
©Silberschatz, Korth and Sudarshan8.1Database System Concepts

Chapter 8: ObjectChapter 8: Object--Oriented DatabasesOriented Databases

! Need for Complex Data Types
! The Object-Oriented Data Model
! Object-Oriented Languages
! Persistent Programming Languages
! Persistent C++ Systems

©Silberschatz, Korth and Sudarshan8.2Database System Concepts

Need for Complex Data TypesNeed for Complex Data Types

! Traditional database applications in data processing had
conceptually simple data types
! Relatively few data types, first normal form holds

! Complex data types have grown more important in recent years
! E.g. Addresses can be viewed as a

" Single string, or
" Separate attributes for each part, or
" Composite attributes (which are not in first normal form)

! E.g. it is often convenient to store multivalued attributes as-is,
without creating a separate relation to store the values in first
normal form

! Applications
! computer-aided design, computer-aided software engineering
! multimedia and image databases, and document/hypertext

databases.

©Silberschatz, Korth and Sudarshan8.3Database System Concepts

ObjectObject--Oriented Data ModelOriented Data Model

! Loosely speaking, an object corresponds to an entity in the E-
R model.

! The object-oriented paradigm is based on encapsulating code
and data related to an object into single unit.

! The object-oriented data model is a logical data model (like
the E-R model).

! Adaptation of the object-oriented programming paradigm (e.g.,
Smalltalk, C++) to database systems.

©Silberschatz, Korth and Sudarshan8.4Database System Concepts

Object StructureObject Structure

! An object has associated with it:
! A set of variables that contain the data for the object. The value of

each variable is itself an object.
! A set of messages to which the object responds; each message may

have zero, one, or more parameters.
! A set of methods, each of which is a body of code to implement a

message; a method returns a value as the response to the message

! The physical representation of data is visible only to the
implementor of the object

! Messages and responses provide the only external interface to an
object.

! The term message does not necessarily imply physical message
passing. Messages can be implemented as procedure
invocations.

©Silberschatz, Korth and Sudarshan8.5Database System Concepts

Messages and MethodsMessages and Methods

! Methods are programs written in general-purpose language
with the following features
! only variables in the object itself may be referenced directly
! data in other objects are referenced only by sending messages.

! Methods can be read-only or update methods
! Read-only methods do not change the value of the object

! Strictly speaking, every attribute of an entity must be
represented by a variable and two methods, one to read and
the other to update the attribute
! e.g., the attribute address is represented by a variable address

and two messages get-address and set-address.
! For convenience, many object-oriented data models permit direct

access to variables of other objects.

©Silberschatz, Korth and Sudarshan8.6Database System Concepts

Object ClassesObject Classes

! Similar objects are grouped into a class; each such object is
called an instance of its class

! All objects in a class have the same
! Variables, with the same types
! message interface
! methods
The may differ in the values assigned to variables

! Example: Group objects for people into a person class
! Classes are analogous to entity sets in the E-R model

©Silberschatz, Korth and Sudarshan8.7Database System Concepts

Class Definition ExampleClass Definition Example
class employee {

/*Variables */
string name;
string address;
date start-date;
int salary;

/* Messages */
int annual-salary();
string get-name();
string get-address();
int set-address(string new-address);
int employment-length();

};

! Methods to read and set the other variables are also needed with
strict encapsulation

! Methods are defined separately
! E.g. int employment-length() { return today() – start-date;}

int set-address(string new-address) { address = new-address;}

©Silberschatz, Korth and Sudarshan8.8Database System Concepts

InheritanceInheritance

! E.g., class of bank customers is similar to class of bank
employees, although there are differences
! both share some variables and messages, e.g., name and address.
! But there are variables and messages specific to each class e.g.,

salary for employees and credit-rating for customers.

! Every employee is a person; thus employee is a specialization of
person

! Similarly, customer is a specialization of person.
! Create classes person, employee and customer

! variables/messages applicable to all persons associated with class
person.

! variables/messages specific to employees associated with class
employee; similarly for customer

©Silberschatz, Korth and Sudarshan8.9Database System Concepts

Inheritance (Cont.)Inheritance (Cont.)

! Place classes into a specialization/IS-A hierarchy
! variables/messages belonging to class person are

inherited by class employee as well as customer

! Result is a class hierarchy

Note analogy with ISA Hierarchy in the E-R model

©Silberschatz, Korth and Sudarshan8.10Database System Concepts

Class Hierarchy DefinitionClass Hierarchy Definition
class person{

string name;
string address:
};

class customer isa person {
int credit-rating;
};

class employee isa person {
date start-date;
int salary;
};

class officer isa employee {
int office-number,
int expense-account-number,
};

...

©Silberschatz, Korth and Sudarshan8.11Database System Concepts

Class Hierarchy Example (Cont.)Class Hierarchy Example (Cont.)

! Full variable list for objects in the class officer:
! office-number, expense-account-number: defined locally

! start-date, salary: inherited from employee

! name, address: inherited from person

! Methods inherited similar to variables.

! Substitutability — any method of a class, say person, can be invoked
equally well with any object belonging to any subclass, such as
subclass officer of person.

! Class extent: set of all objects in the class. Two options:
1. Class extent of employee includes all officer, teller and secretary objects.

2. Class extent of employee includes only employee objects that are not in a
subclass such as officer, teller, or secretary

This is the usual choice in OO systems

Can access extents of subclasses to find all objects of
subtypes of employee

©Silberschatz, Korth and Sudarshan8.12Database System Concepts

Example of Multiple InheritanceExample of Multiple Inheritance

Class DAG for banking example.

©Silberschatz, Korth and Sudarshan8.13Database System Concepts

Multiple InheritanceMultiple Inheritance
! With multiple inheritance a class may have more than one superclass.

! The class/subclass relationship is represented by a directed acyclic graph
(DAG)

! Particularly useful when objects can be classified in more than one way,
which are independent of each other
" E.g. temporary/permanent is independent of Officer/secretary/teller
" Create a subclass for each combination of subclasses

– Need not create subclasses for combinations that are not possible in
the database being modeled

! A class inherits variables and methods from all its superclasses
! There is potential for ambiguity when a variable/message N with the

same name is inherited from two superclasses A and B
! No problem if the variable/message is defined in a shared superclass
! Otherwise, do one of the following

" flag as an error,
" rename variables (A.N and B.N)
" choose one.

©Silberschatz, Korth and Sudarshan8.14Database System Concepts

More Examples of Multiple InheritanceMore Examples of Multiple Inheritance

! Conceptually, an object can belong to each of several
subclasses
! A person can play the roles of student, a teacher or footballPlayer,

or any combination of the three
" E.g., student teaching assistant who also play football

! Can use multiple inheritance to model “roles” of an object
! That is, allow an object to take on any one or more of a set of types

! But many systems insist an object should have a most-specific
class
! That is, there must be one class that an object belongs to which is

a subclass of all other classes that the object belongs to
! Create subclasses such as student-teacher and

student-teacher-footballPlayer for each combination
! When many combinations are possible, creating

subclasses for each combination can become cumbersome

©Silberschatz, Korth and Sudarshan8.15Database System Concepts

Object IdentityObject Identity

! An object retains its identity even if some or all of the values
of variables or definitions of methods change over time.

! Object identity is a stronger notion of identity than in
programming languages or data models not based on object
orientation.
! Value – data value; e.g. primary key value used in relational

systems.
! Name – supplied by user; used for variables in procedures.
! Built-in – identity built into data model or programming

language.
" no user-supplied identifier is required.
" Is the form of identity used in object-oriented systems.

©Silberschatz, Korth and Sudarshan8.16Database System Concepts

Object IdentifiersObject Identifiers

! Object identifiers used to uniquely identify objects
! Object identifiers are unique:

" no two objects have the same identifier
" each object has only one object identifier

! E.g., the spouse field of a person object may be an identifier of
another person object.

! can be stored as a field of an object, to refer to another object.
! Can be

" system generated (created by database) or
" external (such as social-security number)

! System generated identifiers:
" Are easier to use, but cannot be used across database systems
" May be redundant if unique identifier already exists

©Silberschatz, Korth and Sudarshan8.17Database System Concepts

Object ContainmentObject Containment

! Each component in a design may contain other components
! Can be modeled as containment of objects. Objects containing;

other objects are called composite objects.
! Multiple levels of containment create a containment hierarchy

! links interpreted as is-part-of, not is-a.
! Allows data to be viewed at different granularities by different

users.

©Silberschatz, Korth and Sudarshan8.18Database System Concepts

ObjectObject--Oriented LanguagesOriented Languages

! Object-oriented concepts can be used in different ways
! Object-orientation can be used as a design tool, and be

encoded into, for example, a relational database
analogous to modeling data with E-R diagram and then

converting to a set of relations)
! The concepts of object orientation can be incorporated into a

programming language that is used to manipulate the
database.
" Object-relational systems – add complex types and

object-orientation to relational language.
" Persistent programming languages – extend object-

oriented programming language to deal with databases
by adding concepts such as persistence and collections.

©Silberschatz, Korth and Sudarshan8.19Database System Concepts

Persistent Programming LanguagesPersistent Programming Languages

! Persistent Programming languages allow objects to be created
and stored in a database, and used directly from a programming
language
! allow data to be manipulated directly from the programming language

" No need to go through SQL.
! No need for explicit format (type) changes

" format changes are carried out transparently by system
" Without a persistent programming language, format changes

becomes a burden on the programmer
– More code to be written
– More chance of bugs

! allow objects to be manipulated in-memory
" no need to explicitly load from or store to the database

– Saved code, and saved overhead of loading/storing large
amounts of data

©Silberschatz, Korth and Sudarshan8.20Database System Concepts

Persistent Persistent ProgProg. Languages (Cont.). Languages (Cont.)

! Drawbacks of persistent programming languages
! Due to power of most programming languages, it is easy to make

programming errors that damage the database.
! Complexity of languages makes automatic high-level optimization

more difficult.
! Do not support declarative querying as well as relational databases

©Silberschatz, Korth and Sudarshan8.21Database System Concepts

Persistence of ObjectsPersistence of Objects

! Approaches to make transient objects persistent include
establishing
! Persistence by Class – declare all objects of a class to be

persistent; simple but inflexible.
! Persistence by Creation – extend the syntax for creating objects to

specify that that an object is persistent.
! Persistence by Marking – an object that is to persist beyond

program execution is marked as persistent before program
termination.

! Persistence by Reachability - declare (root) persistent objects;
objects are persistent if they are referred to (directly or indirectly)
from a root object.
" Easier for programmer, but more overhead for database system
" Similar to garbage collection used e.g. in Java, which

also performs reachability tests

©Silberschatz, Korth and Sudarshan8.22Database System Concepts

Object Identity and PointersObject Identity and Pointers

! A persistent object is assigned a persistent object identifier.
! Degrees of permanence of identity:

! Intraprocedure – identity persists only during the executions of a
single procedure

! Intraprogram – identity persists only during execution of a single
program or query.

! Interprogram – identity persists from one program execution to
another, but may change if the storage organization is changed

! Persistent – identity persists throughout program executions and
structural reorganizations of data; required for object-oriented
systems.

©Silberschatz, Korth and Sudarshan8.23Database System Concepts

Object Identity and Pointers (Cont.)Object Identity and Pointers (Cont.)

! In O-O languages such as C++, an object identifier is
actually an in-memory pointer.

! Persistent pointer – persists beyond program execution
! can be thought of as a pointer into the database

" E.g. specify file identifier and offset into the file
! Problems due to database reorganization have to be dealt

with by keeping forwarding pointers

©Silberschatz, Korth and Sudarshan8.24Database System Concepts

Storage and Access of Persistent ObjectsStorage and Access of Persistent Objects

! Name objects (as you would name files)
! Cannot scale to large number of objects.
! Typically given only to class extents and other collections of

objects, but not objects.

! Expose object identifiers or persistent pointers to the objects
! Can be stored externally.
! All objects have object identifiers.

! Store collections of objects, and allow programs to iterate
over the collections to find required objects
! Model collections of objects as collection types
! Class extent - the collection of all objects belonging to the

class; usually maintained for all classes that can have persistent
objects.

How to find objects in the database:

©Silberschatz, Korth and Sudarshan8.25Database System Concepts

Persistent C++ SystemsPersistent C++ Systems

! C++ language allows support for persistence to be added without
changing the language
! Declare a class called Persistent_Object with attributes and methods

to support persistence
! Overloading – ability to redefine standard function names and

operators (i.e., +, –, the pointer deference operator –>) when applied
to new types

! Template classes help to build a type-safe type system supporting
collections and persistent types.

! Providing persistence without extending the C++ language is
! relatively easy to implement
! but more difficult to use

! Persistent C++ systems that add features to the C++ language
have been built, as also systems that avoid changing the
language

©Silberschatz, Korth and Sudarshan8.26Database System Concepts

ODMG C++ Object Definition LanguageODMG C++ Object Definition Language

! The Object Database Management Group is an industry
consortium aimed at standardizing object-oriented databases
! in particular persistent programming languages
! Includes standards for C++, Smalltalk and Java
! ODMG-93
! ODMG-2.0 and 3.0 (which is 2.0 plus extensions to Java)

" Our description based on ODMG-2.0

! ODMG C++ standard avoids changes to the C++ language
! provides functionality via template classes and class libraries

©Silberschatz, Korth and Sudarshan8.27Database System Concepts

ODMG TypesODMG Types

! Template class d_Ref<class> used to specify references
(persistent pointers)

! Template class d_Set<class> used to define sets of objects.
! Methods include insert_element(e) and delete_element(e)

! Other collection classes such as d_Bag (set with duplicates
allowed), d_List and d_Varray (variable length array) also
provided.

! d_ version of many standard types provided, e.g. d_Long and
d_string
! Interpretation of these types is platform independent
! Dynamically allocated data (e.g. for d_string) allocated in the

database, not in main memory

©Silberschatz, Korth and Sudarshan8.28Database System Concepts

ODMG C++ ODL: ExampleODMG C++ ODL: Example

class Branch : public d_Object {
….

}
class Person : public d_Object {

public:
d_String name; // should not use String!
d_String address;

};

class Account : public d_Object {
private:

d_Long balance;
public:

d_Long number;
d_Set <d_Ref<Customer>> owners;

int find_balance();
int update_balance(int delta);

};

©Silberschatz, Korth and Sudarshan8.29Database System Concepts

ODMG C++ ODL: Example (Cont.)ODMG C++ ODL: Example (Cont.)

class Customer : public Person {
public:

d_Date member_from;
d_Long customer_id;
d_Ref<Branch> home_branch;
d_Set <d_Ref<Account>> accounts; };

©Silberschatz, Korth and Sudarshan8.30Database System Concepts

Implementing RelationshipsImplementing Relationships

! Relationships between classes implemented by references
! Special reference types enforces integrity by adding/removing

inverse links.
! Type d_Rel_Ref<Class, InvRef> is a reference to Class, where

attribute InvRef of Class is the inverse reference.
! Similarly, d_Rel_Set<Class, InvRef> is used for a set of references

! Assignment method (=) of class d_Rel_Ref is overloaded
! Uses type definition to automatically find and update the inverse

link
! Frees programmer from task of updating inverse links
! Eliminates possibility of inconsistent links

! Similarly, insert_element() and delete_element() methods of
d_Rel_Set use type definition to find and update the inverse link
automatically

©Silberschatz, Korth and Sudarshan8.31Database System Concepts

Implementing RelationshipsImplementing Relationships

! E.g.
extern const char _owners[], _accounts[];
class Account : public d.Object {

….
d_Rel_Set <Customer, _accounts> owners;

}
// .. Since strings can’t be used in templates …

const char _owners= “owners”;
const char _accounts= “accounts”;

©Silberschatz, Korth and Sudarshan8.32Database System Concepts

ODMG C++ Object Manipulation LanguageODMG C++ Object Manipulation Language
! Uses persistent versions of C++ operators such as new(db)

d_Ref<Account> account = new(bank_db, “Account”) Account;
! new allocates the object in the specified database, rather than in

memory.
! The second argument (“Account”) gives typename used in the

database.
! Dereference operator -> when applied on a d_Ref<Account>

reference loads the referenced object in memory (if not already
present) before continuing with usual C++ dereference.

! Constructor for a class – a special method to initialize objects
when they are created; called automatically on new call.

! Class extents maintained automatically on object creation and
deletion
! Only for classes for which this feature has been specified

" Specification via user interface, not C++
! Automatic maintenance of class extents not supported in

earlier versions of ODMG

©Silberschatz, Korth and Sudarshan8.33Database System Concepts

ODMG C++OML: Database and Object ODMG C++OML: Database and Object
FunctionsFunctions

! Class d_Database provides methods to
! open a database: open(databasename)
! give names to objects: set_object_name(object, name)
! look up objects by name: lookup_object(name)
! rename objects: rename_object(oldname, newname)
! close a database (close());

! Class d_Object is inherited by all persistent classes.
! provides methods to allocate and delete objects
! method mark_modified() must be called before an object is

updated.
" Is automatically called when object is created

©Silberschatz, Korth and Sudarshan8.34Database System Concepts

ODMG C++ OML: ExampleODMG C++ OML: Example

int create_account_owner(String name, String Address){

Database bank_db.obj;
Database * bank_db= & bank_db.obj;
bank_db =>open(“Bank-DB”);
d.Transaction Trans;
Trans.begin();

d_Ref<Account> account = new(bank_db) Account;
d_Ref<Customer> cust = new(bank_db) Customer;
cust->name - name;
cust->address = address;
cust->accounts.insert_element(account);
... Code to initialize other fields

Trans.commit();

}

©Silberschatz, Korth and Sudarshan8.35Database System Concepts

ODMG C++ OML: Example (Cont.)ODMG C++ OML: Example (Cont.)

! Class extents maintained automatically in the database.
! To access a class extent:

d_Extent<Customer> customerExtent(bank_db);
! Class d_Extent provides method

d_Iterator<T> create_iterator()
to create an iterator on the class extent

! Also provides select(pred) method to return iterator on objects that
satisfy selection predicate pred.

! Iterators help step through objects in a collection or class extent.
! Collections (sets, lists etc.) also provide create_iterator() method.

©Silberschatz, Korth and Sudarshan8.36Database System Concepts

ODMG C++ OML: Example of IteratorsODMG C++ OML: Example of Iterators

int print_customers() {
Database bank_db_obj;
Database * bank_db = &bank_db_obj;
bank_db->open (“Bank-DB”);
d_Transaction Trans; Trans.begin ();

d_Extent<Customer> all_customers(bank_db);
d_Iterator<d_Ref<Customer>> iter;
iter = all_customers–>create_iterator();
d_Ref <Customer> p;

while{iter.next (p))
print_cust (p); // Function assumed to be defined elsewhere

Trans.commit();

}

©Silberschatz, Korth and Sudarshan8.37Database System Concepts

ODMG C++ Binding: Other FeaturesODMG C++ Binding: Other Features
! Declarative query language OQL, looks like SQL

! Form query as a string, and execute it to get a set of results
(actually a bag, since duplicates may be present)

d_Set<d_Ref<Account>> result;
d_OQL_Query q1("select a

from Customer c, c.accounts a
where c.name=‘Jones’

and a.find_balance() > 100");
d_oql_execute(q1, result);

! Provides error handling mechanism based on C++ exceptions,
through class d_Error

! Provides API for accessing the schema of a database.

©Silberschatz, Korth and Sudarshan8.38Database System Concepts

Making Pointer Persistence TransparentMaking Pointer Persistence Transparent

! Drawback of the ODMG C++ approach:
! Two types of pointers
! Programmer has to ensure mark_modified() is called, else

database can become corrupted
! ObjectStore approach

! Uses exactly the same pointer type for in-memory and database
objects

! Persistence is transparent applications
" Except when creating objects

! Same functions can be used on in-memory and persistent objects
since pointer types are the same

! Implemented by a technique called pointer-swizzling which is
described in Chapter 11.

! No need to call mark_modified(), modification detected
automatically.

©Silberschatz, Korth and Sudarshan8.39Database System Concepts

Persistent Java SystemsPersistent Java Systems

! ODMG-3.0 defines extensions to Java for persistence
! Java does not support templates, so language extensions are

required

! Model for persistence: persistence by reachability
! Matches Java’s garbage collection model
! Garbage collection needed on the database also
! Only one pointer type for transient and persistent pointers

! Class is made persistence capable by running a post-processor
on object code generated by the Java compiler
! Contrast with pre-processor used in C++
! Post-processor adds mark_modified() automatically

! Defines collection types DSet, DBag, DList, etc.
! Uses Java iterators, no need for new iterator class

©Silberschatz, Korth and Sudarshan8.40Database System Concepts

ODMG JavaODMG Java

! Transaction must start accessing database from one of the root
object (looked up by name)
! finds other objects by following pointers from the root objects

! Objects referred to from a fetched object are allocated space in
memory, but not necessarily fetched
! Fetching can be done lazily
! An object with space allocated but not yet fetched is called a hollow

object
! When a hollow object is accessed, its data is fetched from disk.

End of Chapter End of Chapter

©Silberschatz, Korth and Sudarshan8.42Database System Concepts

Specialization Hierarchy for the Bank ExampleSpecialization Hierarchy for the Bank Example

©Silberschatz, Korth and Sudarshan8.43Database System Concepts

Class Hierarchy Corresponding to Figure 8.2Class Hierarchy Corresponding to Figure 8.2

©Silberschatz, Korth and Sudarshan8.44Database System Concepts

Class DAG for the Bank ExampleClass DAG for the Bank Example

©Silberschatz, Korth and Sudarshan8.45Database System Concepts

Containment Hierarchy for BicycleContainment Hierarchy for Bicycle--Design DatabaseDesign Database

