and only if for any legal relations r(R), whenever any
two tuples t1 and t2 of r agree on the attributes α, they also agree
on the attributes β. That is,

t1[α] = t2 [α] ⇒ t1[β] = t2 [β]
! Example: Consider r(A,B) with the following instance of r.

! On this instance, A → B does NOT hold, but B → A does hold.

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan7.12Database System Concepts

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! K is a superkey for relation schema R if and only if K → R
! K is a candidate key for R if and only if

" K → R, and
" for no α ⊂ K, α → R

! Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

Loan-info-schema = (customer-name, loan-number,
branch-name, amount).

We expect this set of functional dependencies to hold:
loan-number → amount
loan-number → branch-name

but would not expect the following to hold:
loan-number → customer-name

7

©Silberschatz, Korth and Sudarshan7.13Database System Concepts

Use of Functional DependenciesUse of Functional Dependencies

! We use functional dependencies to:
" test relations to see if they are legal under a given set of functional

dependencies.
If a relation r is legal under a set F of functional dependencies, we

say that r satisfies F.
" specify constraints on the set of legal relations

We say that F holds on R if all legal relations on R satisfy the set of
functional dependencies F.

! Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does not
hold on all legal instances.
" For example, a specific instance of Loan-schema may, by chance,

satisfy
loan-number → customer-name.

©Silberschatz, Korth and Sudarshan7.14Database System Concepts

Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! A functional dependency is trivial if it is satisfied by all instances
of a relation
" E.g.

customer-name, loan-number → customer-name
customer-name → customer-name

" In general, α → β is trivial if β ⊆ α

8

©Silberschatz, Korth and Sudarshan7.15Database System Concepts

Closure of a Set of Functional Closure of a Set of Functional
DependenciesDependencies

! Given a set F set of functional dependencies, there are certain
other functional dependencies that are logically implied by F.
" E.g. If A → B and B → C, then we can infer that A → C

! The set of all functional dependencies logically implied by F is the
closure of F.

! We denote the closure of F by F+.
! We can find all of F+ by applying Armstrong’s Axioms:

" if β ⊆ α , then α → β (reflexivity)
" if α → β, then γ α → γβ (augmentation)
" if α → β, and β → γ, then α → γ (transitivity)

! These rules are
" sound (generate only functional dependencies that actually hold) and
" complete (generate all functional dependencies that hold).

©Silberschatz, Korth and Sudarshan7.16Database System Concepts

ExampleExample

! R = (A, B, C, G, H, I)
F = { A → B

A → C
CG → H
CG → I

B → H}
! some members of F+

" A → H
by transitivity from A → B and B → H

" AG → I
by augmenting A → C with G, to get AG → CG

and then transitivity with CG → I
" CG → HI

from CG → H and CG → I : “union rule” can be inferred from
– definition of functional dependencies, or
– Augmentation of CG → I to infer CG → CGI, augmentation of

CG → H to infer CGI → HI, and then transitivity

9

©Silberschatz, Korth and Sudarshan7.17Database System Concepts

Procedure for Computing FProcedure for Computing F++

! To compute the closure of a set of functional dependencies F:

F+ = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F+

until F+ does not change any further

NOTE: We will see an alternative procedure for this task later

©Silberschatz, Korth and Sudarshan7.18Database System Concepts

Closure of Functional Dependencies Closure of Functional Dependencies
(Cont.)(Cont.)

! We can further simplify manual computation of F+ by using
the following additional rules.
" If α → β holds and α → γ holds, then α → β γ holds (union)
" If α → β γ holds, then α → β holds and α → γ holds

(decomposition)
" If α → β holds and γ β → δ holds, then α γ → δ holds

(pseudotransitivity)
The above rules can be inferred from Armstrong’s axioms.

10

©Silberschatz, Korth and Sudarshan7.19Database System Concepts

Closure of Attribute SetsClosure of Attribute Sets

! Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally
determined by α under F:

α → β is in F+ ➳ β ⊆ α +

! Algorithm to compute α+, the closure of α under F
result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ
end

©Silberschatz, Korth and Sudarshan7.20Database System Concepts

Example of Attribute Set ClosureExample of Attribute Set Closure
! R = (A, B, C, G, H, I)
! F = {A → B

A → C
CG → H
CG → I
B → H}

! (AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

! Is AG a candidate key?
1. Is AG a super key?

1. Does AG → R? == Is (AG)+ ⊇ R
2. Is any subset of AG a superkey?

1. Does A → R? == Is (A)+ ⊇ R
2. Does G → R? == Is (G)+ ⊇ R

11

©Silberschatz, Korth and Sudarshan7.21Database System Concepts

Uses of Attribute ClosureUses of Attribute Closure

There are several uses of the attribute closure algorithm:
! Testing for superkey:

" To test if α is a superkey, we compute α+, and check if α+ contains
all attributes of R.

! Testing functional dependencies
" To check if a functional dependency α → β holds (or, in other words,

is in F+), just check if β ⊆ α +.
" That is, we compute α+ by using attribute closure, and then check if

it contains β.
" Is a simple and cheap test, and very useful

! Computing closure of F
" For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ +, we

output a functional dependency γ → S.

©Silberschatz, Korth and Sudarshan7.22Database System Concepts

Canonical CoverCanonical Cover

! Sets of functional dependencies may have redundant
dependencies that can be inferred from the others
" Eg: A → C is redundant in: {A → B, B → C, A → C}
" Parts of a functional dependency may be redundant

E.g. on RHS: {A → B, B → C, A → CD} can be simplified to
{A → B, B → C, A → D}

E.g. on LHS: {A → B, B → C, AC → D} can be simplified to
{A → B, B → C, A → D}

! Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant
dependencies or redundant parts of dependencies

12

©Silberschatz, Korth and Sudarshan7.23Database System Concepts

Extraneous AttributesExtraneous Attributes
! Consider a set F of functional dependencies and the functional

dependency α → β in F.
" Attribute A is extraneous in α if A ∈ α

and F logically implies (F – {α → β}) ∪ {(α – A) → β}.
" Attribute A is extraneous in β if A ∈ β

and the set of functional dependencies
(F – {α → β}) ∪ {α →(β – A)} logically implies F.

! Note: implication in the opposite direction is trivial in each of
the cases above, since a “stronger” functional dependency
always implies a weaker one

! Example: Given F = {A → C, AB → C }
" B is extraneous in AB → C because {A → C, AB → C} logically

implies A → C (I.e. the result of dropping B from AB → C).
! Example: Given F = {A → C, AB → CD}

" C is extraneous in AB → CD since AB → C can be inferred even
after deleting C

©Silberschatz, Korth and Sudarshan7.24Database System Concepts

Testing if an Attribute is ExtraneousTesting if an Attribute is Extraneous

! Consider a set F of functional dependencies and the functional
dependency α → β in F.

! To test if attribute A ∈ α is extraneous in α
1. compute ({α} – A)+ using the dependencies in F
2. check that ({α} – A)+ contains A; if it does, A is extraneous

! To test if attribute A ∈ β is extraneous in β
1. compute α+ using only the dependencies in

F’ = (F – {α → β}) ∪ {α →(β – A)},
2. check that α+ contains A; if it does, A is extraneous

13

©Silberschatz, Korth and Sudarshan7.25Database System Concepts

Canonical CoverCanonical Cover

! A canonical cover for F is a set of dependencies Fc such that
" F logically implies all dependencies in Fc, and
" Fc logically implies all dependencies in F, and
" No functional dependency in Fc contains an extraneous attribute, and
" Each left side of functional dependency in Fc is unique.

! To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
α1 → β1 and α1 → β1 with α1 → β1 β2

Find a functional dependency α → β with an
extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from α → β
until F does not change

! Note: Union rule may become applicable after some extraneous
attributes have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan7.26Database System Concepts

Example of Computing a Canonical CoverExample of Computing a Canonical Cover

! R = (A, B, C)
F = {A → BC

B → C
A → B

AB → C}
! Combine A → BC and A → B into A → BC

" Set is now {A → BC, B → C, AB → C}
! A is extraneous in AB → C

" Check if the result of deleting A from AB → C is implied by the other
dependencies
Yes: in fact, B → C is already present!

" Set is now {A → BC, B → C}
! C is extraneous in A → BC

" Check if A → C is logically implied by A → B and the other dependencies
Yes: using transitivity on A → B and B → C.

– Can use attribute closure of A in more complex cases
! The canonical cover is: A → B

B → C

14

©Silberschatz, Korth and Sudarshan7.27Database System Concepts

Goals of NormalizationGoals of Normalization

! Decide whether a particular relation R is in “good” form.
! In the case that a relation R is not in “good” form, decompose it

into a set of relations {R1, R2, ..., Rn} such that
" each relation is in good form
" the decomposition is a lossless-join decomposition

! Our theory is based on:
" functional dependencies
" multivalued dependencies

©Silberschatz, Korth and Sudarshan7.28Database System Concepts

DecompositionDecomposition

! Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)
Loan-info-schema = (customer-name, loan-number,

branch-name, amount)
! All attributes of an original schema (R) must appear in the

decomposition (R1, R2):
R = R1 ∪ R2

! Lossless-join decomposition.
For all possible relations r on schema R

r = ∏R1 (r) ∏R2 (r)
! A decomposition of R into R1 and R2 is lossless join if and only if

at least one of the following dependencies is in F+:
" R1 ∩ R2 → R1

" R1 ∩ R2 → R2

15

©Silberschatz, Korth and Sudarshan7.29Database System Concepts

Example of Example of LossyLossy--Join Decomposition Join Decomposition

! Lossy-join decompositions result in information loss.
! Example: Decomposition of R = (A, B)

R2 = (A) R2 = (B)

A B

α
α
β

1
2
1

A

α
β

B

1
2

r
∏A(r) ∏B(r)

∏A (r) ∏B (r) A B

α
α
β
β

1
2
1
2

©Silberschatz, Korth and Sudarshan7.30Database System Concepts

Normalization Using Functional DependenciesNormalization Using Functional Dependencies

! When we decompose a relation schema R with a set of
functional dependencies F into R1, R2,.., Rn we want
" Lossless-join decomposition: Otherwise decomposition would result in

information loss.
" No redundancy: The relations Ri preferably should be in either Boyce-

Codd Normal Form or Third Normal Form.
" Dependency preservation: Let Fi be the set of dependencies F+ that

include only attributes in Ri.
Preferably the decomposition should be dependency preserving,

that is, (F1 ∪ F2 ∪ … ∪ Fn)+ = F+

Otherwise, checking updates for violation of functional
dependencies may require computing joins, which is expensive.

16

©Silberschatz, Korth and Sudarshan7.31Database System Concepts

ExampleExample

! R = (A, B, C)
F = {A → B, B → C)
" Can be decomposed in two different ways

! R1 = (A, B), R2 = (B, C)
" Lossless-join decomposition:

R1 ∩ R2 = {B} and B → BC
" Dependency preserving

! R1 = (A, B), R2 = (A, C)
" Lossless-join decomposition:

R1 ∩ R2 = {A} and A → AB
" Not dependency preserving

(cannot check B → C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.32Database System Concepts

Testing for Dependency PreservationTesting for Dependency Preservation

! To check if a dependency α→β is preserved in a decomposition of
R into R1, R2, …, Rn we apply the following simplified test (with
attribute closure done w.r.t. F)
" result = α

while (changes to result) do
for each Ri in the decomposition

t = (result ∩ Ri)+ ∩ Ri
result = result ∪ t

" If result contains all attributes in β, then the functional dependency
α → β is preserved.

! We apply the test on all dependencies in F to check if a
decomposition is dependency preserving

! This procedure takes polynomial time, instead of the exponential
time required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+

17

©Silberschatz, Korth and Sudarshan7.33Database System Concepts

BoyceBoyce--Codd Codd Normal FormNormal Form

! α → β is trivial (i.e., β ⊆ α)
! α is a superkey for R

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F+ of the form
α → β, where α ⊆ R and β ⊆ R, at least one of the following holds:

©Silberschatz, Korth and Sudarshan7.34Database System Concepts

ExampleExample

! R = (A, B, C)
F = {A → B

B → C}
Key = {A}

! R is not in BCNF
! Decomposition R1 = (A, B), R2 = (B, C)

" R1 and R2 in BCNF
" Lossless-join decomposition
" Dependency preserving

18

©Silberschatz, Korth and Sudarshan7.35Database System Concepts

Testing for BCNFTesting for BCNF

! To check if a non-trivial dependency α →β causes a violation of
BCNF
1. compute α+ (the attribute closure of α), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

! Simplified test: To check if a relation schema R is in BCNF, it
suffices to check only the dependencies in the given set F for
violation of BCNF, rather than checking all dependencies in F+.
" If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF either.
! However, using only F is incorrect when testing a relation in a

decomposition of R
" E.g. Consider R (A, B, C, D), with F = { A →B, B →C}

Decompose R into R1(A,B) and R2(A,C,D)
Neither of the dependencies in F contain only attributes from

(A,C,D) so we might be mislead into thinking R2 satisfies BCNF.
In fact, dependency A → C in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan7.36Database System Concepts

BCNF Decomposition AlgorithmBCNF Decomposition Algorithm

result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional
dependency that holds on Ri
such that α → Ri is not in F+,
and α ∩ β = ∅ ;

result := (result – Ri) ∪ (Ri – β) ∪ (α, β);
end

else done := true;
Note: each Ri is in BCNF, and decomposition is lossless-join.

19

©Silberschatz, Korth and Sudarshan7.37Database System Concepts

Example of BCNF DecompositionExample of BCNF Decomposition

! R = (branch-name, branch-city, assets,
customer-name, loan-number, amount)
F = {branch-name → assets branch-city
loan-number → amount branch-name}
Key = {loan-number, customer-name}

! Decomposition
" R1 = (branch-name, branch-city, assets)
" R2 = (branch-name, customer-name, loan-number, amount)
" R3 = (branch-name, loan-number, amount)
" R4 = (customer-name, loan-number)

! Final decomposition
R1, R3, R4

©Silberschatz, Korth and Sudarshan7.38Database System Concepts

Testing Decomposition for BCNFTesting Decomposition for BCNF

! To check if a relation Ri in a decomposition of R is in BCNF,
" Either test Ri for BCNF with respect to the restriction of F to Ri (that

is, all FDs in F+ that contain only attributes from Ri)

" or use the original set of dependencies F that hold on R, but with the
following test:

– for every set of attributes α ⊆ Ri, check that α+ (the attribute
closure of α) either includes no attribute of Ri- α, or includes all
attributes of Ri.

If the condition is violated by some α → β in F, the dependency
α → (α+ - α) ∩ Ri

can be shown to hold on Ri, and Ri violates BCNF.
We use above dependency to decompose Ri

20

©Silberschatz, Korth and Sudarshan7.39Database System Concepts

BCNF and Dependency PreservationBCNF and Dependency Preservation

! R = (J, K, L)
F = {JK → L

L → K}
Two candidate keys = JK and JL

! R is not in BCNF
! Any decomposition of R will fail to preserve

JK → L

It is not always possible to get a BCNF decomposition that is
dependency preserving

©Silberschatz, Korth and Sudarshan7.40Database System Concepts

Third Normal Form: MotivationThird Normal Form: Motivation

! There are some situations where
" BCNF is not dependency preserving, and
" efficient checking for FD violation on updates is important

! Solution: define a weaker normal form, called Third Normal Form.
" Allows some redundancy (with resultant problems; we will see

examples later)
" But FDs can be checked on individual relations without computing a

join.
" There is always a lossless-join, dependency-preserving decomposition

into 3NF.

21

©Silberschatz, Korth and Sudarshan7.41Database System Concepts

Third Normal FormThird Normal Form

! A relation schema R is in third normal form (3NF) if for all:
α → β in F+

at least one of the following holds:
" α → β is trivial (i.e., β ∈ α)
" α is a superkey for R
" Each attribute A in β – α is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

! If a relation is in BCNF it is in 3NF (since in BCNF one of the first
two conditions above must hold).

! Third condition is a minimal relaxation of BCNF to ensure
dependency preservation (will see why later).

©Silberschatz, Korth and Sudarshan7.42Database System Concepts

3NF (Cont.)3NF (Cont.)

! Example
" R = (J, K, L)

F = {JK → L, L → K}
" Two candidate keys: JK and JL
" R is in 3NF

JK → L JK is a superkey
L → K K is contained in a candidate key

! BCNF decomposition has (JL) and (LK)
! Testing for JK → L requires a join

! There is some redundancy in this schema
! Equivalent to example in book:

Banker-schema = (branch-name, customer-name, banker-name)
banker-name → branch name
branch name customer-name → banker-name

22

©Silberschatz, Korth and Sudarshan7.43Database System Concepts

Testing for 3NFTesting for 3NF

! Optimization: Need to check only FDs in F, need not check all
FDs in F+.

! Use attribute closure to check for each dependency α → β, if α is
a superkey.

! If α is not a superkey, we have to verify if each attribute in β is
contained in a candidate key of R
" this test is rather more expensive, since it involve finding candidate

keys
" testing for 3NF has been shown to be NP-hard
" Interestingly, decomposition into third normal form (described

shortly) can be done in polynomial time

©Silberschatz, Korth and Sudarshan7.44Database System Concepts

3NF Decomposition Algorithm3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains α β

then begin
i := i + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, ..., Ri)

23

©Silberschatz, Korth and Sudarshan7.45Database System Concepts

3NF Decomposition Algorithm (Cont.)3NF Decomposition Algorithm (Cont.)

! Above algorithm ensures:
" each relation schema Ri is in 3NF
" decomposition is dependency preserving and lossless-join
" Proof of correctness is at end of this file (click here)

©Silberschatz, Korth and Sudarshan7.46Database System Concepts

ExampleExample

! Relation schema:
Banker-info-schema = (branch-name, customer-name,

banker-name, office-number)

! The functional dependencies for this relation schema are:
banker-name → branch-name office-number
customer-name branch-name → banker-name

! The key is:
{customer-name, branch-name}

24

©Silberschatz, Korth and Sudarshan7.47Database System Concepts

Applying 3NF to Applying 3NF to BankerBanker--infoinfo--schemaschema

! The for loop in the algorithm causes us to include the
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,
office-number)

Banker-schema = (customer-name, branch-name,
banker-name)

! Since Banker-schema contains a candidate key for
Banker-info-schema, we are done with the decomposition
process.

©Silberschatz, Korth and Sudarshan7.48Database System Concepts

Comparison of BCNF and 3NFComparison of BCNF and 3NF

! It is always possible to decompose a relation into relations in
3NF and
" the decomposition is lossless
" the dependencies are preserved

! It is always possible to decompose a relation into relations in
BCNF and
" the decomposition is lossless
" it may not be possible to preserve dependencies.

25

©Silberschatz, Korth and Sudarshan7.49Database System Concepts

Comparison of BCNF and 3NF (Cont.)Comparison of BCNF and 3NF (Cont.)

J

j1
j2
j3

null

L

l1
l1
l1
l2

K

k1

k1

k1

k2

A schema that is in 3NF but not in BCNF has the problems of
! repetition of information (e.g., the relationship l1, k1)
! need to use null values (e.g., to represent the relationship

l2, k2 where there is no corresponding value for J).

! Example of problems due to redundancy in 3NF
" R = (J, K, L)

F = {JK → L, L → K}

©Silberschatz, Korth and Sudarshan7.50Database System Concepts

Design GoalsDesign Goals

! Goal for a relational database design is:
" BCNF.
" Lossless join.
" Dependency preservation.

! If we cannot achieve this, we accept one of
" Lack of dependency preservation
" Redundancy due to use of 3NF

! Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test

! Even if we had a dependency preserving decomposition, using
SQL we would not be able to efficiently test a functional
dependency whose left hand side is not a key.

26

©Silberschatz, Korth and Sudarshan7.51Database System Concepts

Testing for Testing for FDs FDs Across RelationsAcross Relations

! If decomposition is not dependency preserving, we can have an extra
materialized view for each dependency α →β in Fc that is not preserved
in the decomposition

! The materialized view is defined as a projection on α β of the join of the
relations in the decomposition

! Many newer database systems support materialized views and database
system maintains the view when the relations are updated.
" No extra coding effort for programmer.

! The functional dependency α → β is expressed by declaring α as a
candidate key on the materialized view.

! Checking for candidate key cheaper than checking α → β
! BUT:

" Space overhead: for storing the materialized view
" Time overhead: Need to keep materialized view up to date when

relations are updated
" Database system may not support key declarations on

materialized views

©Silberschatz, Korth and Sudarshan7.52Database System Concepts

MultivaluedMultivalued DependenciesDependencies

! There are database schemas in BCNF that do not seem to be
sufficiently normalized

! Consider a database
classes(course, teacher, book)

such that (c,t,b) ∈ classes means that t is qualified to teach c,
and b is a required textbook for c

! The database is supposed to list for each course the set of
teachers any one of which can be the course’s instructor, and the
set of books, all of which are required for the course (no matter
who teaches it).

27

©Silberschatz, Korth and Sudarshan7.53Database System Concepts

! There are no non-trivial functional dependencies and therefore
the relation is in BCNF

! Insertion anomalies – i.e., if Sara is a new teacher that can teach
database, two tuples need to be inserted

(database, Sara, DB Concepts)
(database, Sara, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi
Jim
Jim

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes

MultivaluedMultivalued Dependencies (Cont.)Dependencies (Cont.)

©Silberschatz, Korth and Sudarshan7.54Database System Concepts

! Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in Fourth Normal
Form (4NF)

MultivaluedMultivalued Dependencies (Cont.)Dependencies (Cont.)

28

©Silberschatz, Korth and Sudarshan7.55Database System Concepts

Multivalued Dependencies (Multivalued Dependencies (MVDsMVDs))

! Let R be a relation schema and let α ⊆ R and β ⊆ R.
The multivalued dependency

α →→→→→→→→ β
holds on R if in any legal relation r(R), for all pairs for
tuples t1 and t2 in r such that t1[α] = t2 [α], there exist
tuples t3 and t4 in r such that:

t1[α] = t2 [α] = t3 [α] t4 [α]
t3[β] = t1 [β]
t3[R – β] = t2[R – β]
t4 [β] = t2[β]
t4[R – β] = t1[R – β]

©Silberschatz, Korth and Sudarshan7.56Database System Concepts

MVD (Cont.)MVD (Cont.)

! Tabular representation of α →→→→→→→→ β

29

©Silberschatz, Korth and Sudarshan7.57Database System Concepts

ExampleExample

! Let R be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets.

Y, Z, W
! We say that Y →→→→→→→→ Z (Y multidetermines Z)

if and only if for all possible relations r(R)
< y1, z1, w1 > ∈ r and < y2, z2, w2 > ∈ r

then
< y1, z1, w2 > ∈ r and < y2, z2, w1 > ∈ r

! Note that since the behavior of Z and W are identical it follows
that Y →→→→→→→→ Z if Y →→→→→→→→ W

©Silberschatz, Korth and Sudarshan7.58Database System Concepts

Example (Cont.)Example (Cont.)

! In our example:
course →→→→→→→→ teacher
course →→→→→→→→ book

! The above formal definition is supposed to formalize the
notion that given a particular value of Y (course) it has
associated with it a set of values of Z (teacher) and a set
of values of W (book), and these two sets are in some
sense independent of each other.

! Note:
" If Y → Z then Y →→→→→→→→ Z
" Indeed we have (in above notation) Z1 = Z2

The claim follows.

30

©Silberschatz, Korth and Sudarshan7.59Database System Concepts

Use of Multivalued DependenciesUse of Multivalued Dependencies

! We use multivalued dependencies in two ways:
1. To test relations to determine whether they are legal under a

given set of functional and multivalued dependencies
2. To specify constraints on the set of legal relations. We shall

thus concern ourselves only with relations that satisfy a given
set of functional and multivalued dependencies.

! If a relation r fails to satisfy a given multivalued
dependency, we can construct a relations r′ that does
satisfy the multivalued dependency by adding tuples to r.

©Silberschatz, Korth and Sudarshan7.60Database System Concepts

Theory of Theory of MVDsMVDs

! From the definition of multivalued dependency, we can derive the
following rule:
" If α → β, then α →→→→→→→→ β

That is, every functional dependency is also a multivalued
dependency

! The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.
" We can compute D+ from D, using the formal definitions of functional

dependencies and multivalued dependencies.
" We can manage with such reasoning for very simple multivalued

dependencies, which seem to be most common in practice
" For complex dependencies, it is better to reason about sets of

dependencies using a system of inference rules (see Appendix C).

31

©Silberschatz, Korth and Sudarshan7.61Database System Concepts

Fourth Normal FormFourth Normal Form

! A relation schema R is in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D+ of the form α →→→→→→→→ β, where α ⊆ R and β ⊆ R,
at least one of the following hold:
" α →→→→→→→→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
" α is a superkey for schema R

! If a relation is in 4NF it is in BCNF

©Silberschatz, Korth and Sudarshan7.62Database System Concepts

Restriction of Restriction of Multivalued Multivalued DependenciesDependencies

! The restriction of D to Ri is the set Di consisting of
" All functional dependencies in D+ that include only attributes of Ri

" All multivalued dependencies of the form

α →→→→→→→→ (β ∩ Ri)
where α ⊆ Ri and α →→→→→→→→ β is in D+

32

©Silberschatz, Korth and Sudarshan7.63Database System Concepts

4NF Decomposition Algorithm4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri
while (not done)

if (there is a schema Ri in result that is not in 4NF) then
begin

let α →→→→→→→→ β be a nontrivial multivalued dependency that holds
on Ri such that α → Ri is not in Di, and α∩β=φ;

result := (result - Ri) ∪ (Ri - β) ∪ (α, β);
end

else done:= true;
Note: each Ri is in 4NF, and decomposition is lossless-join

©Silberschatz, Korth and Sudarshan7.64Database System Concepts

ExampleExample
! R =(A, B, C, G, H, I)

F ={ A →→→→→→→→ B
B →→→→→→→→ HI
CG →→→→→→→→ H }

! R is not in 4NF since A →→→→→→→→ B and A is not a superkey for R
! Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I) (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I) (R4 is not in 4NF)

! Since A →→→→→→→→ B and B →→→→→→→→ HI, A →→→→→→→→ HI, A →→→→→→→→ I
e) R5 = (A, I) (R5 is in 4NF)
f)R6 = (A, C, G) (R6 is in 4NF)

33

©Silberschatz, Korth and Sudarshan7.65Database System Concepts

Further Normal FormsFurther Normal Forms

! Join dependencies generalize multivalued dependencies
" lead to project-join normal form (PJNF) (also called fifth normal

form)

! A class of even more general constraints, leads to a normal form
called domain-key normal form.

! Problem with these generalized constraints: are hard to reason
with, and no set of sound and complete set of inference rules
exists.

! Hence rarely used

©Silberschatz, Korth and Sudarshan7.66Database System Concepts

Overall Database Design ProcessOverall Database Design Process

! We have assumed schema R is given
" R could have been generated when converting E-R diagram to a set of

tables.
" R could have been a single relation containing all attributes that are of

interest (called universal relation).
" Normalization breaks R into smaller relations.
" R could have been the result of some ad hoc design of relations, which

we then test/convert to normal form.

34

©Silberschatz, Korth and Sudarshan7.67Database System Concepts

ER Model and NormalizationER Model and Normalization

! When an E-R diagram is carefully designed, identifying all entities
correctly, the tables generated from the E-R diagram should not need
further normalization.

! However, in a real (imperfect) design there can be FDs from non-key
attributes of an entity to other attributes of the entity

! E.g. employee entity with attributes department-number and
department-address, and an FD department-number → department-
address
" Good design would have made department an entity

! FDs from non-key attributes of a relationship set possible, but rare ---
most relationships are binary

©Silberschatz, Korth and Sudarshan7.68Database System Concepts

Universal Relation ApproachUniversal Relation Approach

! Dangling tuples – Tuples that “disappear” in computing a join.
" Let r1 (R1), r2 (R2), …., rn (Rn) be a set of relations
" A tuple r of the relation ri is a dangling tuple if r is not in the relation:

∏Ri (r1 r2 … rn)

! The relation r1 r2 … rn is called a universal relation since it
involves all the attributes in the “universe” defined by
R1 ∪ R2 ∪ … ∪ Rn

! If dangling tuples are allowed in the database, instead of
decomposing a universal relation, we may prefer to synthesize a
collection of normal form schemas from a given set of attributes.

35

©Silberschatz, Korth and Sudarshan7.69Database System Concepts

Universal Relation ApproachUniversal Relation Approach

! Dangling tuples may occur in practical database applications.
! They represent incomplete information
! E.g. may want to break up information about loans into:

(branch-name, loan-number)
(loan-number, amount)
(loan-number, customer-name)

! Universal relation would require null values, and have dangling
tuples

©Silberschatz, Korth and Sudarshan7.70Database System Concepts

Universal Relation Approach (Contd.)Universal Relation Approach (Contd.)

! A particular decomposition defines a restricted form of
incomplete information that is acceptable in our database.
" Above decomposition requires at least one of customer-name,

branch-name or amount in order to enter a loan number without
using null values

" Rules out storing of customer-name, amount without an appropriate
loan-number (since it is a key, it can't be null either!)

! Universal relation requires unique attribute names unique role
assumption
" e.g. customer-name, branch-name

! Reuse of attribute names is natural in SQL since relation names
can be prefixed to disambiguate names

36

©Silberschatz, Korth and Sudarshan7.71Database System Concepts

DenormalizationDenormalization for Performancefor Performance

! May want to use non-normalized schema for performance
! E.g. displaying customer-name along with account-number and

balance requires join of account with depositor
! Alternative 1: Use denormalized relation containing attributes of

account as well as depositor with all above attributes
" faster lookup
" Extra space and extra execution time for updates
" extra coding work for programmer and possibility of error in extra code

! Alternative 2: use a materialized view defined as
account depositor

" Benefits and drawbacks same as above, except no extra coding work
for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan7.72Database System Concepts

Other Design IssuesOther Design Issues

! Some aspects of database design are not caught by
normalization

! Examples of bad database design, to be avoided:
Instead of earnings(company-id, year, amount), use
" earnings-2000, earnings-2001, earnings-2002, etc., all on the

schema (company-id, earnings).
Above are in BCNF, but make querying across years difficult and

needs new table each year
" company-year(company-id, earnings-2000, earnings-2001,

earnings-2002)
Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.
Is an example of a crosstab, where values for one attribute

become column names
Used in spreadsheets, and in data analysis tools

37

Proof of Correctness of 3NF Proof of Correctness of 3NF
Decomposition AlgorithmDecomposition Algorithm

©Silberschatz, Korth and Sudarshan7.74Database System Concepts

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
AlgorithmAlgorithm

! 3NF decomposition algorithm is dependency preserving (since
there is a relation for every FD in Fc)

! Decomposition is lossless join
" A candidate key (C) is in one of the relations Ri in decomposition
" Closure of candidate key under Fc must contain all attributes in R.
" Follow the steps of attribute closure algorithm to show there is only

one tuple in the join result for each tuple in Ri

38

©Silberschatz, Korth and Sudarshan7.75Database System Concepts

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
Algorithm (Contd.)Algorithm (Contd.)

Claim: if a relation Ri is in the decomposition generated by the
above algorithm, then Ri satisfies 3NF.
! Let Ri be generated from the dependency α →β
! Let γ → B be any non-trivial functional dependency on Ri. (We

need only consider FDs whose right-hand side is a single
attribute.)

! Now, B can be in either β or α but not in both. Consider each
case separately.

©Silberschatz, Korth and Sudarshan7.76Database System Concepts

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
(Contd.)(Contd.)

! Case 1: If B in β:
" If γ is a superkey, the 2nd condition of 3NF is satisfied
" Otherwise α must contain some attribute not in γ
" Since γ → B is in F+ it must be derivable from Fc, by using attribute

closure on γ.
" Attribute closure not have used α →β - if it had been used, α must

be contained in the attribute closure of γ, which is not possible, since
we assumed γ is not a superkey.

" Now, using α→ (β- {B}) and γ → B, we can derive α →B
(since γ ⊆ α β , and B ∉ γ since γ → B is non-trivial)

" Then, B is extraneous in the right-hand side of α →β; which is not
possible since α →β is in Fc.

" Thus, if B is in β then γ must be a superkey, and the second
condition of 3NF must be satisfied.

39

©Silberschatz, Korth and Sudarshan7.77Database System Concepts

Correctness of 3NF Decomposition Correctness of 3NF Decomposition
(Contd.)(Contd.)

! Case 2: B is in α.
" Since α is a candidate key, the third alternative in the definition of

3NF is trivially satisfied.
" In fact, we cannot show that γ is a superkey.
" This shows exactly why the third alternative is present in the

definition of 3NF.

Q.E.D.

End of ChapterEnd of Chapter

40

©Silberschatz, Korth and Sudarshan7.79Database System Concepts

Sample Sample lendinglending RelationRelation

©Silberschatz, Korth and Sudarshan7.80Database System Concepts

Sample Relation Sample Relation rr

41

©Silberschatz, Korth and Sudarshan7.81Database System Concepts

The The customer customer RelationRelation

©Silberschatz, Korth and Sudarshan7.82Database System Concepts

The The loanloan RelationRelation

42

©Silberschatz, Korth and Sudarshan7.83Database System Concepts

The The branchbranch RelationRelation

©Silberschatz, Korth and Sudarshan7.84Database System Concepts

The Relation The Relation branchbranch--customercustomer

43

©Silberschatz, Korth and Sudarshan7.85Database System Concepts

The Relation The Relation customercustomer--loanloan

©Silberschatz, Korth and Sudarshan7.86Database System Concepts

The Relation The Relation branchbranch--customer customercustomer customer--loanloan

44

©Silberschatz, Korth and Sudarshan7.87Database System Concepts

An Instance of An Instance of BankerBanker--schemaschema

©Silberschatz, Korth and Sudarshan7.88Database System Concepts

Tabular Representation of Tabular Representation of α →→ βα →→ βα →→ βα →→ βα →→ βα →→ βα →→ βα →→ β

45

©Silberschatz, Korth and Sudarshan7.89Database System Concepts

Relation Relation bcbc: An Example of : An Example of Reduncy Reduncy in a BCNF Relationin a BCNF Relation

©Silberschatz, Korth and Sudarshan7.90Database System Concepts

An Illegal An Illegal bc bc RelationRelation

46

©Silberschatz, Korth and Sudarshan7.91Database System Concepts

Decomposition of Decomposition of loanloan--infoinfo

©Silberschatz, Korth and Sudarshan7.92Database System Concepts

Relation of Exercise 7.4Relation of Exercise 7.4

