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! Third Normal Form
! Multivalued Dependencies and Fourth Normal Form
! Overall Database Design Process
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First Normal FormFirst Normal Form

! Domain is atomic if its elements are considered to be indivisible 
units
" Examples of non-atomic domains:

# Set of names,  composite attributes
# Identification numbers like CS101  that can be broken up into 

parts

! A relational schema R is in first normal form if the domains of all 
attributes of R are atomic

! Non-atomic values complicate storage and encourage redundant 
(repeated) storage of data
" E.g.  Set of accounts stored with each customer, and set of owners 

stored with each account
" We assume all relations are in first normal form (revisit this in 

Chapter 9 on Object Relational Databases)
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First Normal Form (Contd.)First Normal Form (Contd.)
! Atomicity is actually a property of how the elements of the 

domain are used.
" E.g. Strings would normally be considered indivisible 
" Suppose that students are given roll numbers which are strings of 

the form CS0012 or EE1127
" If the first two characters are extracted to find the department, the 

domain of roll numbers is not atomic.
" Doing so is a bad idea: leads to encoding of information in 

application program rather than in the database.
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Pitfalls in Relational Database DesignPitfalls in Relational Database Design

! Relational database design requires that we find a 
“good” collection of relation schemas.  A bad design 
may lead to 
" Repetition of Information.
" Inability to represent certain information.

! Design Goals:
" Avoid redundant data
" Ensure that relationships among attributes are 

represented 
" Facilitate the checking of updates for violation of 

database integrity constraints.
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ExampleExample
! Consider the relation schema:

Lending-schema = (branch-name, branch-city, assets, 
customer-name, loan-number, amount)

! Redundancy:
" Data for branch-name, branch-city, assets are repeated for each loan that a 

branch makes
" Wastes space 
" Complicates updating, introducing possibility of inconsistency of assets value

! Null values
" Cannot store information about a branch if no loans exist 
" Can use null values, but they are difficult to handle.
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DecompositionDecomposition

! Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)
Loan-info-schema = (customer-name, loan-number,

branch-name, amount)
! All attributes of an original schema (R) must appear in 

the decomposition (R1, R2):
R = R1 ∪ R2

! Lossless-join decomposition.
For all possible relations r on schema R

r = ∏R1 (r)    ∏R2 (r) 
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Example of Non LosslessExample of Non Lossless--Join Decomposition Join Decomposition 

! Decomposition of R = (A, B)
R2 = (A) R2 = (B)

A B
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Goal Goal —— Devise a Theory for the FollowingDevise a Theory for the Following

! Decide whether a particular relation R is in “good” form.
! In the case that a relation R is not in “good” form, decompose it 

into a set of relations {R1, R2, ..., Rn} such that 
" each relation is in good form 
" the decomposition is a lossless-join decomposition

! Our theory is based on:
" functional dependencies
" multivalued dependencies
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Functional DependenciesFunctional Dependencies

! Constraints on the set of legal relations.
! Require that the value for a certain set of attributes determines 

uniquely the value for another set of attributes.
! A functional dependency is a generalization of the notion of a 

key.
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! Let R be a relation schema
α ⊆ R  and  β ⊆ R

! The functional dependency
α → β

holds on R if and only if for any legal relations r(R), whenever any 
two tuples t1 and t2 of r agree on the attributes α, they also agree 
on the attributes β. That is, 

t1[α] = t2 [α]   ⇒ t1[β ]  = t2 [β ] 
! Example:  Consider r(A,B) with the following instance of r.

! On this instance, A → B does NOT hold, but  B → A does hold. 

1 4
1     5
3 7
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! K is a superkey for relation schema R if and only if K → R
! K is a candidate key for R if and only if 

" K → R, and
" for no α ⊂ K, α → R

! Functional dependencies allow us to express constraints that 
cannot be expressed using superkeys.  Consider the schema:

Loan-info-schema = (customer-name, loan-number,
branch-name, amount).

We expect this set of functional dependencies to hold:
loan-number → amount
loan-number → branch-name

but would not expect the following to hold: 
loan-number → customer-name
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Use of Functional DependenciesUse of Functional Dependencies

! We use functional dependencies to:
" test relations to see if they are legal under a given set of functional 

dependencies. 
# If a relation r is legal under a set F of functional dependencies, we 

say that r satisfies F.
" specify constraints on the set of legal relations

# We say that F holds on R if all legal relations on R satisfy the set of 
functional dependencies F.

! Note:  A specific instance of a relation schema may satisfy a 
functional dependency even if the functional dependency does not
hold on all legal instances.  
" For example, a specific instance of Loan-schema may, by chance, 

satisfy 
loan-number → customer-name.
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Functional Dependencies (Cont.)Functional Dependencies (Cont.)

! A functional dependency is trivial if it is satisfied by all instances 
of a relation
" E.g.

# customer-name, loan-number → customer-name
# customer-name → customer-name

" In general, α → β is trivial if β ⊆ α
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Closure of a Set of Functional Closure of a Set of Functional 
DependenciesDependencies

! Given a set F set of functional dependencies, there are certain 
other functional dependencies that are logically implied by F.
" E.g.  If  A → B and  B → C,  then we can infer that A → C

! The set of all functional dependencies logically implied by F is the 
closure of F.

! We denote the closure of F by F+.
! We can find all of F+ by applying Armstrong’s Axioms:

" if β ⊆ α , then α → β (reflexivity)
" if α → β, then γ α → γβ (augmentation)
" if α → β, and β → γ, then α → γ (transitivity)

! These rules are 
" sound (generate only functional dependencies that actually hold) and 
" complete (generate all functional dependencies that hold).
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ExampleExample

! R = (A, B, C, G, H, I)
F = {  A → B

A → C
CG → H
CG → I

B → H}
! some members of F+

" A → H        
# by transitivity from A → B and B → H

" AG → I       
# by augmenting A → C with G, to get AG → CG 

and then transitivity with CG → I 
" CG → HI     

# from CG → H and CG → I :   “union rule” can be inferred from
– definition of functional dependencies, or 
– Augmentation of CG → I to infer CG → CGI, augmentation of

CG → H to infer CGI → HI, and then transitivity
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Procedure for Computing FProcedure for Computing F++

! To compute the closure of a set of functional dependencies F:

F+ = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F+

for each pair of functional dependencies f1and f2 in F+

if f1 and f2 can be combined using transitivity
then add the resulting functional dependency to F+

until F+ does not change any further

NOTE:  We will see an alternative procedure for this task later
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Closure of Functional Dependencies Closure of Functional Dependencies 
(Cont.)(Cont.)

! We can further simplify manual computation of F+ by using 
the following additional rules.
" If α → β holds and α → γ holds,  then α → β γ holds (union)
" If α → β γ holds, then α → β holds and α → γ holds 

(decomposition)
" If α → β holds and γ β → δ holds, then α γ → δ holds

(pseudotransitivity)
The above rules can be inferred from Armstrong’s axioms.
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Closure of Attribute SetsClosure of Attribute Sets

! Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally 
determined by α under F:

α → β is in F+ ➳ β ⊆ α +

! Algorithm to compute α+, the closure of α under F
result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ
end
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Example of Attribute Set ClosureExample of Attribute Set Closure
! R = (A, B, C, G, H, I)
! F = {A → B

A → C 
CG → H
CG → I
B → H}

! (AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

! Is AG a candidate key?  
1. Is AG a super key?

1. Does AG → R? == Is (AG)+ ⊇ R
2. Is any subset of AG a superkey?

1. Does A → R? == Is (A)+ ⊇ R
2. Does G → R? == Is (G)+ ⊇ R
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Uses of Attribute ClosureUses of Attribute Closure

There are several uses of the attribute closure algorithm:
! Testing for superkey:

" To test if α is a superkey, we compute α+, and check if α+ contains 
all attributes of R.

! Testing functional dependencies
" To check if a functional dependency α → β holds (or, in other words, 

is in F+), just check if β ⊆ α +. 
" That is, we compute α+ by using attribute closure, and then check if 

it contains β. 
" Is a simple and cheap test, and very useful

! Computing closure of F
" For each γ ⊆ R, we find the closure γ+, and for each S ⊆ γ +, we 

output a functional dependency γ → S.
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Canonical CoverCanonical Cover

! Sets of functional dependencies may have redundant 
dependencies that can be inferred from the others
" Eg:  A → C is redundant in:   {A → B,   B → C,   A → C}
" Parts of a functional dependency may be redundant

# E.g. on RHS:    {A → B,   B → C,   A → CD}  can be simplified to 
{A → B,   B → C,   A → D} 

# E.g. on LHS:    {A → B,   B → C,   AC → D}  can be simplified to 
{A → B,   B → C,   A → D} 

! Intuitively, a canonical cover of F is a “minimal” set of functional 
dependencies equivalent to F, having no redundant 
dependencies or redundant parts of dependencies 
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Extraneous AttributesExtraneous Attributes
! Consider a set F of functional dependencies and the functional 

dependency α → β in F.
" Attribute A is extraneous in α if A ∈ α

and F logically implies (F – {α → β}) ∪ {(α – A) → β}.
" Attribute A is extraneous in β if A ∈ β

and the set of functional dependencies 
(F – {α → β}) ∪ {α →(β – A)} logically implies F.

! Note: implication in the opposite direction is trivial in each of 
the cases above, since a “stronger” functional dependency 
always implies a weaker one

! Example: Given F = {A → C, AB → C }
" B is extraneous in AB → C because {A → C, AB → C} logically 

implies A → C (I.e. the result of dropping B from AB → C).
! Example:  Given F = {A → C, AB → CD}

" C is extraneous in AB → CD since  AB → C can be inferred even 
after deleting C
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Testing if an Attribute is ExtraneousTesting if an Attribute is Extraneous

! Consider a set F of functional dependencies and the functional 
dependency α → β in F.

! To test if attribute A ∈ α is extraneous in α
1. compute ({α} – A)+ using the dependencies in F
2. check that ({α} – A)+ contains A; if it does, A is extraneous

! To test if attribute A ∈ β is extraneous in β
1. compute α+ using only the dependencies in  

F’ = (F – {α → β}) ∪ {α →(β – A)}, 
2. check that α+ contains A; if it does, A is extraneous
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Canonical CoverCanonical Cover

! A canonical cover for F is a set of dependencies Fc such that 
" F logically implies all dependencies in Fc, and 
" Fc logically implies all dependencies in F, and
" No functional dependency in Fc contains an extraneous attribute, and
" Each left side of functional dependency in Fc is unique.

! To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
α1 → β1 and α1 → β1 with α1 → β1 β2

Find a functional dependency α → β with an 
extraneous attribute either in α or in β

If an extraneous attribute is found, delete it from α → β
until F does not change

! Note: Union rule may become applicable after some extraneous 
attributes have been deleted, so it has to be re-applied
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Example of Computing a Canonical CoverExample of Computing a Canonical Cover

! R = (A, B, C)
F = {A → BC

B → C
A → B

AB → C}
! Combine A → BC and A → B into A → BC

" Set is now {A → BC, B → C, AB → C}
! A is extraneous in AB → C

" Check if the result of deleting A from  AB → C  is implied by the other 
dependencies
# Yes: in fact,  B → C is already present!

" Set is now {A → BC, B → C}
! C is extraneous in A → BC

" Check if A → C is logically implied by A → B and the other dependencies
# Yes: using transitivity on A → B  and B → C. 

– Can use attribute closure of A in more complex cases
! The canonical cover is: A → B

B → C
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Goals of NormalizationGoals of Normalization

! Decide whether a particular relation R is in “good” form.
! In the case that a relation R is not in “good” form, decompose it 

into a set of relations {R1, R2, ..., Rn} such that 
" each relation is in good form 
" the decomposition is a lossless-join decomposition

! Our theory is based on:
" functional dependencies
" multivalued dependencies
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DecompositionDecomposition

! Decompose the relation schema Lending-schema into:
Branch-schema = (branch-name, branch-city,assets)
Loan-info-schema = (customer-name, loan-number,

branch-name, amount)
! All attributes of an original schema (R) must appear in the 

decomposition (R1, R2):
R = R1 ∪ R2

! Lossless-join decomposition.
For all possible relations r on schema R

r = ∏R1 (r)    ∏R2 (r) 
! A decomposition of R into R1 and R2 is lossless join if and only if 

at least one of the following dependencies is in F+:
" R1 ∩ R2 → R1

" R1 ∩ R2 → R2
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Example of Example of LossyLossy--Join Decomposition Join Decomposition 

! Lossy-join decompositions result in information loss.
! Example: Decomposition of R = (A, B)

R2 = (A) R2 = (B)

A B

α
α
β

1
2
1

A

α
β

B

1
2

r
∏A(r) ∏B(r)

∏A (r) ∏B (r) A B

α
α
β
β

1
2
1
2
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Normalization Using Functional DependenciesNormalization Using Functional Dependencies

! When we decompose a relation schema R with a set of 
functional dependencies F into R1, R2,.., Rn we want
" Lossless-join decomposition:  Otherwise decomposition would result in 

information loss.
" No redundancy:  The relations Ri preferably should be in either Boyce-

Codd Normal Form or Third Normal Form.
" Dependency preservation: Let Fi be the set of dependencies F+ that 

include only attributes in Ri. 
# Preferably the decomposition should be dependency preserving, 

that is,       (F1 ∪ F2 ∪ … ∪ Fn)+ = F+

# Otherwise, checking updates for violation of functional 
dependencies may require computing joins, which is expensive.
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ExampleExample

! R = (A, B, C)
F = {A → B, B → C)
" Can be decomposed in two different ways

! R1 = (A, B),   R2 = (B, C)
" Lossless-join decomposition:

R1  ∩ R2 = {B} and B → BC
" Dependency preserving

! R1 = (A, B),   R2 = (A, C)
" Lossless-join decomposition:

R1  ∩ R2 = {A} and A → AB
" Not dependency preserving 

(cannot check B → C without computing R1 R2)
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Testing for Dependency PreservationTesting for Dependency Preservation

! To check if a dependency α→β is preserved in a decomposition of 
R into R1, R2, …, Rn we apply the following simplified test (with 
attribute closure done w.r.t. F)
" result = α

while (changes to result) do
for each Ri in the decomposition

t = (result ∩ Ri)+ ∩ Ri
result = result ∪ t

" If result contains all attributes in β, then the functional dependency 
α → β is preserved.

! We apply the test on all dependencies in F to check if a 
decomposition is dependency preserving

! This procedure takes polynomial time, instead of the exponential
time required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+
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BoyceBoyce--Codd Codd Normal FormNormal Form

! α → β is trivial (i.e., β ⊆ α)
! α is a superkey for R

A relation schema R is in BCNF with respect to a set F of functional 
dependencies if for all functional dependencies in F+ of the form 
α → β, where α ⊆ R and β ⊆ R, at least one of the following holds:

©Silberschatz, Korth and Sudarshan7.34Database System Concepts

ExampleExample

! R = (A, B, C)
F = {A → B

B → C}
Key = {A}

! R is not in BCNF
! Decomposition R1 = (A, B),  R2 = (B, C)

" R1 and R2 in BCNF
" Lossless-join decomposition
" Dependency preserving



18

©Silberschatz, Korth and Sudarshan7.35Database System Concepts

Testing for BCNFTesting for BCNF

! To check if a non-trivial dependency α →β causes a violation of 
BCNF
1.  compute α+ (the attribute closure of α), and 
2.  verify that it includes all attributes of R, that is, it is a superkey of R.

! Simplified test: To check if a relation schema R is in BCNF, it 
suffices to check only the dependencies in the given set F for 
violation of BCNF, rather than checking all dependencies in F+.
" If none of the dependencies in F causes a violation of BCNF, then 

none of the dependencies in F+ will cause a violation of BCNF either.
! However, using only F is incorrect when testing a relation in a 

decomposition of R
" E.g. Consider R (A, B, C, D), with F = { A →B, B →C}

# Decompose R into R1(A,B) and R2(A,C,D) 
# Neither of the dependencies in F contain only attributes from

(A,C,D) so we might be mislead into thinking R2 satisfies BCNF.  
# In fact, dependency A → C in F+ shows R2 is not in BCNF. 
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BCNF Decomposition AlgorithmBCNF Decomposition Algorithm

result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional
dependency that holds on Ri
such that α → Ri is not in F+, 
and α ∩ β = ∅ ;

result := (result – Ri ) ∪ (Ri – β) ∪ (α, β );
end

else done := true;
Note:  each Ri is in BCNF, and decomposition is lossless-join.
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Example of BCNF DecompositionExample of BCNF Decomposition

! R = (branch-name, branch-city, assets,
customer-name, loan-number, amount)
F = {branch-name → assets branch-city
loan-number → amount branch-name}
Key = {loan-number, customer-name}

! Decomposition
" R1 = (branch-name, branch-city, assets)
" R2 = (branch-name, customer-name, loan-number, amount)
" R3 = (branch-name, loan-number, amount)
" R4 = (customer-name, loan-number)

! Final decomposition 
R1, R3, R4
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Testing Decomposition for BCNFTesting Decomposition for BCNF

! To check if a relation Ri in a decomposition of R is in BCNF, 
" Either test Ri for BCNF with respect to the restriction of F to Ri (that 

is, all FDs in F+ that contain only attributes from Ri)

" or use the original set of dependencies F that hold on R, but with the 
following test:

– for every set of attributes α ⊆ Ri, check that α+ (the attribute 
closure of α) either includes no attribute of Ri- α, or includes all 
attributes of Ri.

# If the condition is violated by some α → β in F, the dependency
α → (α+ - α ) ∩ Ri

can be shown to hold on Ri, and Ri violates BCNF.
# We use above dependency to decompose Ri
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BCNF and Dependency PreservationBCNF and Dependency Preservation

! R = (J, K, L)
F = {JK → L

L → K}
Two candidate keys = JK and JL

! R is not in BCNF
! Any decomposition of R will fail to preserve

JK → L

It is not always possible to get a BCNF decomposition that is 
dependency preserving
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Third Normal Form: MotivationThird Normal Form: Motivation

! There are some situations where 
" BCNF is not dependency preserving, and 
" efficient checking for FD violation on updates is important

! Solution: define a weaker normal form, called Third Normal Form.
" Allows some redundancy (with resultant problems; we will see 

examples later)
" But FDs can be checked on individual relations without computing a 

join.
" There is always a lossless-join, dependency-preserving decomposition 

into 3NF.
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Third Normal FormThird Normal Form

! A relation schema R is in third normal form (3NF) if for all:
α → β in F+

at least one of the following holds:
" α → β is trivial (i.e., β ∈ α )
" α is a superkey for R
" Each attribute A in β – α is contained in a candidate key for R.

(NOTE: each attribute may be in a different candidate key)

! If a relation is in BCNF it is in 3NF (since in BCNF one of the first 
two conditions above must hold).

! Third condition is a minimal relaxation of BCNF to ensure 
dependency preservation (will see why later).

©Silberschatz, Korth and Sudarshan7.42Database System Concepts

3NF (Cont.)3NF (Cont.)

! Example
" R = (J, K, L)

F = {JK → L, L → K}
" Two candidate keys:  JK and JL
" R is in 3NF

JK → L JK is a superkey
L → K K is contained in a candidate key

! BCNF decomposition has  (JL) and (LK)
! Testing for JK → L requires a join

! There is some redundancy in this schema
! Equivalent to example in book:

Banker-schema = (branch-name, customer-name, banker-name)
banker-name → branch name
branch name customer-name → banker-name
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Testing for 3NFTesting for 3NF

! Optimization: Need to check only FDs in F, need not check all
FDs in F+.

! Use attribute closure to check for each dependency α → β, if α is 
a superkey.

! If α is not a superkey, we have to verify if each attribute in β is 
contained in a candidate key of R
" this test is rather more expensive, since it involve finding candidate 

keys
" testing for 3NF has been shown to be NP-hard
" Interestingly, decomposition into third normal form (described 

shortly) can be done in polynomial time 
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3NF Decomposition Algorithm3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains  α β

then begin
i := i  + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
return (R1, R2, ..., Ri)
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3NF Decomposition Algorithm (Cont.)3NF Decomposition Algorithm (Cont.)

! Above algorithm ensures:
" each relation schema Ri is in 3NF
" decomposition is dependency preserving and lossless-join
" Proof of correctness is at end of this file (click here)
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ExampleExample

! Relation schema:
Banker-info-schema = (branch-name, customer-name,

banker-name, office-number)

! The functional dependencies for this relation schema are:
banker-name → branch-name office-number
customer-name branch-name → banker-name

! The key is:
{customer-name, branch-name}
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Applying 3NF to Applying 3NF to BankerBanker--infoinfo--schemaschema

! The for loop in the algorithm causes us to include the 
following schemas in our decomposition:

Banker-office-schema = (banker-name, branch-name,          
office-number)

Banker-schema = (customer-name, branch-name,
banker-name)

! Since Banker-schema contains a candidate key for 
Banker-info-schema, we are done with the decomposition 
process.
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Comparison of BCNF and 3NFComparison of BCNF and 3NF

! It is always possible to decompose a relation into relations in 
3NF and 
" the decomposition is lossless
" the dependencies are preserved

! It is always possible to decompose a relation into relations in 
BCNF and 
" the decomposition is lossless
" it may not be possible to preserve dependencies.
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Comparison of BCNF and 3NF (Cont.)Comparison of BCNF and 3NF (Cont.)

J

j1
j2
j3

null

L

l1
l1
l1
l2

K

k1

k1

k1

k2

A schema that is in 3NF but not in BCNF has the problems of 
! repetition of information (e.g., the relationship l1, k1) 
! need to use null values (e.g., to represent the relationship

l2, k2 where there is no corresponding value for J).

! Example of problems due to redundancy in 3NF
" R = (J, K, L)

F = {JK → L, L → K}
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Design GoalsDesign Goals

! Goal for a relational database design is:
" BCNF.
" Lossless join.
" Dependency preservation.

! If we cannot achieve this, we accept one of
" Lack of dependency preservation 
" Redundancy due to use of 3NF

! Interestingly, SQL does not provide a direct way of specifying 
functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test

! Even if we had a dependency preserving decomposition, using 
SQL we would not be able to efficiently test a functional 
dependency whose left hand side is not a key.
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Testing for Testing for FDs FDs Across RelationsAcross Relations

! If decomposition is not dependency preserving, we can have an extra 
materialized view for each dependency α →β in Fc that is not preserved 
in the decomposition

! The materialized view is defined as a projection on α β of the join of the 
relations in the decomposition

! Many newer database systems support materialized views and database 
system maintains the view when the relations are updated.
" No extra coding effort for programmer.

! The functional dependency α → β is expressed by declaring α as a 
candidate key on the materialized view.

! Checking for candidate key cheaper than checking α → β
! BUT:

" Space overhead: for storing the materialized view
" Time overhead: Need to keep materialized view up to date when   

relations are updated
" Database system may not support key declarations on 

materialized views
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MultivaluedMultivalued DependenciesDependencies

! There are database schemas in BCNF that do not seem to be 
sufficiently normalized 

! Consider a database 
classes(course, teacher, book)

such that (c,t,b) ∈ classes means that t is qualified to teach c,
and b is a required textbook for c

! The database is supposed to list for each course the set of 
teachers any one of which can be the course’s instructor, and the 
set of books, all of which are required for the course (no matter 
who teaches it).
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! There are no non-trivial functional dependencies and therefore 
the relation is in BCNF 

! Insertion anomalies – i.e., if Sara is a new teacher that can teach 
database, two tuples need to be inserted

(database, Sara, DB Concepts)
(database, Sara, Ullman)

course teacher book

database
database
database
database
database
database
operating systems
operating systems
operating systems
operating systems

Avi
Avi
Hank
Hank
Sudarshan
Sudarshan
Avi
Avi 
Jim 
Jim 

DB Concepts
Ullman
DB Concepts
Ullman
DB Concepts
Ullman
OS Concepts
Shaw
OS Concepts
Shaw

classes

MultivaluedMultivalued Dependencies (Cont.)Dependencies (Cont.)
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! Therefore, it is better to decompose classes into:

course teacher

database
database
database
operating systems
operating systems

Avi
Hank
Sudarshan
Avi 
Jim

teaches

course book

database
database
operating systems
operating systems

DB Concepts
Ullman
OS Concepts
Shaw

text

We shall see that these two relations are in Fourth Normal 
Form (4NF)

MultivaluedMultivalued Dependencies (Cont.)Dependencies (Cont.)
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Multivalued Dependencies (Multivalued Dependencies (MVDsMVDs))

! Let R be a relation schema and let α ⊆ R and β ⊆ R. 
The multivalued dependency

α →→→→→→→→ β
holds on R if in any legal relation r(R), for all pairs for 
tuples t1 and t2 in r such that t1[α] = t2 [α], there exist 
tuples t3 and t4 in r such that: 

t1[α] = t2 [α] = t3 [α] t4 [α] 
t3[β]         =  t1 [β] 
t3[R  – β] =  t2[R  – β] 
t4 [β]         =  t2[β] 
t4[R  – β] =  t1[R  – β] 
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MVD (Cont.)MVD (Cont.)

! Tabular representation of α →→→→→→→→ β
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ExampleExample

! Let R be a relation schema with a set of attributes that are 
partitioned into 3 nonempty subsets.

Y, Z, W
! We say that Y →→→→→→→→ Z (Y multidetermines Z)

if and only if for all possible relations r(R)
< y1, z1, w1 > ∈ r and < y2, z2, w2 > ∈ r

then
< y1, z1, w2 > ∈ r and < y2, z2, w1 > ∈ r

! Note that since the behavior of Z and W are identical it follows 
that Y →→→→→→→→ Z if Y →→→→→→→→ W 
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Example (Cont.)Example (Cont.)

! In our example:
course →→→→→→→→ teacher
course →→→→→→→→ book

! The above formal definition is supposed to formalize the 
notion that given a particular value of Y (course) it has 
associated with it a set of values of Z (teacher) and a set 
of values of W (book), and these two sets are in some 
sense independent of each other.

! Note: 
" If Y → Z then  Y →→→→→→→→ Z
" Indeed we have (in above notation) Z1 = Z2

The claim follows.
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Use of Multivalued DependenciesUse of Multivalued Dependencies

! We use multivalued dependencies in two ways: 
1. To test relations to determine whether they are legal under a 

given set of functional and multivalued dependencies
2. To specify constraints on the set of legal relations.  We shall 

thus concern ourselves only with relations that satisfy a given 
set of functional and multivalued dependencies.

! If a relation r fails to satisfy a given multivalued 
dependency, we can construct a relations r′ that does 
satisfy the multivalued dependency by adding tuples to r. 

©Silberschatz, Korth and Sudarshan7.60Database System Concepts

Theory of Theory of MVDsMVDs

! From the definition of multivalued dependency, we can derive the
following rule:
" If α → β, then α →→→→→→→→ β

That is, every functional dependency is also a multivalued 
dependency

! The closure D+ of D is the set of all functional and multivalued 
dependencies logically implied by D. 
" We can compute D+ from D, using the formal definitions of functional 

dependencies and multivalued dependencies.
" We can manage with such reasoning for very simple multivalued 

dependencies, which seem to be most common in practice
" For complex dependencies, it is better to reason about sets of  

dependencies using a system of inference rules (see Appendix C).
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Fourth Normal FormFourth Normal Form

! A relation schema R is in 4NF with respect to a set D of 
functional and multivalued dependencies if for all multivalued 
dependencies in D+ of the form α →→→→→→→→ β, where α ⊆ R and β ⊆ R, 
at least one of the following hold:
" α →→→→→→→→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
" α is a superkey for schema R

! If a relation is in 4NF it is in BCNF
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Restriction of Restriction of Multivalued Multivalued DependenciesDependencies

! The restriction of  D to Ri is the set Di consisting of
" All functional dependencies in D+ that include only attributes of Ri

" All multivalued dependencies of the form

α →→→→→→→→ (β ∩ Ri)
where α ⊆ Ri and  α →→→→→→→→ β is in D+
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4NF Decomposition Algorithm4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri
while (not done) 

if (there is a schema Ri in result that is not in 4NF) then
begin

let α →→→→→→→→ β be a nontrivial multivalued dependency that holds
on Ri such that α → Ri  is not in Di, and α∩β=φ; 

result :=  (result - Ri) ∪ (Ri - β)  ∪ (α, β); 
end

else done:= true;
Note: each Ri is in 4NF, and decomposition is lossless-join
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ExampleExample
! R =(A, B, C, G, H, I)

F ={ A →→→→→→→→ B
B →→→→→→→→ HI
CG →→→→→→→→ H }

! R is not in 4NF since A →→→→→→→→ B and A is not a superkey for R
! Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I)  (R2 is not in 4NF)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I)  (R4 is not in 4NF)

! Since A →→→→→→→→ B and B →→→→→→→→ HI, A →→→→→→→→ HI, A →→→→→→→→ I
e) R5 = (A, I)  (R5 is in 4NF)
f)R6 = (A, C, G)  (R6 is in  4NF)
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Further Normal FormsFurther Normal Forms

! Join dependencies generalize multivalued dependencies
" lead to project-join normal form (PJNF) (also called fifth normal 

form)

! A class of even more general constraints, leads to a normal form
called domain-key normal form.

! Problem with these generalized constraints:  are hard to reason 
with, and no set of sound and complete set of inference rules 
exists.

! Hence rarely used
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Overall Database Design ProcessOverall Database Design Process

! We have assumed schema R is given
" R could have been generated when converting E-R diagram to a set of 

tables.
" R could have been a single relation containing all attributes that are of 

interest (called universal relation).
" Normalization breaks R into smaller relations.
" R could have been the result of some ad hoc design of relations, which 

we then test/convert to normal form.
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ER Model and NormalizationER Model and Normalization

! When an E-R diagram is carefully designed, identifying all entities 
correctly, the tables generated from the E-R diagram should not need 
further normalization.

! However, in a real (imperfect) design there can be FDs from non-key 
attributes of an entity to other attributes of the entity

! E.g. employee entity with attributes department-number  and 
department-address, and  an FD department-number → department-
address
" Good design would have made department an entity

! FDs from non-key attributes of a relationship set possible, but rare ---
most relationships are binary 
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Universal Relation ApproachUniversal Relation Approach

! Dangling tuples – Tuples that “disappear” in computing a join.
" Let r1 (R1), r2 (R2), …., rn (Rn) be a set of relations
" A tuple r of the relation ri is a dangling tuple if r is not in the relation:

∏Ri (r1 r2 … rn)

! The relation r1 r2 … rn is called a universal relation since it 
involves all the attributes in the “universe” defined by 
R1 ∪ R2 ∪ … ∪ Rn

! If dangling tuples are allowed in the database, instead of 
decomposing a universal relation, we may prefer to synthesize a 
collection of normal form schemas from a given set of attributes.
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Universal Relation ApproachUniversal Relation Approach

! Dangling tuples may occur in practical database applications.
! They represent incomplete information 
! E.g. may want to break up information about loans into:

(branch-name, loan-number)  
(loan-number, amount) 
(loan-number, customer-name) 

! Universal relation would require null values, and have dangling
tuples
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Universal Relation Approach (Contd.)Universal Relation Approach (Contd.)

! A particular decomposition defines a restricted form of 
incomplete information that is acceptable in our database.
" Above decomposition requires at least one of customer-name,        

branch-name or amount in order to enter a loan number without 
using null values

" Rules out storing of customer-name, amount without an appropriate   
loan-number (since it is a key, it can't be null either!)

! Universal relation requires unique attribute names unique role 
assumption
" e.g.  customer-name, branch-name

! Reuse of attribute names is natural in SQL since relation names 
can be prefixed to disambiguate names
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DenormalizationDenormalization for Performancefor Performance

! May want to use non-normalized schema for performance
! E.g. displaying customer-name along with account-number and 

balance requires join of account with depositor
! Alternative 1:  Use denormalized relation containing attributes of 

account as well as depositor with all above attributes
" faster lookup
" Extra space and extra execution time for updates
" extra coding work for programmer and possibility of error in extra code

! Alternative 2: use a materialized view defined as
account      depositor

" Benefits and drawbacks same as above, except no extra coding work 
for programmer and avoids possible errors
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Other Design IssuesOther Design Issues

! Some aspects of database design are not caught by 
normalization

! Examples of bad database design, to be avoided: 
Instead of earnings(company-id, year, amount), use 
" earnings-2000, earnings-2001, earnings-2002, etc., all on the 

schema (company-id, earnings).
# Above are in BCNF, but make querying across years difficult and 

needs new table each year
" company-year(company-id, earnings-2000, earnings-2001,  

earnings-2002)
# Also in BCNF, but also makes querying across years difficult and

requires new attribute each year.
# Is an example of a crosstab, where values for one attribute 

become column names
# Used in spreadsheets, and in data analysis tools
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Decomposition AlgorithmDecomposition Algorithm
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Correctness of 3NF Decomposition Correctness of 3NF Decomposition 
AlgorithmAlgorithm

! 3NF decomposition algorithm is dependency preserving (since 
there is a relation for every FD in Fc)

! Decomposition is lossless join
" A candidate key (C) is in one of the relations Ri in decomposition
" Closure of candidate key under Fc must contain all attributes in R.  
" Follow the steps of attribute closure algorithm to show there is only 

one tuple in the join result for each tuple in Ri
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Correctness of 3NF Decomposition Correctness of 3NF Decomposition 
Algorithm (Contd.)Algorithm (Contd.)

Claim: if a relation Ri is in the decomposition generated by the 
above algorithm, then Ri satisfies 3NF.
! Let Ri be generated from the dependency α →β
! Let γ → B be any non-trivial functional dependency on Ri. (We 

need only consider FDs whose right-hand side is a single 
attribute.)

! Now, B can be in either β or α but not in both. Consider each 
case separately.
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Correctness of 3NF Decomposition Correctness of 3NF Decomposition 
(Contd.)(Contd.)

! Case 1: If B in β:
" If γ is a superkey, the 2nd condition of 3NF is satisfied
" Otherwise α must contain some attribute not in γ
" Since γ → B is in F+ it must be derivable from Fc, by using attribute 

closure on γ.
" Attribute closure not have used α →β - if it had been used, α must 

be contained in the attribute closure of γ, which is not possible, since 
we assumed γ is not a superkey.

" Now, using α→ (β- {B}) and γ → B, we can derive α →B
(since γ ⊆ α β , and B ∉ γ since γ → B is non-trivial)

" Then, B is extraneous in the right-hand side of α →β; which is not 
possible since α →β is in Fc.

" Thus, if B is in β then γ must be a superkey, and the second 
condition of 3NF must be satisfied.
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Correctness of 3NF Decomposition Correctness of 3NF Decomposition 
(Contd.)(Contd.)

! Case 2:  B is in α.
" Since α is a candidate key, the third alternative in the definition of

3NF is trivially satisfied.
" In fact, we cannot show that γ is a superkey.
" This shows exactly why the third alternative is present in the 

definition of 3NF.

Q.E.D.

End of ChapterEnd of Chapter
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Sample Sample lendinglending RelationRelation

©Silberschatz, Korth and Sudarshan7.80Database System Concepts

Sample Relation Sample Relation rr
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The The customer customer RelationRelation
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The The loanloan RelationRelation
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The The branchbranch RelationRelation
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The Relation The Relation branchbranch--customercustomer



43

©Silberschatz, Korth and Sudarshan7.85Database System Concepts

The Relation The Relation customercustomer--loanloan
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The Relation The Relation branchbranch--customer      customercustomer      customer--loanloan
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An Instance of An Instance of BankerBanker--schemaschema
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Tabular Representation of Tabular Representation of α →→ βα →→ βα →→ βα →→ βα →→ βα →→ βα →→ βα →→ β
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Relation Relation bcbc: An Example of : An Example of Reduncy Reduncy in a BCNF Relationin a BCNF Relation
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An Illegal An Illegal bc bc RelationRelation
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Decomposition of Decomposition of loanloan--infoinfo
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Relation of Exercise 7.4Relation of Exercise 7.4


