Qhapter 9: Object-Relational Databases

B Nested Relations

m Complex Types and Object Orientation
B Querying with Complex Types

H Creation of Complex Values and Objects

‘ Object-Relational Data Models

B Extend the relational data model by including object orientation
and constructs to deal with added data types.

m Allow attributes of tuples to have complex types, including non-
atomic values such as nested relations.

‘ Nested Relations

® Motivation:
» Permit non-atomic domains (atomic = indivisible)

» Example of non-atomic domain: set of integers,or set of
tuples

» Allows more intuitive modeling for applications with

‘ Example of a Nested Relation

B Example: library information system
B Each book has

> title,

» a set of authors,

‘ 1NF Version of Nested Relation

® 1NF version of books

Compilers Srnath MMcGraw-Hill Moew York parsing
Compilers Jones MoGraw-Hill Mew York parsing
Compilers | Smith McGraw-Hill | New York analysis
Compilers | Jones MoGraw-Hill | New York analysis
Metworks Jores Cichond London Inbermet
Metwiorks Frick Crford London Internet
MNetworks Jones Ceford London Web

Metwiorks Frick Crcford London Web

‘4NF Decomposition of Nested Relation

B Remove awkwardness of flat-books by assuming that the
following multivalued dependencies hold:

» title =»author
» title -+» keyword
» title —» pub-name, pub-branch

‘ 4NF Decomposition of flat—books

[fitle [author [tille | keyword |

Compilers | Smith Compilers | parsing
Compilers | Jones Compilers | analysis
MNetworks | Jones MNetworks | Internet
Metworks | Frick

authors

‘ Problems with 4NF Schema

B ANF design requires users to include joins in their queries.
® 1NF relational view flat-books defined by join of 4NF relations:
» eliminates the need for users to perform joins,

» but loses the one-to-one correspondence between tuples and
documents.

‘ Complex Types and SQL:1999

B Extensions to SQL to support complex types include:
» Collection and large object types
* Nested relations are an example of collection types
» Structured types
* Nested record structures like composite attributes

‘ Collection Types

m Set type (not in SQL:1999)
create table books (

‘ Large Object Types

B Large object types
» clob: Character large objects
book-review clob(10KB)
» blob: binary large objects

‘ Structured and Collection Types

B Structured types can be declared and used in SQL

create type Publisher as
(name varchar(20),
branch varchar(20))
create type Book as
itle varch

'ructured and Collection Types (Cont.)

m Structured types allow composite attributes of E-R diagrams
to be represented directly.

B Unnamed row types can also be used in SQL:1999 to define
composite attributes

N

‘ Structured Types (Cont.)

® We can create tables without creating an intermediate type

» For example, the table books could also be defined as follows:
create table books
(title varchar(20),
author-array varchar(20) array[10],
pub-date date,
publisher Publisher

Creation of Values of Complex Types

B Values of structured types are created using constructor functions
» E.g. Publisher(‘McGraw-Hill’, ‘New York’)
» Note: a value is not an object

B SQL:1999 constructor functions

» E.g.
create function Publisher (n varchar(20), b varchar(20))

‘ Creation of Values of Complex Types

B Array construction
array [‘Silberschatz’,”Korth’,” Sudarshan’]
m Set value attributes (not supported in SQL:1999)
» set(vl, v2, ..., vn)

B To create a tuple of the books relation
(‘Compilers’, array[~ Smith’,”Jones’],

Inheritance

B Suppose that we have the following type definition for people:

create type Person
(name varchar(20),
address varchar(20))

®m Using inheritance to define the student and teacher types

‘ Multiple Inheritance

B SQL:1999 does not support multiple inheritance

m |f our type system supports multiple inheritance, we can define a
type for teaching assistant as follows:
create type Teaching Assistant
under Student, Teacher

‘ Table Inheritance

B Table inheritance allows an object to have multiple types by
allowing an entity to exist in more than one table at once.

B E.g. people table: create table pegple of Person

B We can then define the students and teachers tables as
subtables of people

‘ Table Inheritance: Roles

B Table inheritance is useful for modeling roles

B permits a value to have multiple types, without having a
most-specific type (unlike type inheritance).

10

‘Table Inheritance: Consistency Requirements

B Consistency requirements on subtables and supertables.

» Each tuple of the supertable (e.g. people) can correspond to at
most one tuple in each of the subtables (e.g. students and teachers)

» Additional constraint in SQL:1999:
All tuples corresponding to each other (that is, with the same values

‘Table Inheritance: Storage Alternatives

B Storage alternatives

1. Store only local attributes and the primary key of the supertable in
subtable

* Inherited attributes derived by means of a join with the
supertable

‘ Reference Types

m Object-oriented languages provide the ability to create and refer to
objects.

B |n SQL:1999
» References are to tuples, and

‘ Reference Declaration in SQL:1999

B E.g. define a type Department with a field name and a field head
which is a reference to the type Person, with table people as
scope

create type Department(
name varchar(20),

12

‘ Initializing Reference Typed Values

® In Oracle, to create a tuple with a reference value, we can first
create the tuple with a null reference and then set the reference
separately by using the function ref(p) applied to a tuple variable

B E.g. to create a department with name CS and head being the
person named John, we use

‘ Initializing Reference Typed Values (Cont.)

B SQL:1999 does not support the ref() function, and instead
requires a special attribute to be declared to store the object
identifier

B The self-referential attribute is declared by adding a ref is clause
to the create table statement:

13

‘ User Generated ldentifiers

B SQL:1999 allows object identifiers to be user-generated

» The type of the object-identifier must be specified as part of the type
definition of the referenced table, and

» The table definition must specify that the reference is user generated
» E.g.

create type Person

‘ User Generated Identifiers (Cont.)

® We can then use the identifier value when inserting a tuple into
departments

» Avoids need for a separate query to retrieve the identifier:

E.g. insert into departments
values('CS’, '02184567)

B |tis even possible to use an existing primary key value as the
identifier, by including the ref from clause, and declaring the

14

‘ Path Expressions

B Find the names and addresses of the heads of all departments:

select head —>name, head —>address
from departments

B An expression such as “head—>name” is called a path

‘ Querying with Structured Types

® Find the title and the name of the publisher of each book.

select title, publisher.name
from books

15

‘ Collection-Value Attributes

B Collection-valued attributes can be treated much like relations, using
the keyword unnest

» The books relation has array-valued attribute author-array and set-
valued attribute keyword-set

® To find all books that have the word “database” as one of their
keywords,

‘ Collection Valued Attributes (Cont.)

B We can access individual elements of an array by using indices

» E.g. If we know that a particular book has three authors, we could
write:

select author-array[1], author-array[2], author-array[3]
from books
where title = "Database System Concepts’

16

‘ Unnesting

B The transformation of a nested relation into a form with fewer (or no)
relation-valued attributes us called unnesting.

m Eg.

select title, A as author, publisher.name as pub_name,

evVWOorao

‘ Nesting

Nesting is the opposite of unnesting, creating a collection-valued attribute
NOTE: SQL:1999 does not support nesting

Nesting can be done in a manner similar to aggregation, but using the
function set() in place of an aggregation operation, to create a set

17

‘ Nesting (Cont.)

m Another approach to creating nested relations is to use
subqueries in the select clause.

select title,
(select author
from flat-books as M

‘ Functions and Procedures

B SQL:1999 supports functions and procedures

» Functions/procedures can be written in SQL itself, or in an external
programming language

» Functions are particularly useful with specialized data types such as
images and geometric objects

18

‘ SQL Functions

m Define a function that, given a book title, returns the count of the
number of authors (on the 4NF schema with relations books4
and authors).

create function author-count(name varchar(20))

‘ SQL Methods

B Methods can be viewed as functions associated with structured
types

» They have an implicit first parameter called self which is set to the
structured-type value on which the method is invoked

19

‘SQL Functions and Procedures (cont.)

® The author-count function could instead be written as procedure:

create procedure author-count-proc (in title varchar(20),
out a-count integer)

begin
select count(author) into a-count
from authors

‘ External Language Functions/Procedures

B SQL:1999 permits the use of functions and procedures
written in other languages such as C or C++

m Declaring external language procedures and functions

~

Database System Concepts

External Language Routines (Cont.)

~
®m Benefits of external language functions/procedures:

» more efficient for many operations, and more expressive
power
® Drawbacks

» Code to implement function may need to be loaded into
database system and executed in the database system’s
address space

* risk of accidental corruption of database structures
* security risk, allowing users access to unauthorized data

» There are alternatives, which give good security at the cost of
potentially worse performance

» Direct execution in the database system’s space is used when
efficiency is more important than security

9.41 ©Silberschatz, Ko

~

Database System Concepts 9.42

Security with External Language Routines
\/

® To deal with security problems

» Use sandbox techniques

* that is use a safe language like Java, which cannot be
used to access/damage other parts of the database code

» Or, run external language functions/procedures in a separate
process, with no access to the database process’ memory

* Parameters and results communicated via inter-process
communication
® Both have performance overheads
B Many database systems support both above
approaches as well as direct executing in database
system address space

©Silberschatz, Ko

21

‘ Procedural Constructs

® SQL:1999 supports a rich variety of procedural constructs

® Compound statement
» is of the form begin ... end,
— . e

‘ Procedural Constructs (Cont.)

®m For loop
» Permits iteration over all results of a query
» E.g. find total of all balances at the Perryridge branch

declare n integer default 0;

22

‘ Procedural Constructs (cont.)

m Conditional statements (if-then-else)
E.g. To find sum of balances for each of three categories of accounts
(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000

then set | = | + r.balance
elseif r.balance < 5000

then set m = m + r.balance

‘Comparison of O-O and O-R Databases

B Summary of strengths of various database systems:
B Relational systems
» simple data types, powerful query languages, high protection.

23

‘ Finding all employees of a manager

Procedure to find all employees who work directly or indirectly for mgr
Relation manager(empname, mgrname)specifies who directly works for whom
Result is stored in empl(name)

create procedure findEmp(in mgr char(10))

‘Finding all employees of a manager(cont.)

repeat
insert into empl -- add all new employees found to empl
select name
from newemp;
insert into temp -- find all employees of people already found

(select manager.empname

24

‘A Partially Nested Version of the flat-books Relation

[McGraw-Hill. Mew Yok
{Ondped, London)
| Coderd, Lomnad o)

25

